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This Study Guide has been developed exclusively with the Caribbean 
Examinations Council (CXC®) to be used as an additional resource by 
candidates, both in and out of school, following the Caribbean Advanced 
Profi ciency Examination (CAPE®) programme.

It has been prepared by a team with expertise in the CAPE® syllabus,
teaching and examination. The contents are designed to support learning 
by providing tools to help you achieve your best in CAPE® Pure Mathematics 
and the features included make it easier for you to master the key concepts 
and requirements of the syllabus. Do remember to refer to your syllabus 
for full guidance on the course requirements and examination format!

Inside this Study Guide is an interactive CD which includes electronic
activities to assist you in developing good examination techniques:

• On Your Marks activities provide sample examination-style short 
answer and essay type questions, with example candidate answers 
and feedback from an examiner to show where answers could be 
improved. These activities will build your understanding, skill level 
and confi dence in answering examination questions.

• Test Yourself activities are specifi cally designed to provide experience 
of multiple-choice examination questions and helpful feedback will 
refer you to sections inside the study guide so that you can revise 
problem areas.

• Answers are included on the CD for exercises and practice questions, 
so that you can check your own work as you proceed.

This unique combination of focused syllabus content and interactive 
examination practice will provide you with invaluable support to help you 
reach your full potential in CAPE® Pure Mathematics.

Introduction
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Imaginary numbers

When we try to solve the equation x2
 1  0, we get x2

 1 giving 
x   √

___

1  

Up to this point, we have left it at the statement that there is no real 
number whose square is 1, so the equation has no real roots. To work 
with equations whose roots are not real, we need to introduce another 
type of number.

If we introduce the symbol i to represent  √
___

1  , we can say that the equation

x2
 1  0 has two roots, i and i.

i is called an imaginary number, where i  √√
___

1  

It follows that i2
 ( √

___

1  )2
 1

This is consistent with what we know about the sum of the roots and the 
product of the roots of a quadratic equation: for the equation 

x2
 1  0, 

b__
a

 0 and  
c__
a

 1; and the sum of the roots is i  ( i)  0

and the product of the roots is i  ( i)  i2
 ( 1)  1

Any negative number has two square roots, each of which is an 
imaginary number and can be expressed in terms of i.

For example, the square roots of 4 are  √
___

4    √4   √
___

1   2i

 and the square roots of 49 are  √
_____

49    √
___

49   √
___

1   7i

Imaginary numbers can be added, subtracted, multiplied and divided.

For example, 2i  7i  9i

 i √3   i  i( √3   1)

 2i  7i  14i2
 14  1  14

 10i  5i  2

Powers of i can be simplifi ed. 

For example, i3
 (i2)  i  i, i4

 (i2)2
 ( 1)2

 1  and  

i 1


1__
i


i__
i2 

i___
1

 i

Complex numbers

Consider the quadratic equation x2  2x  5  0 

The solution of this equation is 

x 
2  √

_______

4  20  ____________
2


2  √

_____

16  __________
2


2  4 √

___

1  __________
2

 1  2i

The two roots of the equation are therefore 1  2i  and  1  2i

These numbers are the sum of a real number and an imaginary number. 
Numbers of this form are called complex numbers

A complex number is of the form a  ib where a and b are real.
a is called the real part and ib is called the imaginary part.

1 Complex numbers and calculus 2

1.1 Complex numbers

Learning outcomes

 To defi ne imaginary numbers

 To defi ne complex numbers

You need to know

 How to solve a quadratic 

equation

 The relationship between the 

coeffi cients of a quadratic 

equation and the roots of the 

equation

 How to factorise a cubic 

expression
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Section 1 Complex numbers and calculus 2 

Like much mathematics that is devised to deal with a theoretical 
problem, complex numbers have many applications in real life. The 
main application of complex numbers is in electronics, where they are 
used to understand and analyse alternating signals. Mathematicians use 
i to denote  √

___

1   but engineers use j to denote  √
___

1   because i is used for 
current in electronics. 

Conjugate complex numbers

The roots of the equation x2  2x  5  0 were found above to be 1  2i  
and  1  2i

These two complex numbers are called conjugate complex numbers

Any two complex numbers of the form  a  ib  and  a  ib  are 
conjugate complex numbers and each is the conjugate of the other.

We use z to represent a complex number, so when z  a  ib, its 
conjugate, denoted by z* (or by  z ), is given by z*  a  ib

The solution of the general quadratic equation ax2
 bx  c  0 is given by

x 
b  √

________

b2  4ac  _______________
2a


b___

2a
 i  

√
________

4ac b2__________
2a

Using  p 
b___

2a
  and  q 

√
________

4ac b2__________
2a

, these roots can be expressed as p  iq

Therefore when a quadratic equation with real coeffi cients has 
complex roots, those roots are a pair of conjugate complex numbers.

We know, from Unit 1, that the left-hand side of a cubic equation with 
real coeffi cients can be factorised to give one linear factor and one 
quadratic factor. Therefore a cubic equation will always have one real root 
and when the other roots are not real, they will be a pair of conjugate 
complex numbers.

In fact, any polynomial equation with real coeffi cients can be 
expressed as a product of quadratic factors and possibly linear factors. 

Therefore any complex roots will be pairs of conjugate 
complex numbers. 

Example

Find all the roots of the equation (x2  3x  2)(x2
 x  2)  0

(x2  3x  2)(x2
 x  2)  (x  2)(x  1)(x2

 x  2)

The roots of (x2
 x  2)  0  are   

1  √
______

1  8  _____________
2

 
1__
2
 i  

√7  ___
2

∴ the roots of (x2  3x  2)(x2
 x  2)  0  are  1, 2, 1__

2
 i  

√7  ___
2

, 1__
2
 i  

√7  ___
2

Exercise 1.1

1 Simplify:  

(a) i5 (b) i 5 (c) i2n

(d) i4n (e) i8n 1 (f) 5i  2i

(g) 8i  2i 

2 Find all the roots of each equation.

(a) x2
 5x  8  0

(b) x3
 2x  3  0 
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1.2 Operations on complex numbers

Equality of complex numbers

Two complex numbers, a  ib and c  id are equal if and only if the real 
parts are equal and the imaginary parts are equal,

i.e. a  ib  c  id ⇔⇔ a  c and b  d

Addition and subtraction of complex numbers

The real parts and the imaginary parts are added and subtracted 
separately.

For example, (2  3i)  (5  2i)  (2  5)  (3i  2i)

 7  i

and (2  3i)  (5  2i)  (2  5)  (3i  ( 2i))

 3  5i

Multiplication of complex numbers

Two complex numbers are multiplied together in the same way that we 
expand (a  b)(c  d)

For example, (2  3i)(5  2i)  10  4i  15i  6(i2)

 10  11i  6

 16  11i

and (2  3i)(2  3i)  4  6i  6i  9(i2) 

 4  9

 13

The fact that (2  3i)(2  3i)  13 is a particular case of the fact that the 
product of a pair of conjugate complex numbers is a real number.

This is because  (a  ib)(a  ib)  a2
 (ib)2

 a2
 b2

Division of complex numbers

We can divide one complex number by another complex number by 
multiplying the numerator and the denominator by the conjugate of the 
denominator. This gives a real denominator.

For example,  
2  3i______
5  2i


(2  3i)(5  2i)_______________
(5  2i)(5  2i)

  
10  19i  6(i)2
_______________

25  4

  
4___

29


19___
29

i

Learning outcomes

 To add, subtract, multiply and 

divide complex numbers

You need to know

 The form of a complex number

 The meaning of conjugate 

complex numbers

 The relationship between the 

coeffi cients of a quadratic 

equation and the sum and 

product of its roots
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Section 1 Complex numbers and calculus 2 

Example

Find the values of a and b where z  a  ib such that 2z  3z*  5  2i

 2z  3z*  2(a  ib)  3(a  ib)  5a  ib

∴ 2z  3z*  5  2i  ⇔  5a  ib  5  2i

Equating real and imaginary parts gives

 5a  5 ⇒ a  1

and b  2 ⇒  b  2

Example

One root of a quadratic equation with real coeffi cients is 3  i. 
Find the equation.

Let the equation be ax2
 bx  c  0

If one root is 3  i, the other root is its conjugate, 3  i

The sum of the roots is (3  i)  (3  i)  6

∴ 
b__
a
 6

The product of the roots is (3  i)(3  i)  9  1  10

∴  
c__
a
 10

The equation is x2  6x  10  0

Example

Find the values of x and y for which (3  2i)(x  iy)  16  11i

 (3  2i)(x  iy)  3x  2y  2ix  3iy

∴ (3  2i)(x  iy)  16  11i ⇔  3x  2y  2ix  3iy  16  11i

⇔  3x  2y  16  [1] and 2x  3y  11  [2] 

Equating real and imaginary parts

Solving [1] and [2] simultaneously gives 

2  [1]    3  [2] 13y  65

 ⇒ y  5

from [1] x  2

Exercise 1.2

1 Find, in the form a  ib

(a) (2  4i)( 1  2i) (b)   2  i_____
3  i

(c)   3_____
2  i


4  3i______
1  2i

2 One root of a quadratic equation with real 
coeffi cients is 3  5i. Find the equation.

3 Find the values of x and y for which  

(a) (x  iy)2
 5  12i

(b) 
x  iy______
3  4i

 2  i

4 Find the values of a and b where z  a  ib such 
that z(2  i)  2z*  4  5i
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1.3 The square roots of a complex number

The square roots of a complex number

If x  iy is a square root of the complex number a  ib, then 
(x  iy)2

 a  ib

Expanding the left-hand side gives x2 y2
 2ixy  a  ib

Equating real and imaginary parts gives a pair of simultaneous equations 
which we can solve to fi nd values for x and y

The equations are quadratic, so there will be two values for x and y. 

Therefore a complex number has two square roots.

Example

Find the square roots of 3  4i

If x  iy is a square root of 3  4i, then  (x  iy)2
 3  4i

⇒ x2 y2
 2ixy  3  4i

Equating real and imaginary parts gives

x2 y2
 3 [1]

 2xy  4 [2]

[2] ⇒ y  
2__
x

  [3]

[3] in [1] ⇒ x2 4__
x2  3

⇒ x4  3x2  4  0

⇒ (x2  4)(x2
 1)  0

x is a real number, so x2
 1 does not give a valid value for x

∴ x2
 4  ⇒ x  2 or 2

from [3] y  1 or 1

∴ the square roots of 3  4i are 2  i and 2  i

Note that this example shows that if z is one square root of a complex 
number, z is the other square root.

Exercise 1.3a

1 Find the square roots of  

(a)  2i (b) 8  6i (c) 1  2i √2  

2 4  3i is one square root of a  ib

(a) Find the values of a and b.

(b) Find the other square root.

Learning outcomes

 To fi nd the square roots of a 

complex number

You need to know

 How to multiply complex 

numbers

 The relationship between the 

roots and coeffi cients of a 

quadratic equation
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Section 1 Complex numbers and calculus 2 

Quadratic equations with complex coeffi cients

A quadratic equation such as z2  (6  i)z  10  0 can be solved 
using the formula, which leads to fi nding the square root of a complex 
number.

For example, to solve z2  (6  i)z  10  0

⇒ z 
(6  i)   √

____________

(6  i)2  40  ________________________
2

⇒ z 
6  i   √

_________

5  12i  ___________________
2

If  a  ib  √
_________

5  12i  ,  then squaring both sides and equating real and 
imaginary parts gives

 a2 b2  5 [1]

and 2ab  12 [2]

From [2] b 
6__
a

 [3]

[3] in [1] ⇒ a2 36___
a2  5

⇒ a4  5a2  36  0

⇒ (a2  9)(a2  4)  0

∴ a  2  and  b  3  or  a  2  and  b  3

i.e.  √
_________

5  12i   2  3i

Hence z 
6  i  (2  3i)_________________

2

⇒ z  2  i  or  z  4  2i

Notice that the roots of this equation are not a pair of conjugate complex 
numbers. Roots are only pairs of conjugate complex numbers when a 
quadratic equation with real coeffi cients has complex roots.

We can check the answer to the example above using the sum and 
product of the roots:

    ( 2  i)  ( 4  2i)  6  i  
b__
a

and   ( 2  i)( 4  2i)  10 
c__
a

Exercise 1.3b

1 (a) Find the complex numbers u  x  iy, x, y  , where 
u2  16  30i

(b) Hence solve for z the quadratic equation 
z2  (1  i)z  (4  7i)  0

2 Solve for z the quadratic equation z2  (3  i)z  (14  5i)  0

Exam tip

Note that it is very easy to make 

arithmetic mistakes when working 

with complex numbers, so check 

your working. 
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1.4 The Argand diagram

The Argand diagram

A complex number, a  ib, can be represented on a diagram by using the 
ordered pair (a, b) to represent a point A on a pair of perpendicular axes, 
as shown on the diagram.

Then the vector  
___
OA  represents the complex number a  ib

iy

O x

A(a, b)

This is called the real axis

This is called the
imaginary axis

a

b

This is called an Argand diagram

Any complex number x  iy can be represented by  
___
OP  where P is the 

point (x, y).

The complex number 5  3i can be represented by  
___
OA  where A is the 

point (5, 3).

Any other vector with the same length and direction can also be used to 
represent 5  3i, for example  

___
DE  or  

___
BC .

E( 1, 4)

D( 6, 1)

B(4, 1)

z
A(5, 3)

z
C(9, 2)

z

xO

iy

Therefore a complex number can be represented by a displacement 
vector. It can also be represented by a position vector, when it can also be 
represented by the point A.

Learning outcomes

 To represent a complex number 

on an Argand diagram

You need to know

 The difference between a 

displacement vector and a 

position vector

 How to represent the sum 

and difference of vectors 

geometrically
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Section 1 Complex numbers and calculus 2 

When z1  5  3i, the vector representing z1 must be marked with an 
arrow to show its direction.

iy

x2 1

3

2

1

1

2

O 1 2 3 4 5

A(5, 3)

z1

Example

(a) Illustrate on an Argand diagram the points A and B representing 
the complex numbers z1  3  2i and z2  1  2i, respectively.

(b) On the same diagram illustrate z1  z2 and interpret the result in 
terms of the vectors representing z1 and z2

(a) iy

x2 1

3

2

1

1

2

O

C(2, 0)

A(3, 2)

B( 1, 2)

z1  z2

z2

z1
z2

(b) z1  z2  (3  2i)  ( 1  2i)  2

This is represented by the point C and the vector  
____
OC .

____
OC 

___
OA 

___
AC   and   

___
AC   represents z2

Therefore the vector representing z1  z2 is represented by the sum 
of the vectors representing z1 and z2

Exercise 1.4 

1 Given z  3  2i, represent z on an Argand diagram.

On the same diagram represent z*.

2 Find the square roots of z  2i

Represent z and its two square roots on an Argand diagram.
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1.5 Modulus and argument

The modulus of a complex number

The point A(a  ib) can be located using the distance, r, of A from the 
origin O and the angle, , that  

___
OA  makes with the positive x-axis.

iy

O x

A(a, b)

r

θ

The length of OA, r, is called the modulus of a  ib, which is written as 
|a  ib|

∴∴ |a  ib|  r  √√
______________

a2  b2

For example, the modulus of 3  4i is   √
_______

32  42  5

The argument of a complex number

The angle  is called the argument of a  ib and is written as arg (a  ib)

∴∴ arg (a  ib)    where  tan  
b__
a

  and      

To fi nd the argument of a complex number, draw it on an Argand diagram 
so you can see which quadrant it is in.

For example, the complex numbers 4  3i, 4  3i, 4  3i and 4  3i 
are drawn in the diagrams below.

(4, 3) ( 4, 3)

5
3

4 4

5
3

( 4, 3)

4

5
3

(4, 3)

4

θθ

θθ
5

3

iy

x

iy

x

iy

x

iy

x

4  3i is in the fi rst quadrant, so tan   3
4 ⇒   0.644 rad

4  3i is in the second quadrant, so 

tan   
3
4 ⇒     tan 1 3

4  2.50 rad

4  3i is in the third quadrant, so  is negative and obtuse. 

Therefore tan   3
4 ⇒     tan 1 3

4  2.50 rad

4  3i is in the fourth quadrant, so  is negative and acute.

Therefore tan   
3
4 ⇒   0.644 rad

Learning outcomes

 To defi ne the modulus and 

argument of a complex number

 To introduce the polar-argument 

form of a complex number

You need to know

 How to represent a complex 

number on an Argand diagram
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The polar-argument form of a complex number
iy

O x

P(x, y)

r

x

y

In the diagram above, x  iy is any complex number and we can see that 

x  r cos   and  y  r sin 

Therefore x  iy can be written as r cos   ir sin 

Hence x  iy  r(cos   i sin )

r(cos   i sin ) is called the polar-argument form of a complex number.

Note that the ‘’ sign is important: 3 (cos  3  i sin  3 ) is not in polar-

argument form but can be converted as sin  3  sin  ( 

3 )  and  

cos  3  cos  ( 

3 )

∴ 3 (cos  3  i sin  3 )  3 (cos  ( 

3 )  i sin  ( 

3 ))

It is easy to convert between the two forms, as the following worked 
examples show.

1

1

iy

x

Example

Express 1  i in the form r(cos   i sin )

1  i  ⇒  r  √
______

1  1   √2  , and from the diagram,  
3___
4

Therefore 1  i  √2  (cos  
3___
4
 i sin  

3___
4 )

Example 

Express 3 (cos  ( __
6 )  i sin  ( __

6 )) in the form x  iy

cos  ( __
6 )  √3  ___

2
  and sin  ( __

6 )  
1__
2

∴ 3 (cos  ( __
6 )  i sin  ( __

6 ))  3 √3  ____
2

3i__
2

Exercise 1.5

1 Find the modulus and argument of each of the 
following complex numbers.

(a) 1  i (b) 4

(c) 2i (d) 3  4i

(e) i(1  i)

2 Express each of the following complex numbers in 
the form x  iy

(a) 2 (cos  
__
3
 i sin  

__
3 ) (b) cos   i sin 

(c) 3 (cos  
2___
3
 i sin  

2___
3 )
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The sum of two complex numbers

The complex numbers z1 and z2 are 
represented on the Argand diagram 
by the vectors  

___
OA  and  

___
OB  respectively.

Using vector addition we can see that 
z1  z2 is represented by  

____
OC , where OC 

is a diagonal of the parallelogram
OACB.

The difference of two complex numbers

Using the same notation as above and 
using vector subtraction, we can see 
that z1 z2 is represented by  

___
BA , 

where BA is the other diagonal 
of the parallelogram OACB.

The product of two complex numbers

When z1  r1(cos 1  i sin 1)  and  z2  r2(cos 2  i sin 2),

then z1z2  r1r2(cos 1  i sin 1)(cos 2  i sin 2)

 r1r2(cos 1 cos 2  sin 1 sin 2  i(sin 1 cos 2  cos 1 sin 2))

 r1r2(cos (1  2) i sin (1  2))

Therefore |z1z2|  |z1||z2|  and  arg (z1z2)  arg z1  arg z2

Therefore when z1z2 is represented on an Argand diagram, we can see 
that when z1 is multiplied by z2, it is enlarged by a scale factor |z2| and 
rotated by an angle 2

iy

xO

Not drawn to scale

z1z2

z1

z2

θ1  θ2

θ1

θ2

iy

xO

B

A

C

z1

z1

z2

z2

z1  z2

iy

xO

B

A

C

z1

z1

z2

z2

z1 z2

1.6 Graphical representation of operations on 
complex numbers

Learning outcomes

 To show a graphical 

representation of sums, 

differences, products and 

quotients of complex numbers 

on an Argand diagram

You need to know

 How to represent a complex 

number on an Argand diagram

 The meaning of the modulus and 

argument of a complex number

 The polar-argument form of a 

complex number

 How to add and subtract vectors

 The trigonometric compound 

angle formulae
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The quotient of two complex numbers

When z1  r1(cos 1  i sin 1) and z2  r2(cos 2  i sin 2), then

z1__
z2


r1(cos 1  i sin 1)_________________
r2(cos 2  i sin 2)

  
r1__
r2


(cos 1  i sin 1)(cos 2  i sin 2)______________________________
(cos 2  i sin 2)(cos 2  i sin 2)

  
r1__
r2


(cos 1 cos 2  sin 1 sin 2)  i(sin 1 cos 2  cos 1 sin 2)____________________________________________________

cos2 2  sin2 2

  
r1__
r2


cos (1 2)  i sin (1 2)__________________________

1

  
r1__
r2

(cos (1 2)  i sin (1 2) )

Therefore  ⎥z1___
z2
⎥  |z1|____

|z2|
  and  arg   (( z1___

z2
))  arg z1  arg z2

Therefore when  
z1__
z2

 is represented on an Argand diagram, we can see that 

when z1 is divided by z2, it is enlarged by a scale factor  1____

|z2|
 and rotated 

by an angle 2

Example

Find the modulus and argument of (1  i)(1  i √3  ) 

 |1  i|  √2    and  arg (1  i) 
__
4

 ; 

|1  i √3  |  2  and  arg (1  i √3  )  
__
3

∴ |(1  i)(1  i √3  )|  |1  i| |1  i √3  |  √2   2  2 √2  

and arg (1  i)(1  i √3  )  arg (1  i)  arg (1  i √3  ) 
__
4

__
3

 = 
___
12

Exercise 1.6

1 Given that z1  2  2i √3    and   z2  2  2i, fi nd the modulus

and argument of  
z1__
z2

 and hence illustrate z1, z2 and  
z1__
z2

 on an 

Argand diagram.

2 Using z  r(cos   i sin ), prove that z2  r2(cos 2  i sin 2)

Hence fi nd the two square roots of  √3   i

3 Given z  1  i, 

(a) Express z in polar-argument form.

(b) Represent z, iz and  1__
iz

 on an Argand diagram.

(c) The points A, B and C represent z, iz and  1__
iz

respectively. 

Find the complex number represented by  
___
BC  in the form a  ib

Not drawn to scale

z1z2

z1
z2

θ1 θ2

θ1

θ2

iy

xO
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1.7 De Moivre’s theorem

De Moivre’s theorem

De Moivre’s theorem states that 

(cos   i sin )n  cos n  i sin n for all integral values of n

De Moivre’s theorem is important because it links complex numbers and 
trigonometry

Proof by induction of De Moivre’s theorem

(To remind yourself of this method of proof, go to Unit 1, Topic 1.6.)

 (cos   i sin )2  cos2   sin2   2i sin  cos 

 cos 2  i sin 2

∴ (cos   i sin )n  cos n  i sin n  when n  2

Assume that (cos   i sin )n  cos n  i sin n  when n  k,

i.e. (cos   i sin )k  cos k  i sin k

then (cos   i sin )k 1

 (cos k  i sin k)(cos   i sin )

 cos k cos   sin k sin   i(sin k cos   cos k sin )

 cos (k  1)  i sin (k  1)

Therefore if De Moivre’s theorem is true when n  k it is also true when 
n  k  1

We have shown that De Moivre’s theorem is true when n  2 so it is also 
true when n  3

It follows that De Moivre’s theorem is true for all positive integer values of n

Now consider (cos   i sin ) n where n is a positive integer.

(cos   i sin ) n

 {(cos   i sin )n} 1

 (cos n  i sin n) 1 Using the result above


1_______________

cos n  i sin n


(cos n  i sin n)________________________________

(cos n  i sin n)(cos n  i sin n)


cos ( n)  i sin ( n)_____________________

cos2 n  sin2 n
cos n  cos( n) and sin n  sin( n)

 cos ( n)  i sin ( n) cos2 A  sin2 A  1

Learning outcomes

 To state and prove De Moivre’s 
theorem

 To use De Moivre’s theorem

 To introduce the exponential 
form of a complex number

You need to know

 The method of proof by 
induction

 The meaning of z

 The properties of sin  and cos 

 The compound angle and 
Pythagorean trig identities

Did you know?

Abraham De Moivre (1667–1754) 
was born in France, but moved 
to England because of religious 
intolerance. He was one of the many 
mathematicians who contributed 
to the huge advances made in the 
study of mathematics of that time. 
He is remembered now mainly 
because of his theorem. However, 
he also contributed a great deal to 
the study of analytic geometry and 
probability.
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i.e. (cos   i sin ) n  cos ( n)  i sin ( n)

Therefore De Moivre’s theorem is true for all integer values of n, positive 
and negative.

Example

Use De Moivre’s theorem to fi nd (1  i √3  )5 in the form a  ib

First express 1  i √3   in polar-argument form:

|1  i √3  |  2 and arg (1  i √3  ) 
__
3

⇒ 1  i √3   2 (cos  
__
3

 i sin  
__
3 )

∴ (1  i √3  )5
 25(cos  

__
3

 i sin  
__
3 )

5

   32 (cos  
5___
3

 i sin  
5___
3 )

   32 (1__
2

 i  
√3  ___
2 )

 16  16i  √3  

Example

When z 
1___

√2  
 i  

1___

√2  
 use De Moivre’s theorem to show that z3 

1__
z3

is real and fi nd its value.

First express z in polar-argument form:

 z 
1___

√2  
 i  

1___

√2  

 (cos  
__
4

 i sin  
__
4 )

∴ z3  (cos  
__
4

 i sin  
__
4 )

3

 (cos  
3___
4

 i sin  
3___
4 ) De Moivre’s theorem

and  1__
z3  z 3  (cos  

__
4

 i sin  
__
4 )

3

   cos  ( 3___
4 )  i sin  ( 3___

4 ) De Moivre’s theorem

∴ z3 
1__
z3  (cos  

3___
4

 i sin  
3___
4 )  (cos  ( 3___

4 )  i sin  ( 3___
4 ))

   (cos  
3___
4

 i sin  
3___
4 )  (cos  

3___
4

 i sin  
3___
4 )

   2 cos  
3___
4

 which is real

   2  ( 1___

√2  )
  √2  
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Example

Given that z  cos   i sin , show that 

z 
1__
z

 2 cos   and  z 1__
z

 2i sin 

From De Moivre’s theorem, 

 z
1  cos ( )  i sin ( ) 

   cos   i sin 

∴ z 
1__
z

 (cos   i sin )  (cos   i sin ) 

 2 cos 

and z
1__
z

 (cos   i sin )  (cos   i sin ) 

 2i sin 

Notice that when z  cos   i sin ,

1__
z

 z
1  cos   i sin 

i.e.  
1__
z
 z*

The result from the example above can be extended to give

z
n


1___
z
n
 2 cos n and z

n


1___
z
n
 2i sin n

These results can be used to prove some trigonometric identities.

Example

Prove that cos 3  4 cos3   3 cos 

Starting with z  cos   i sin 

(z 
1__
z
)

3

 z
3  3z 

3__
z


1__
z

3

   (z3 
1__
z

3 )  3 (z 
1__
z
)   [1]

Using z  cos   i sin  and the result above gives

z 
1__
z

 2 cos   and  z3 
1__
z

3  2 cos 3

[1] ⇒ (2 cos )3  2 cos 3  6 cos 

⇒  4 cos3   cos 3  3 cos 

∴ cos 3  4 cos3   3 cos 

De Moivre’s theorem can also be used to simplify expressions.

Section 1 Complex numbers and calculus 2
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Example

Simplify  
cos   i sin _______________

cos 3  i sin 3

Using   1__
z

 z*

1_______________
cos 3  i sin 3

 cos 3  i sin 3

∴ cos   i sin _______________
cos 3  i sin 3

 (cos   i sin )(cos 3  i sin 3)

 cos 3 cos   sin 3 sin   i(sin 3 cos   cos 3 sin )

 cos 2 i sin 2

The exponential form of a complex number

Euler’s formula states that cos   i sin   ei

Therefore z  r(cos   i sin ) can be written as z  rei

(Euler’s formula is proved in Topic 2.8.)

De Moivre’s theorem can sometimes be easier to apply using the 
exponential form, 

for example when z  2 e 
i 
__
4, 

then, using the laws of indices, z3  8 (e 
i 
__
4 )3

 8 e 
i 
3___
4

The following use of Euler’s formula gives an interesting equation that 
links a combination of irrational numbers and an imaginary number to 
an integer.

ei  cos   i sin   but  cos   1 and sin   0

Therefore ei  1

Exercise 1.7

1 Show that (1  i)4 is real and fi nd its value.

2 Use De Moivre’s theorem to prove that sin 2  2 sin  cos 

3 Use De Moivre’s theorem to simplify (cos 2  i sin 2)(cos   i sin )

4 (a) Express 2 √
__

2   2i √
__

2   in the form rei

(b) Use z2  2 √
__

2   2i √
__

2    to fi nd the two square roots of 2 √
__

2   2i √
__

2  
in the form rei

5 Find the value of (1  i)3  (1  i)3
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1.8 Complex numbers and loci

Loci

A locus (plural loci) is a set of points that satisfy a given condition. For 
example, the locus of points that are at a fi xed distance from a fi xed point 
is a circle.

In an Argand diagram, the point P(x  iy) can be anywhere. However, if 
z  x  iy and we impose the condition |z|  4, then OP is a fi xed 
length of 4 units.

iy

O

4 P(x  iy)

x

iy

O 4

locus of P

x

Therefore P is any point on a circle of radius 4 units and centre O.

Any equation of the form  |z|  r  defi nes the locus that is a
circle of radius r and centre O.

Now consider the equation |z z1|  4 where z1 is the fi xed point 
A(x1  iy1).

iy

x

P

A

O

z  z1

z1

z

A(x1  iy1)

O

4

P(x  iy)

A(x1  iy1)

O

z z1

iy

x

iy

x

AP  z z1, so AP is a fi xed length of 4 units. Therefore the locus of P is 
a circle of radius 4 units and centre z1

Any equation of the form  |z  z1|  a,  where a is a real constant, 
defi nes a locus that is a circle of radius a and centre z1

Learning outcomes

 To investigate the locus of a 

point in the Argand diagram 

defi ned by complex numbers

You need to know

 How to represent sums and 

differences of complex numbers 

on an Argand diagram

 The meaning of a line segment 

and a ray

 The properties of the 

perpendicular bisector of a line 

segment

 How to fi nd the points of 

intersection of curves and lines
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When you need to work out the locus of a point, it is sensible to start by 
drawing a diagram.

Example

Sketch on an Argand diagram the locus of points such that |z  2i|  3

When we compare |z  2i|  3  with  |z z1|  a

we can see that the locus is a circle whose centre 

is the point 2i and whose radius is 3.

iy

x3 1

5i

2i

i

O

Example

Describe the locus of the points on the Argand diagram given by 
|z z1|  |z z2| where z represents the point P(x  iy), 
z1  2  2i  and  z2  4  i

In the diagram, |z z1|  AP

and |z z2|  BP

∴ |z z1|  |z z2|  ⇒  AP  BP

A point that is equidistant from two fi xed points is on the perpendicular 
bisector of the line segment joining the two points.

Therefore the required locus is the perpendicular bisector of the line 
segment between 2  2i and 4  i

iy

x

i
B

A

P

2

z z2

z z1

z

z1

z2

This is a particular example of the general result, i.e.

any equation of the form  |z  z1|  |z z2|  defi nes a locus that is
the perpendicular bisector of the line segment between the 

points z1 and z2

iy

xO

z

π

4

Example

Describe the locus of points on the Argand diagram given by arg (z) 
__
4

arg (z) is the angle that z makes with the positive real axis.

Therefore arg (z) describes a ray from the origin at an 

angle of  
__
4

 to the real axis.
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This is another example of a general result, i.e.

any equation of the form  arg (z)    describes a ray
from the origin at an angle  to the positive direction 

of the real axis.

Intersection

To fi nd the points of intersection of two loci, we can convert the equations 
to Cartesian form. However, this is not always necessary. A diagram will 
often suggest a simple solution. 

Example

Find, in the form a  ib, the complex number that satisfi es both |z|  2 and arg (z) 
__
3

We can see from the diagram that A has a modulus of 2 and an 

argument of  
__
3

Therefore A is the point 2 (cos  
__
3
 i sin  

__
3 )

i.e. 1  i √3  

iy

xO2

2i

2i

2

A
arg(z) 

π

3

π

3

Example

Find the complex numbers that satisfy the equations 
|z  4|  |z  2| and |z  2  i|  4

iy

xO

i

z  4  z  2

z  2  i  42  i

4

The locus of points that satisfi es |z  4|  |z  2| is the 
perpendicular bisector of the line between x  4 and x  2, 
i.e. x  1

|z  2  i|  4  ⇒  |z  (2  i)|  4 

and this represents a circle, centre 2  i and radius 4.

Section 1 Complex numbers and calculus 2
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To fi nd the complex numbers that satisfy the given equations, we need 
to fi nd the points on the circle where x  1,

i.e. where  |1  iy  2  i|  4

⇒ | 1 i(y  1)|  4

⇒ 1  (y  1)2
 16

⇒ y2  2y  14  0

⇒ y  1  √
___

15  

Therefore the complex numbers are 1  i(1  √
___

15  )  and 1  i(1 √
___

15  )

Region of the Argand diagram

A locus can also be a set of points in a region of the Argand diagram.

iy

xO

i

z  2  i  4

z  4  z  2

4

For example, the set of points satisfying |z  2  i|  4 lie inside the 
circle |z  2  i|  4

The set of points |z  4|  |z  2| lie to the right of the line x  1

The set of points that satisfy both |z  2  i|  4 and |z  2  i|  4 
are contained in the shaded region bounded by the circle and the line.

Exercise 1.8

1 Sketch on an Argand diagram the locus of points for which

(a) |z|  2 (b) |z  2i|  3

(c) |z  2|  3 (d) |z  2  2i|  2

2 Sketch on an Argand diagram the locus of points for which

(a) arg z 
__
4

(b) arg z  
__
6

3 Find the complex numbers satisfi ed by 

(a) |z|  5 and arg z  
__
4

(b) |z  3  i|  2 and |z|  |z  2i|

4 Show on an Argand diagram the set of points for which x  3 and 
|z  2|  4
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1.9 Differentiation of exponential functions

Graphs of y ax where a 0

The family of curves with equation y  ax where a  0, are exponential 
curves. They are investigated in Unit 1 Topic 1.20. 

y

x

(0, 1)

y  4x y  3x y  2x

y  1x ( 1)

This diagram shows some members of the family. Each of these curves 
has a property that can be found by drawing accurate plots and by 
drawing the tangents at some points on the graph, then calculating the 
gradients of these tangents:

the value of  
dy___
dx

 y is constant.

The table below gives approximate values for this constant for a  2, 3 
and 4, and the graph shows these values plotted against the value of a

a 2 3 4

dy
___

dx
 y 0.7 1.1 1.4

O

 y

a1

1.0

0.5

2
Base

3 4

dy

dx

The differential of e x

The graph shows that there is a number between 2 and 3 for which, 

when y  ax,   
dy___
dx

 y  1,  i.e. y 
dy___
dx

This number is e.

Therefore when  y  ex,   
dy___
dx

 ex

and when  f(x)  ex,  f(x)  ex

The function f(x)  ex is the only function that is unchanged when it is 
differentiated.

Learning outcomes

 To differentiate exponential 

functions

You need to know

 What an exponential function is

 The shape of the curve y ex

 The meaning of   
dy___
dx

 and   
d2y____
dx2

 How to differentiate multiples, 

sums, differences, products and 

quotients of functions

 The chain rule

 The meaning of stationary points
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The differential of ef(x)

ef(x) is a composite function so we use the chain rule: 

When y  ef(x),   
dy___
dx


dy___
du


du___
dx

 where  u  f(x)  ⇒ y  eu

⇒

dy___
dx

 eu  f(x)  f(x)ef(x)

i.e.  the differential of ef(x) is f(x)ef(x)

Example

Find the derivative of 

(a) 3ex (b) e2x  1 (c) x2e(3x  2) (d)
ex_____

sin x

(a)
d___
dx

3ex = 3  
d___
dx

ex = 3ex

(b)
d___
dx

e2x  1  2e2x  1 Using the result above

(c) x2e(3x  2) is a product so we use   
dy___
dx

 u  
dv___
dx

 v  
du___
dx

  where u  x2

and v  e(3x  2)

 y  x2e(3x  2)

⇒

dy___
dx

 (x2) (3e(3x  2))  (e(3x  2))(2x)

   (3x2  2x)e(3x  2)

(d)
ex_____

sin x
 is a quotient so we use  

dy___
dx


vdu udv__________

v2  with u  ex and 

v  sin x

 y 
ex_____

sin x

⇒

dy___
dx


(sin x)(ex)  (ex)(cos x)____________________

sin2 x

  
ex(sin x  cos x)_______________

sin2 x

Exercise 1.9

1 Find the derivatives of the following functions.

(a) 5ex (b) ex cos x

(c) esin x (d)
e2x______

x2  4

2 Given y  ex sin x show that   
d2y____
dx2  2  

dy___
dx

 2y  0 

3 Find the coordinates of the stationary point on the curve y  ex  x and 
determine its nature.
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The differential of ln x

We know that y  ln x ⇔ x  ey

Now  
d___
dy

 ey  ey, therefore  
dx___
dy

 ey  x

We also know that  
dy___
dx

 1 
dx___
dy

From Unit 1 Topic 3.9

therefore when y  ln x, 
dy___
dx


1__
x

i.e. when f(x)  ln x,  f(x) 
1__
x

The differential of ln f(x)
ln f(x) is a composite function so we use the chain rule: 

When y  ln f(x),   
dy___
dx


dy___
du


du___
dx

  where u  f(x) ⇒ y  ln u

⇒
dy___
dx


1__
u
 f(x) 

f(x)____
f(x)

i.e. the differential of ln f(x) is   
f(x)____
f(x)

For example, when y  ln (x2  1),   
dy___
dx


2x______

x2  1

The example below shows how the laws of logarithms can be used to 
simplify the differentiation of many log functions.

Example

Find   
dy___
dx

  when y  ln  ( 1___
√x  )

y  ln  ( 1___
√x  )  ln 1  ln  x

1
2  0 1

2 ln x

Therefore   
dy___
dx

 
1__
2 (1__

x
)  

1___
2x

Exercise 1.10a

Find the differential of each function. 

1 ln 2x 2 ln x3 3 ln (sin x)    

4 ln  ( x______

x2  1 ) 5 x ln  √
______

x2  1  

Differentiation of parametric equations

We know (from Unit 1 Topic 3.9) that when y  f(t) and x  g(t), 
where t is a parameter, 

dy___
dx


dy___
dt


dx___
dt

1.10 Differentiation of logarithmic functions, 
tangents and normals to parametric curves

Learning outcomes

 To differentiate logarithmic 

functions

 To fi nd the gradients of tangents 

and normals to curves whose 

equations are parametric

You need to know

 The meaning of ln x and its 

relationship to ex

 The differential of ex

 The laws of logarithms

 How to differentiate multiples, 

sums, differences, products and 

quotients of functions

 The chain rule

 How to differentiate parametric 

equations and the meaning of 

tangents and normals
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Equations of tangents and normals

When the equation of a curve is given parametrically, i.e. x  f(t) and 
y  g(t), we can use (f(t), g(t)) as the coordinates of any point on the curve. 

This means that we can fi nd the equation of a tangent or normal to the 
curve at any point on the curve.

For example, when x  3t and y  1 1__
t
, the coordinates of any point 

on the curve are  (3t, 1 1__
t
) and the gradient at any point on the curve is

given by   
dy___
dx


dy___
dt


dx___
dt


1__
t2  3  1___

3t2

Therefore the equation of the tangent at any point is given by

y (1 1__
t
)  1___

3t2 (x  3t) Using y y1 m(x x1)

The equation of the normal at any point can also be found: the gradient 
of the normal is 3t2 so the equation is given by

y (1 1__
t
)  3t2 (x  3t)

The equation of the tangent and normal at a particular point can be 
found by substituting the value of t at that point.

Example 

The equations of a curve are x  cos  and y    sin . Find the 
equation of the normal to this curve in terms of . Hence fi nd the

equation of the normal at the point where  
__
2

dy___
dx


1  cos _________

sin 


cos   1_________
sin 

 so the gradient of the normal is   
sin _________

1  cos 

The equation of the normal is y  (  sin ) 
sin _________

1  cos 
 (x  cos )

When  
__
2

, the equation becomes 

y (__
2

 1 )  x ⇒ y  x 
__
2

 1

Exercise 1.10b

1 Find, in terms of t, the equation of the tangent to the curve 

x  t, y  1__
t

Hence fi nd the equation of the tangent at the point on the curve 
where t  2

2 Find, in terms of , the equation of the normal to the curve 
x  2 cos , y  3 sin 

Hence fi nd the equation of the normal at the point on the curve

where  
__
4
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1.11 Implicit functions

Implicit functions

The equation of some curves, such as y2
 xy  x2y  2, are not easy to 

express in the form y  f(x)

A relationship like this is called an implicit function because y  f(x) is 
implied by the equation.

Differentiation of implicit functions

The method we use to differentiate an implicit function is to differentiate 
term by term with respect to x

The differential of y with respect to x is  
dy___
dx

To differentiate y2 with respect to x, we start with g(y)  y2 where y  f(x)

Then g(y)  [f(x)]2

This is a composite function so we use the chain rule with the 
substitution u  f(x)

Then g(y)  u2

⇒
d___
dx

 (u2) 
d___

du
 (u2) 

du___
dx

 2u 
du___
dx

But y  u  f(x), so  
d___
dx

 (y2)  2y
dy___
dx

This is a particular example of the general result:

d___
dx

 (g(y))  ( d___
dy

 g(y) )  dy___
dx

i.e. to differentiate a function of y with respect to x, differentiate the

function with respect to y and multiply by  
dy___
dx

For example,  
d___
dx

 (2y4)  8y3
dy___
dx

  and   
d___
dx

 (ln y)  1__
y

dy___
dx

We can now differentiate any expression involving x and y, term by term, 
with respect to x

To differentiate terms such as x2y we use the product rule,

so  
d___
dx

 (x2y)  x2
 

dy___
dx

 2x  y  x2
dy___
dx

 2xy

and to differentiate terms such as  x__

y
 we use the quotient rule,

so  
d___
dx (x__

y ) 

y  x  
dy___
dx________

y2

Learning outcomes

 To describe implicit functions

 To differentiate implicit functions

You need to know

 The product rule and quotient 

rule for differentiation

 The chain rule
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Example 

Find  
dy___
dx

 in terms of x and y when y2
 xy  x2y  2

Differentiating term by term gives  

d___
dx

 (y2) 
d___
dx

 (xy) 
d___
dx

 (x2y) 
d___
dx

 (2)

⇒ 2y
dy___
dx

 x  
dy___
dx

 y  x2
dy___
dx

 2xy  0

⇒
dy___
dx

 
2xy  y___________

2y  x  x2

Example

Find the gradient of the tangent to the curve y  xy y2
 6 at the 

point (4, 2) on the curve.

We need the value of  
dy___
dx

 when x  4 and y  2

y  xy y2
 6

⇒
dy___
dx

 y  x  
dy___
dx

 2y
dy___
dx

 0

∴
dy___
dx


y___________

2y x  1

When x  4 and y  2,  
dy___
dx

 2

Therefore gradient at the point (4, 2) is 2.

Exercise 1.11

1 Differentiate each equation with respect to x.

(a) 2x2
 y2

 y (b) xey
 x  y

(c) x ln (y2)  4 (d)
y2

______
x  1

 y  1

2 Find  
dy___
dx

in terms of x and y when  

(a) x2
 xy  y2

 6 (b) 2 cos x  3 sin y  4

3 (a) Find  
dy___
dx

in terms of x and y when sin x  cos y  1

(b) At the point  (__
4

,  ) the gradient of the curve is 1. Find, in the

range 0    , the value of .
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1.12 Inverse trigonometric functions

The inverse sine function

The sine function is normally given as f(x)  sin x for the domain x  

The graph of f(x)  sin x for this domain is given below.

f(x)

x
π

1

1

1
2

π
1
2

This function does not have an inverse because it is not one-to-one.

However, if we defi ne the function f such that f(x)  sin x for the domain
1
2  x 

1
2, then the graph of f is the solid line in the graph above.

This shows that f(x) is one-to-one and so does have an inverse.

The graph of y  f 1(x) is obtained by refl ecting y  f(x) in the line y  x
and the equation y  f 1(x) is obtained from y  f(x) by interchanging 
x and y

Therefore when y  sin x, 1
2  x 

1
2  the equation of the inverse 

function is 

sin y  x, for 1
2  y 

1
2, i.e. 1  x  1 

so y is the angle whose sine is x where 1
2  y 

1
2

The ‘angle whose sine is x’ is denoted by sin 1 x (an alternative notation 
is arcsin x).

 Therefore when f(x)  sin x,  1_
2
  x 

1_
2


 f 1( x)  sin 1 x, 1  x  1

Note that sin 1 x is an angle and that this angle is in the interval 

[ 1
2,  12 ]

The angles in the interval  [ 1
2,  12 ] are called the principal values of 

sin 1 x

For example,  sin 1 (1
2 ) is the angle between 1

2 and  12 whose sine

is  12, so sin 1 (1__
2 ) 

__
6

The inverse cosine function

The function f(x)  cos x, x   is not one-to-one so it does not have an 
inverse.

However, the function f given by f(x)  cos x, 0  x   is one-to-one 
so f 1 exists.

y

x

1

1

π
1
2

π
1
2

Learning outcomes

 To defi ne the inverse 

trigonometric functions

You need to know

 The properties and graphs of 

the sine, cosine and tangent 

functions

 The meaning of domain and 

range

 The defi nition of an inverse 

function

 The condition for a function to 

have an inverse
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Therefore when y  cos x, 0  x   the equation of the inverse function is

cos y  x, for 0  y  , i.e. 1  x  1

so y is the angle whose cosine is x where 0  y  

The ‘angle whose cosine is x’ is denoted by cos 1 x (an alternative 
notation is arccos x).

 Therefore when f( x)  cos x, 0  x  

 f 1( x)  cos 1 x, 1  x  1

Note that cos 1 x is an angle and that this angle is in the interval [0, ].

The angles in the interval [0, ] are called the principal values of cos 1 x

For example, cos 1 ( 1
2 ) is the angle between 0 and  whose cosine 

is 1
2, so cos 1 ( 1

2 ) 
2___
3

The inverse tangent function

When f(x)  tan x, x  , f 1 does not exist, but when 

f(x)  tan x, 1
2  x 

1
2, f 1 does exist.

Therefore when y  tan x, 1
2  x 

1
2, the equation of the 

inverse function is 

tan y  x for 1
2  y 

1
2,

so y is the angle whose tangent is x where x   

The ‘angle whose tan is x’ is denoted by tan 1 x (or arctan x). 

 Therefore when f(x)  tan x,  1_
2
  x 

1_
2


 f 1(x)  tan 1 x, x  

Angles in the interval  ( 1
2,  12 ) are called the principal values of 

tan 1 x

For example, tan 1 ( 1) is the angle between 1
2 and  12 whose tangent

is 1, so tan 1 ( 1)  
__
4

Note that the range of tan 1 x is all real values of x whereas the ranges of 
sin 1 x and cos 1 x are each [ 1, 1].

Exercise 1.12

Find the principal value in terms of  of the following.

1 cos 1 ( 1) 2 tan 1 (1) 3 sin 1 ( 1___

√2  )
4 cos 1 ( √3  ___

2 ) 5 tan 1 ( √3  )

y

x1 π1

1

π

y  cos 1x

y  cos x

π
1

2
π

1

2

y

x

π
1

2

π
1

2

y  tan 1x

y  tan x
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The derivative of sin1
x

Let y  sin 1 x ⇒ x  sin y

Differentiating x  sin y with respect to y gives 

dx___
dy

 cos y

Therefore using   
dy___
dx

 1 
dx___
dy

  gives  

dy___
dx


1_____

cos y


1___________

√
_________

1  sin2 y  
Using  cos2 y  sin2 y  1

Note that when y  sin 1 x, the range of y is 1
2  y 

1
2 and for this 

range, cos y  0

Therefore we only use the positive square root of 1  sin2 y

But sin y  x, so   
dy___
dx


1________

√
______

1 x2

i.e.  
d___
dx

 (sin 1
x) 

1________

√√
______

1  x
2

The derivative of cos1
 x

We use the same method to fi nd the derivative of cos 1 x

Let y  cos 1 x ⇒ x  cos y

Differentiating x  cos y with respect to y gives 

dx___
dy

 sin y

Therefore using   
dy___
dx

 1 
dx___
dy

  gives  

dy___
dx

 
1_____

sin y
Using  cos2 y  sin2 y  1

 
1___________

√
_________

1  cos2 y  

When y  cos 1 x, the range of y is 0  y   and for this range, sin y  0

So we only use the positive square root of 1  cos2 y

But cos y  x, so  
dy___
dx

 
1________

√
______

1 x2

i.e.  
d___
dx

 (cos 1
x)  

1________

√√
____________

1  x
2

1.13 Differentials of inverse trigonometric 
functions

Learning outcomes

 To determine the differentials of 

the inverse trig functions

You need to know

 The defi nitions of the inverse trig 

functions

 The derivatives of sin x, cos x and 

tan x

 That    
dy___
dx

 1  dx___
dy

 The Pythagorean trig identities

 The chain rule
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The derivative of tan1
 x

The same method again gives the derivative of tan 1 x

Let y  tan 1 x ⇒ x  tan y

Differentiating x  tan y with respect to y gives 

dx___
dy
 sec2 y

Therefore using   
dx___
dy
 1 

dx___
dy

  gives

dx___
dy


1_____
sec2 y


1_________

1  tan2 y
Using 1  tan2 y  sec2 y

But tan y  x, so   
dy___
dx


1______
1  x2

i.e.  
d___
dx

 (tan 1
x) 

1______
1  x

2

Example

Find the derivative of cos 1 (3x  2)

Let y  cos 1 (3x  2)  and  u  3x  2  so  y  cos 1 u

Using the chain rule gives   
dy___
dx
 

1________

√
_______

1 u2
 3

⇒
dy___
dx
 

3______________

√
_____________

1  (3x  2)2

This example is a particular case of the general result, i.e. 

d___
dx

 (sin1 f(x)) 
f(x)___________

√√
__________

1  (f(x))2

d___
dx

 (cos1 f(x))  
f(x)___________

√√
__________

1  (f(x))2

d___
dx

 (tan1 f(x)) 
f(x)__________

1  (f(x))2

Exercise 1.13

Find the derivative of each of the following.

1 cos1 2x

2 tan1 (2x  1)

3 cos1 (x2)

4 sin1 (x  4)

5 tan1 (1  ex)
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1.14 Derivatives of combinations of functions

Summary of differentials

We have found the differentials of a variety of functions in previous topics 
and in Unit 1.

The results are summarised here.

Standard results

f(x) f(x) gf(x) d___

dx

 (gf(x))

xn nxn 1 (ax  b)n na(ax  b)n 1

sin x cos x sin f(x) f(x) cos f(x)

cos x sin x cos f(x) f(x) sin f(x)

tan x sec2 x tan f(x) f(x) sec2 f(x)

ex ex ef(x) f(x)ef(x)

ln x 1__
x

ln f(x)
f(x)_____
f(x)

sin 1 x 1________
√

_______

1  x2
sin 1 f(x)

f(x)____________

√
___________

1  (f(x))2

cos 1 x 
1_________

√
________

1  x2
cos 1 f(x) 

f(x)____________

√
___________

1  (f(x))2

tan 1 x 1_______
1  x2

tan 1 f(x)
f(x)__________

1  (f(x))2

Any of these results can be quoted unless you are asked to derive them.

You need to learn these results. When integrating you also need 
to be able to recognise the function which gives any of these 

differentials in the table.

For example, given  2x______
x2  1

 , you need to recognise this as the differential

of ln (x2  1)

General results
d___
dx

 f(y)  f(y)  
dy___
dx

dy___
dx


dy___
dt


dx___
dt

The use of logarithms

Logarithms were used in Unit 1 to help solve equations with exponents 
that contained the unknown quantity. The same technique can be used 
to differentiate functions where the variable is contained in an exponent.

Learning outcomes

 To fi nd the derivative of a 

combination of functions

You need to know

 The rules for differentiating 

products and quotients of 

functions and composite 

functions

 How to use logarithms
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For example, when y  ax, taking logs of both sides gives

 ln y  x ln a

Then differentiating with respect to x gives

(1__
y )

dy___
dx

 ln a

⇒
dy___
dx

 y ln a  ax ln a

Example

Differentiate x2 sin 1 (x2)

x2 sin 1 (x2) is a product so using  y  x2 sin 1 (x2)  with u  x2 and 
v  sin 1 (x2),

then   
du___
dx

 = 2x  and  
dv___
dx

 =  
2x________

√
______

1 x4

∴
dy___
dx

 u
dv___
dx

 v
du___
dx


2x3________

√
______

1 x4
 2x sin 1 (x2)

Example

Differentiate   
3x_____

ln 5x
  with respect to x

3x_____
ln 5x

  is a quotient so using y 
3x_____

ln 5x
 with u  3x and v  ln 5x

then   
du___
dx

 3  and   
dv___
dx


1__
x

∴
dy___
dx



v
du___
dx

u
dv___
dx___________

v2


3 ln 5x  3__________

(ln 5x)2

Example

Given ye(2y  1)
 sin x show that  

dy___
dx


y cot x_______
1  2y

ye(2y  1) is a product, so we use the product rule.

Differentiating with respect to x gives  e(2y  1)
dy___
dx

 2ye(2y  1)
dy___
dx

 cos x

⇒
dy___
dx


cos x_____________

(1  2y)e(2y  1)


y cos x_____________

(1  2y) sin x


y cot x_______

1  2y

Exercise 1.14

1 Find  
dy___
dx

 in terms of x when   

(a) y  x3x (b) y  x tan1 x   (c) sin1 (xy)  x

2 Find  
dy___
dx

 in terms of x and y when y 
1  ln(1  x)2
_____________
1  ln(1  x)2

3 Given y  x tan1 x show that x(1  x2)  
dy___
dx

 x2
 y(1  x2)
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1.15 Second differentials

The second differential of y with respect to x

We met  
d2y____
dx2 in Unit 1. It means the differential of  

dy___
dx

 with respect to x, 

i.e.  
d___
dx

(dy___
dx

)
So, for example, when  

dy___
dx

 x2,

d2y____
dx2  differential of x2 with respect to x  2x

Example

If y  e3x sin 2x, fi nd  
d2y____
dx2 in terms of x, simplifying your answer.

 y  e3x sin 2x ⇒
dy___
dx

 3e3x sin 2x  2e3x cos 2x Using the product rule

   e3x (3 sin 2x  2 cos 2x)

 ∴ 
d2y____
dx2 3e3x (3 sin 2x  2 cos 2x)  e3x (6 cos 2x  4 sin 2x) 

   e3x (5 sin 2x  12 cos 2x)

When an implicit function is differentiated, we often get terms such as

x2
dy___
dx

Differentiating such terms will result in a combination of fi rst and second 
derivatives.

For example, if y  x2
dy___
dx

, then using the product rule to differentiate

with respect to x gives   
dy___
dx

 x2
d2y____
dx2  2x  

dy___
dx

Example

If y  √
_______

3x2
 2   show that   (dy___

dx
)

2

 y
d2y____
dx2  3

 y   √
_______

3x2
 2   (3x2

 2 ) 
1
2

⇒ 
dy___
dx


3x_________

(3x2
 2 ) 

1
2

Now y  (3x2
 2 ) 

1
2 and we require a relationship that involves y so it 

is sensible at this stage to substitute y for (3x2
 2 ) 

1
2

This gives   
dy___
dx


3x___
y

⇒ y
dy___
dx

 3x

Differentiating with respect to x gives   (dy___
dx

) (dy___
dx

)  y
d2y____
dx2  3

i.e.  (dy___
dx

)
2

 y
d2y____
dx2  3

Learning outcomes

 To fi nd and use the second 

differentials of functions

You need to know

 The differentials of standard 

functions

 The product, quotient and chain 

rules

 The differential of f(y) with 

respect to x

 The relationship between ex and 

ln x
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Example

The parametric equations of a curve are y  t  and  x 
2_____

t  1

(a) Show that  2  
dy___
dx

 x  
d2y____
dx2  0

(b) Hence fi nd  
d2y____
dx2 in terms of t

(a) We require a relationship that does not involve t, so we start by 
eliminating t to give a direct relationship between x and y

y  t  and  x 
2_____

t  1
⇒ x 

2______
y  1

⇒ x(y  1)  2

∴ x  
dy___
dx

 (y  1)  0

⇒
dy___
dx

 x  
d2y____
dx2 

dy___
dx

 0  

⇒ 2  
dy___
dx

 x
d2y____
dx2  0

(b) We can use  x  
dy___
dx

 (y  1)  0  to give  
dy___
dx

 in terms of t

i.e.  
dy___
dx

    
y  1______

x
 

(t  1)2
_______

2

Then 2  
dy___
dx

 x  
d2y____
dx2  0 ⇒ (t  1)2  ( 2_____

t  1 ) d2y____
dx2  0  

 ⇒
d2y____
dx2 

(t  1)3
_______

2

Alternatively we can use  
d2y____
dx2 

d__
dt

(dy___
dx

) 
dt___
dx

  giving  

d2y____
dx2 

d__
dt

( (t  1)2
_______

2 ) 
dx___
dt

   ( (t  1))  2_______
(t  1)2


(t  1)3
_______

2

Exercise 1.15

1 If tan y  x,  fi nd the value of  
d2y____
dx2 when y 

__
4

(Hint: change tan y  x to y  tan1 x)

2 If ey  sin x,  show that   
d2y____
dx2  (dy___

dx
)

2

 1  0

3 The parametric equations of a curve are x  sin  and y  cos 

(a) Show that y 
d2y____
dx2  (dy___

dx
)

2

 1  0

(b) Hence fi nd  
d2y____
dx2 in terms of 
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1.16 Partial differentiation

Functions of two or more variables

Many quantities depend on more than one variable.

For example, the profi t made by a farmer can depend on the weather, 
wage costs, the price the farm produce sells for, the cost of transporting 
the produce to market, and several other variables.

If z  x2y then z is a function of two variables, x and y, and we write 
z  f(x, y)

If w  f(x, y, z) then w is a function of three variables, x, y, z

Partial differentiation

The farmer may want to know how profi t changes when one of the 
variables changes while keeping all the others constant, such as when 
wage costs change. 

This is where partial differentiation is useful: if f is a function of x and y, 
then the partial differential of f with respect to x is found by treating y as 
a constant.

The partial differential of f with respect to x is written as  
f___
x

(The formal defi nition of  
f(xy)______

x
 is

 lim
h→ 0

f(x  h, y)  f(x, y)_________________
h

where h  x)

For example, if f(x, y)  xy  2y2

then  
f___
x

 y This is equivalent to fi nding   d___
dx

  (ax  b)

and    
f___
y

 x  4y This is equivalent to fi nding
d___

dy
  (ay  2y2) 

If you get confused when fi nding partial derivatives, replace the variables 
that are treated as constant by letters that look like constants.

Example

If  f(x, y, z)  x2y  y2z  xyz  fi nd

(a)
f___
x

(b)
f___
z

(a)
f___
x

 y
d___
dx

 x2  0  yz
d___
dx

 x Treating y and z as constants

    2xy  yz

(b) 
f___
z

 0  y2 d___
dz

 z  xy
d___
dz

 z Treating x and y as constants

    y2  xy

Learning outcomes

 To introduce functions of more 

than one variable

 To defi ne and use partial 

differentiation

You need to know

 How to differentiate standard 

functions

 The product, quotient and chain 

rules

 How to fi nd a second derivative
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Example

If f(x, y)  xyex fi nd   
f___
x

Treating y as a constant, we have to differentiate xex, so we use the 
product rule.

f(x, y)  xyex ⇒
f___
x

 y  ( d___
dx

xex)  y(ex
 xex)

Exercise 1.16a

1 If f(x, y)  x2
 y2 fi nd   

f___
x

 and  
f___
y

Hence show that  x 
f___
x

 y
f___
y

 2f(x, y)

2 Given  f(x, y, z)  x2y  y2z  z2x  fi nd  
f___
y

  and   
f___
z

3 Find   
f___
x

  when     

(a) f(x, y)  x sin (x  y)  (b)  f(x, y) 
x  y______
x  y

(c)  f(x, y)  ye (x
2
 2)

Second partial derivative

The symbol   


2f___
x2  means   

___
x

(f___
x

), i.e. fi nd the partial derivative of f with

respect to x, then fi nd the partial derivative with respect to x of the result.

Therefore if  f(x, y)  x3y  xy3, then  
f___
x

 3x2y  y3

so  


2f___
x2 

___
x

 (3x2y  y3)  6xy

With partial differentiation we can also have a mixed second derivative, 

for example  
___
y

(f___
x

)  is written as   


2f_____
yx

For example when f(x, y)  x3y  xy3, then 

f___
x

 3x2y  y3 y constant

So  


2f_____
yx


___
y

(f___
x

)  ___
y

 (3x2y  y3)  3x2
 3y2 x constant

Exercise 1.16b

1 (a) Given f(x, y)  e (x
2
 y) fi nd

(i)


2f___
y2 (ii)


2f___
x2 (iii)


2f_____

yx
(iv)


2f_____

xy

(b) State whether the following are true

(i)


2f___
x2 


2f___
y2 (ii)  


2f_____

yx



2f_____

xy

2 Repeat question 1 when f(x, y)  x sin (x  y)
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Integration as the reverse of differentiation

When a function is recognised as the differential of a function it can be 
integrated,

so  
d___
dx

 f(x)  f(x)  ⇔⇔ ∫f(x) dx  f(x)  c

Integration of exponential functions

We know that  
d___
dx

 ex  ex,  therefore  ∫ex dx  ex  c

We also know that   
d___
dx

aex  aex  and   
d___
dx

 e(ax b)  ae(ax b)

Using the chain rule, we also have   
d___
dx

 ef(x)  f(x) ef(x)

therefore ∫aex dx  aex  c  and  ∫e(ax  b) dx 
1__
a

e(ax  b)  c

and  ∫f(x)ef(x) dx  ef(x)  c

For example, to fi nd  ∫e4x dx  we know that   
d___
dx

 e4x  4e4x

so  ∫e4x dx 
1
4 e4x  c

Example

Evaluate   ∫
1

2

4x e (x
2  1) dx

2x is the differential of x2  1, so this integral is of the form 

∫f(x)ef(x) dx  ef(x)  c

∴ ∫
1

2

4x e (x
2  1) dx  2 ∫

1

2

2x e (x
2  1) dx  2  [e (x

2  1) ]
1

2
 2(e3  e0)

 2(e3  1)

Exercise 1.17a

1 Find  

(a) ∫2e2x dx (b) ∫e(3x 2) dx

(c) ∫x e x
2

 dx (d) ∫(cos x)esin x dx

2 Evaluate  (a) ∫
0

1

5e4x 1 dx (b) ∫
0

1

(2x  1) e (x
2  x) dx

Integration of   1__
x

If we try to integrate  1__
x

 ( x 1) using ∫xn dx 
1______

n  1
xn 1  c we get

1__
0

x0  c, which is meaningless.

Learning outcomes

 To integrate exponential 

functions and logarithmic 

functions

You need to know

 How to differentiate exponential 

functions and logarithmic 

functions

 That integration is the reverse of 

differentiation

 How to fi nd a defi nite integral 

and its interpretation as an area

 The laws of logarithms

 The modulus function

1.17 Integration of exponential and logarithmic 
functions
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However, we know that  
d___
dx

 ln x 
1__
x

. Now ln x is defi ned only for x  0, so

provided that x  0,

∫ 1__
x

 dx  ln x  c [1]

When x  0, ∫ 1__
x

 dx  ln x  c is not true, but the function  1__
x

 exists for 

x  0

Also the shaded part of the graph shows that the area represented by

∫
c

d
1__
x

 dx exists, so it must be possible to integrate  1__
x

 for negative values of x

When x  0, 

  x  0, ∫ 1__
x

 dx  ∫ 1_____
( x)

 dx  ln( x)  c [2]

[1] and [2] can be combined using |x| to give

∫ 1__
x

 dx  ln|x|  c

Integration of   
f(x)_____
f(x)

We know from Topic 1.9 that  
d___
dx

 ln f(x) 
f(x)____
f(x)

, therefore

∫ f(x)____
f(x)

 dx  ln|f(x)|  c

For example, to fi nd ∫ 2_______
2x  1

 dx, we see that 2 is the differential of 2x  1 

So ∫ 2_______
2x  1

 dx  ln |2x  1|  c

Example

Evaluate   ∫
2

3
3x______

x2  1
 dx

∫
2

3
3x______

x2  1
 dx 

3__
2

∫
2

3
2x______

x2  1
 dx and 2x is the differential of x2  1, so

∫
2

3
3x______

x2  1
 dx  [3__

2
 ln |x2  1| ]

2

3


3__
2

 ln 8 
3__
2

 ln 3 
3__
2

 ln  
8__
3

Exercise 1.17b

1 Find 

(a) ∫ 4x______
1 x2 dx (b) ∫ ex______

ex  1
 dx

(c) ∫ cos x_____
sin x

 dx (d) ∫ 1_____
x ln x

 dx 

2 Evaluate  (a) ∫
1

2
x  2________

x(x  4)
 dx (b) ∫

0

1
ex_______

2ex  3
 dx

c d

y

xO

(Hint:  1_____
x ln x



1__
x____

ln x
)
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1.18 Partial fractions

Partial fractions

In this section we deal with rational functions, i.e. fractions whose 
numerators and denominators are polynomials.

We can add or subtract fractions to give a single fraction, for example, 

3______
x  1


1______

x  1


3(x  1)  (x  1)_________________
(x  1)(x  1)


4x  2_____________

(x  1)(x  1)

The reverse process, i.e. starting with a fraction such as  4x  2_____________
(x  1)(x  1)

and expressing it as the sum or difference of two simpler fractions, is 
called decomposing into partial fractions

Fractions with linear factors in the denominator

When a fraction is proper (i.e. the highest power of x in the numerator is 
less than the highest power of x in the denominator) the partial fractions 
will also be proper.

For example,   2x  1_____________
(x  1)(x  2)

  can be expressed as   A______
x  1


B______

x  2
  where

A and B are numbers.

The worked example shows how the values of A and B can be found.

Example

Express   2x  1_____________
(x  1)(x  2)

  in partial fractions.

2x  1_____________
(x  1)(x  2)


A______

x  1


B______
x  2

First express the right-hand side of this identity as a single fraction 
over a common denominator.

⇒
2x  1_____________

(x  1)(x  2)


A(x  2)  B(x  1)__________________
(x  1)(x  2)

This is an identity: since the denominators are the same then the 
numerators are also the same.

⇒  2x  1  A(x  2)  B(x  1)

These are two ways of stating the same expression, so we can assign 
x any value we choose.

Choosing to use x  2 to eliminate A gives

 3  3B ⇒ B  1

and using x  1 to eliminate B gives 

 3  3A ⇒ A  1

∴
2x  1_____________

(x  1)(x  2)


1______
x  1


1______

x  2

Learning outcomes

 To decompose a rational 

function whose denominator 

factorises into a sum or 

difference of simpler fractions

You need to know

 The meaning of the terms 

polynomial and rational function

 The meaning of a proper fraction

 How to express an improper 

rational fraction as the sum of a 

polynomial and a proper fraction
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Example

Express   x
2  2x  1_____________

(x  2)(x  3)
  in partial fractions.

x2  2x  1_____________
(x  2)(x  3)

 is improper so we express it as a sum of a polynomial

and a proper fraction.

x2  2x  1_____________
(x  2)(x  3)


x2  2x  1___________
x2
 x  6



(x2
 x  6)  3x  7____________________

x2
 x  6

   1 
3x  7__________

x2
 x  6

(This can also be done by dividing x2  2x  1 by x2
 x  6)

3x  7__________
x2
 x  6


A______

x  2


B______
x  3



A(x  3)  B(x  2)__________________
(x  2)(x  3)

∴ 3x  7  A(x  3)  B(x  2)

x  3 ⇒  16  5B ⇒ B  
16__
5

x  2 ⇒   1  5A ⇒ A 
1
5

∴
x2  2x  1_____________

(x  2)(x  3)
 1  1________

5(x  2)
16________

5(x  3)

Exercise 1.18a

Express each fraction in partial fractions.

1
3x_____________

(x  1)(x  2)
2

6______________
(x  1)(2x  1)

3
2x  1________
x(x  1)

4
x2
 1_____________

(x  2)(x  3)

Fractions with a repeated factor in the denominator

The fraction   x  1________
(x  2)2  is a proper fraction and, by adjusting the

numerator, can be expressed as the sum of two fractions with numerical 
numerators.

i.e.  x  1________
(x  2)2 

x  2  3__________
(x  2)2 

x  2________
(x  2)2 

3________
(x  2)2

  
1_______

(x  2)


3________
(x  2)2

Any fraction whose denominator is a repeated factor can be expressed as 
two fractions with numerical numerators.

When there are other factors, adjusting the numerator is not easy. The 
next worked example shows how such a fraction can be decomposed into 
partial fractions.
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Example

Express   2x  1_______________
(x  3)2(2x  1)

  in partial fractions.

2x  1_______________
(x  3)2(2x  1)


A________

(x  3)2 
B_______

(x  3)


C________
(2x  1)

  

A(2x  1)  B(x  3)(2x  1)  C(x  3)2
______________________________________

(x  3)2(2x  1)

∴ 2x  1  A(2x  1)  B(x  3)(2x  1)  C(x  3)2

x  3 ⇒ 5  7A   so A 
5
7

x  
1
2 ⇒ 2  49__

4 C so C  
8__
49

The value of B can be found by substituting any value for x (apart from 
the two values already used).

Choose an easy value: we will use x  0

x  0 ⇒ 1  A  3B  9C ⇒ 1  5
7

 3B
72__
49 so B 

4__
49

∴
2x  1_______________

(x  3)2(2x  1)


5_________
7(x  3)2 

4_________
49(x  3)

8__________
49(2x  1)

Exercise 1.18b

Express each fraction in partial fractions.

1
3______________

(x  1)2(x  1)
2

x2
 2______________

(x  2)(x  1)2 3
x2
 1_________

x2(x  4)

Fractions with a quadratic factor in the denominator

Fractions with a quadratic factor in the denominator can also be 
decomposed into partial fractions.

For example   2x  1______________
(x  2)(x2

 1)
  is a proper fraction, so its partial fractions 

will also be proper.

Therefore the partial fraction with denominator (x2
 1) will have a 

linear numerator. 

Therefore   2x  1______________
(x  2)(x2

 1)


A______
x  2


Bx  C_______
x2
 1

⇒
2x  1______________

(x  2)(x2
 1)



A(x2
 1)  (Bx  C)(x  2)__________________________

(x  2)(x2
 1)

⇒ 2x  1  A(x2
 1)  (Bx  C)(x  2)

x  2 gives 5  5A so A  1

x  0 gives 1  1  2C so C  0

x  1 gives 1  2  (B)(3) so B  1

∴
2x  1______________

(x  2)(x2
 1)

 
1______

x  2


x______
x2
 1

Section 1 Complex numbers and calculus 2
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Repeated quadratic factors

The fraction   
x2  3x________
(x2

 1)2  has a repeated quadratic factor. By rearranging the

numerator this can be expressed as the sum of two fractions, 

i.e. 
x2  3x________
(x2

 1)2 
(x2

 1)  3x  1_________________
(x2

 1)2

  
1______

x2
 1

3x  1________
(x2

 1)2

Any repeated quadratic factor can be expressed as the sum of two factors 
with linear numerators, one with the single quadratic factor and the other 
with the repeated quadratic factor.

Example

Express   
3x  6_______________

(x  1)(x2
 2)2  in partial fractions.

3x  6_______________
(x  1)(x2

 2)2 
A______

x  1


Bx  C________
(x2

 2)


Dx  E________
(x2

 2)2

  

A(x2
 2)2

 (Bx  C)(x  1)(x2
 2)  (Dx  E)(x  1)__________________________________________________

(x  1)(x2
 2)2

∴ 3x  6  A(x2
 2)2

 (Bx  C)(x  1)(x2
 2)  (Dx  E)(x  1)

There are 5 unknowns so we need 5 equations.

x  1 gives  9  9A so A  1

x  0 gives  6   4  2C E

⇒ 2C  E  2     [1]

x  1 gives  3  9  6(C B)  2(E D)

⇒ 3(C B)  (E D)  3 [2]

x  2 gives 12  36  6(C  2B)  E  2D

⇒ 6(C  2B)  E  2D  24 [3]

x  2 gives  0  36  18(2B C)  3(E  2D)

⇒ 6(2B C)  (E  2D)  12 [4]

Solving these equations simultaneously gives  B  1,  C  1,  D  3,  E  0

∴
3x  6_______________

(x  1)(x2
 2)2 

1______
x  1

x  1________
(x2

 2)
3x________

(x2
 2)2

Exercise 1.18c

Express each fraction in partial fractions.

1
1______________

(x  2)(x2
 1)

2
x3

 x2
 2x_______________

(x  1)(x2
 1)2 3

1_________
x2(x2

 1)
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1.19 Applications of partial fractions

The use of partial fractions to simplify the 
differentiation of fractions

We can use the quotient rule to differentiate   1_____________
(x  1)(x  1)

  but the 

simplifi cation of the result is complicated.

When we express   1_____________
(x  1)(x  1)

  as partial fractions, 

i.e. as   1________
2(x  1)

1________
2(x  1)

, then we can differentiate two simpler

fractions and the resulting simplifi cation is easier. 

∴
d___
dx

( 1_____________
(x  1)(x  1) ) 

d___
dx

( 1________
2(x  1)

1________
2(x  1) )

  
d___
dx

(1__
2

 (x  1) 1) d___
dx

(1__
2

 (x  1) 1)

 
1__
2

 (x  1) 2 
1__
2

 (x  1) 2

  
1_________

2(x  1)2
1_________

2(x  1)2


(x  1)2  (x  1)2
_________________
2(x  1)2(x  1)2

   
4x________________

2(x  1)2(x  1)2

 
2x_______________

(x  1)2(x  1)2

 
2x________

(x2  1)2

Exercise 1.19a

Express each fraction in partial fractions and hence differentiate each 
fraction.

1
3x  1______________

(x  2)(2x  1)

2
5x___________________

(x  1)(x  2)(x  3)

3
3x

2
x______________

(x  3)(x2  1)

The use of partial fractions in integration

The fraction   1_____________
(x  1)(x  1)

  is not recognisable as the differential of a

standard function so the integral  ∫ 1_____________
(x  1)(x  1)

  is not obvious, but if

we express the fraction in partial fractions, 

Learning outcomes

 To use partial fractions to 
simplify the differentiation of 
fractions

 To integrate using partial 
fractions

You need to know

 The differentials of simple 
functions and of log functions

 How to decompose a rational 
function into partial fractions

 The integral of    
f(x)_____
f(x)

 How to fi nd a defi nite integral

 The laws of logarithms
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i.e.  1_____________
(x  1)(x  1)


1________

2(x  1)
1________

2(x  1)

then  ∫ 1_____________
(x  1)(x  1)

 dx  ∫ 1________
2(x  1)

 dx ∫ 1________
2(x  1)

 dx  and each of 

these integrals is recognisable.

∴ ∫ 1_____________
(x  1)(x  1)

 dx  ∫ 1________
2(x  1)

 dx ∫ 1________
2(x  1)

 dx

  
1__
2

 ln |x  1| 1__
2

 ln |x  1|  c

  
1__
2

 ln  ⎥x  1______
x  1⎥  c

Example

Find  ∫ x
3

 4x
2

x_____________
(x  1)(x  4)

 dx

x
3

 4x
2

x_____________
(x  1)(x  4)

  is an improper fraction, so fi rst divide the denominator

into the numerator:

x  1

x
2

 3x  4 x
3

 4x
2

x

x
3

 3x
2  4x

x
2

 3x

x
2

 3x  4

4

so  x
3

 4x
2

x_____________
(x  1)(x  4)

 x  1  4_____________
(x  1)(x  4)

   x  1  4________
5(x  1)

4________
5(x  4)

∴ ∫ x
3

 4x
2

x_____________
(x  1)(x  4)

 dx  ∫ (x  1) dx  ∫ 4________
5(x  1)

 dx ∫ 4________
5(x  4)

 dx

  
1__
2

x
2

 x 
4__
5

 ln |x  1| 4__
5

 ln |x  4|  c

  
x

2__
2

 x 
4__
5

 ln  ⎥x  1______
x  4⎥  c

)

Exercise 1.19b

1 Use partial fractions to fi nd the following integrals:

(a) ∫ 3x  4________
x(x  1)

 dx (b) ∫ 2t____________
(t  2)(t  2)

 dt

(c) ∫ x______
x  2

 dx (d) ∫ 4x
2

 3x  2______________
(x  1)(2x  3)

 dx

2 Evaluate   ∫
1

0
s

2
 s_____________

(s  1)(s2
 1)

 ds (Hint: ∫ 1________
(1  x

2)
 tan1

x )
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1.20 Integration using substitution

Integration using substitution

When y  gh(x) we can use the substitution u  h(x) and the chain rule

to fi nd  
d___
dx

 gh(x) giving

d___
dx

 g(u)  g(u)  
du___
dx

∴ ∫g(u)  
du___
dx

 dx  g(u)  c [1]

Now ∫g(u)du  g(u)  c [2]

Comparing [1] and [2] gives ∫g(u)  
du___
dx

 dx  ∫g(u)du

When we replace g(u) by f(u)  we get ∫f(u)  
du___
dx

 dx  ∫f(u)du

Therefore integrating   (f(u)  
du___
dx

)  with respect to x is equivalent to 

integrating f(u) with respect to u, i.e.

…  
du___
dx

 dx  … du

Note that the relationship above is a pair of equivalent operations. It is 
not an equation nor is it an identity. 

For example, to fi nd ∫x2(1 x3) 
1
2 dx using the substitution u  1 x3 gives

∫x2(1 x3) 
1
2 dx ⇒ ∫x2u

1
2 dx

Now  
du___
dx

 3x2 ∴ …  
du___
dx

 dx  … du ⇒ …( 3x2) dx  … du

∴ ∫x2u
1
2 dx  ∫ 1

3 u
1
2 du

   ( 1
3 ) (

2
3 ) u

3
2  c  

2
9 (1 x3) 

3
2  c

This method of substitution is used to integrate a product of functions 
when one function is the differential of the function ‘inside’ the other 
factor. We substitute u for this ‘inside’ function.

For example, we can use it to fi nd  ∫ 2 cos x sin3 x dx  because cos x is the 
differential of sin x

We cannot use it to fi nd  ∫ ex cos2 x dx  because ex is not the differential of 
cos x

Example

Find  ∫ 2 cos x sin2 x dx

cos x is the differential of sin x so we will use the substitution u  sin x

u  sin x ⇒
du___
dx

 cos x,  ∴ …  
du___
dx

 dx  … du ⇒ … cos x dx  … du

∴ ∫ 2 cos x sin2 x dx  ∫ 2u2 du

  
2
3 u3  c 

2
3 sin3 x  c

Learning outcomes

 To use substitution to fi nd 

integrals of some products 

You need to know

 That integration is the reverse of 

differentiation

 The chain rule

 The differentials of the standard 

functions
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Defi nite integration using a substitution

When you use the substitution u  f(x) to evaluate a defi nite integral, you 
do not need to substitute back to a function of x. You can use u  f(x) to 
change the limits to corresponding values of u

After some practice you may fi nd that you can integrate some functions 
directly without having to make a substitution.

Example

Evaluate   ∫
2

3

x √
______

x
2  1   dx

2x is the differential of x2  1, so we will use the substitution 
u  x

2  1

u  x
2  1 ⇒ du___

dx
 2x

∴ …  
du___
dx

 dx  … du ⇒ … 2x dx  … du

∴ ∫
2

3

x √
______

x
2  1   dx 

1
2 ∫

2

3

2x √
______

x
2  1   dx

  
1
2 ∫

x  2

x  3

u

1
2 du

When x  2, u  3 and when x  3, u  8

∴ ∫
2

3

x √
______

x
2  1   dx 

1
2 ∫

3

8

u

1
2 du

  
1
2 [23 u

3
2 ]

3

8


1
3
(8 

3
2 3 

3
2 )


16 √2   3 √3  ____________

3

Exercise 1.20

1 Use the given substitution to fi nd  

(a) ∫ sin x √
_____
cos x   dx;  u  cos x 

(b) ∫ 1__
x

 (ln x)2 dx;  u  ln x

2 Use a suitable substitution to fi nd  

(a) ∫ ex √
______

ex
 1   dx

(b) ∫ cos 2x sin2 2x dx

3 Evaluate 

(a) ∫
0

0.5

x √
______

1  x
2 dx using the substitution  u  1  x

2

(b) ∫
0

√
__

3  
x________

√
______

1  x
2
 dx
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1.21 Integration of trigonometric functions

Standard trigonometric integrals

From the derivatives of the standard trig functions we know that

∫ cos x dx  sin x  c,   ∫ sin x dx  cos x  c,   ∫ sec2
x dx  tan x  c

Using

∫ f(x)____
f(x)

 dx  ln |f(x)|  c

gives

∫ tan x dx  ∫ sin x_____
cos x

 dx  ln|cos x|  c

   ln|1|  ln|cos x|  c ln 1  0

   ln  ⎥ 1_____
cos x⎥  c  ln|sec x|  c

and

∫ cot x dx  ∫ cos x_____
sin x

 dx  ln|sin x|  c

i.e. ∫tan x dx  ln|sec x|  c and ∫cot x dx  ln|sin x|  c

Using integration by substitution 

gives ∫cos nx dx 
1__
n

 sin nx  c, ∫sin nx dx  
1__
n

 cos nx  c,

and ∫sin x cosn
 x dx  

1______
n  1

 cosn  1
x  c,

∫cos x sinn
 x dx  

1______
n  1

 sinn  1
x  c,

∫sec2
x tann

 x dx 
1______

n  1
 tann  1

x  c

Even powers of sin x and cos x

We use the identities for cos 2x in the forms cos2
x 

1
2(1  cos 2x)

and sin2
x 

1
2(1  cos 2x)

For example, ∫ sin2
x dx  ∫ 1

2(1  cos 2x) dx


1
2 x

1
4 sin 2x  c

Odd powers of sin x and cos x

We use the identity  cos2
x  sin2

x  1. For example,

∫ sin3
x dx  ∫ sin x (sin2

x) dx

   ∫ sin x (1  cos2
x) dx  ∫ (sin x  sin x cos2

x) dx

   cos x 
1
3 cos3

x  c

Learning outcomes

 To integrate some trig functions

You need to know

 The differentials of the standard 

trig functions

 That    d___
dx

f(x)  f(x)

⇔∫f(x) dx  f (x)  c

 The laws of logarithms

 The double angle trig identities
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Multiple angles

To integrate products such as cos 2x sin 4x we can use the factor formulae
(Topic 2.6 in Unit 1).

For example, to fi nd ∫ cos 2x sin 4x dx  we can use 

sin 6x  sin 2x  2 sin 4x cos 2x

∴ ∫ cos 2x sin 4x dx 
1
2 ∫ (sin 6x  sin 2x) dx

   
1__
12 cos 6x

1
4 cos 2x  c

A variety of trig functions can be integrated using the ideas given above.
The aim is to convert a trigonometric integral to one of the standard 
forms and/or to reduce the trigonometric function to a number of single 
trigonometric ratios. 

Example

Find ∫ sin5  d

 sin5   sin  sin4   sin  (sin2 )2

   sin  (1  cos2 )2

   sin  (1  2 cos2   cos4 )

∴ ∫ sin5  d  ∫ (sin   2 sin  cos2   sin  cos4 ) d

   cos  
2
3 cos3 

1
5 cos5   c

Example

Evaluate   ∫
0



2

 sin 2x sin x dx

sin 2x sin x  
1
2 (cos 3x  cos x)

∴ ∫
0



2

 sin 2x sin x dx 
1
2 ∫

0



2

 (cos x  cos 3x) dx

  
1
2 [sin x 1

3 sin 3x ]
0



2

  
1
2 (1 1

3 ( 1) ) 
2
3

Exercise 1.21

Find    

1 ∫ cos 3x dx 2 ∫ sin  cos5  d

3 ∫ sec2
x tan3

x dx 4 ∫ cos3
x sin2

x dx

5 ∫ sin x cos 3x dx 6 ∫ sin 2x √
___________

1  2 sin2
x   dx

7 ∫ cos x__________

√
_________

1  sin x  

 dx

Evaluate    

8 ∫
0

__
4

 (cos 5x cos 3x) dx 9 ∫
0

__
2

 sin2  cos2  d
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1.22 Integration by parts

Integration by parts

We cannot fi nd ∫ xex dx using any of the methods introduced so far. 

If we start with   
d___
dx

uv  v
du___
dx

 u
dv___
dx

  and then integrate both sides with

respect to x, we get

uv  ∫ v
du___
dx

 dx  ∫u
dv___
dx

 dx

Rearranging this formula gives

∫ v
du___
dx

 dx  uv  ∫u
dv___
dx

 dx

This version of the formula can be used to integrate a product of functions

where v and  
du___
dx

 are the two functions; this is called integrating by parts

To use the formula, the right-hand side shows that one of the functions 

in the product,  
du___
dx

 , has to be integrated, and the other function, v, has to

be differentiated. When both functions can be integrated, choose as v the 
function whose differential is the simpler. When only one function can be 
integrated, then v is the other function. This formula cannot be used when 
neither function can be integrated.

So, to fi nd ∫ xex dx, we have two functions that can be integrated. The

differential of x is simpler than that of ex, so we choose v  x and  
du___
dx

 ex

This gives  u  ex  and   
dv___
dx

 1

Then ∫ v
du___
dx

 dx  uv ∫u
dv___
dx

 dx ⇒ ∫ xex dx  xex ∫ (ex
 1) dx

   xex  ex
 c  ex (x  1)  c

Example

Find ∫ x
2 ln x dx

To use integration by parts to fi nd ∫ x
2 ln x dx we see that ln x cannot be integrated but x2 can. So we choose 

v  ln x and   
du___
dx

 x
2 ⇒

dv___
dx


1__
x

  and  u 
1
3 x

3

∫ v
du___
dx

 dx  uv ∫u
dv___
dx

 dx ⇒ ∫ x
2 ln x dx 

1
3 x

3 ln x ∫ (13 x
3) (1__

x
) dx

  
1
3 x

3 ln x ∫ (13 x
2) dx 

  
1
3 x

3 ln x 1
9 x

3
 c 

1
9 x

3 (3 ln x  1)  c

Example

Find ∫ ln x dx

We said in the previous example that ln x cannot be integrated, but using integration by parts with 

ln x  1  ln x, we can fi nd ∫ ln x dx

Learning outcomes

 To integrate a product of 

functions by parts

You need to know

 The formula for differentiating a 

product of functions

 The differentials and integrals of 

standard functions
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To fi nd ∫ (1  ln x) dx, let v  ln x and   
du___
dx

 1 ⇒
dv___
dx


1__
x

  and  u  x

∫ v
du___
dx

 dx  uv ∫u
dv___
dx

 dx ⇒ ∫ ln x dx  x ln x ∫ x (1__
x
) dx  x ln x x  c  x(ln x  1)  c

Example

Find ∫ ex sin 3x dx

Using v  ex  and   
du___
dx

 sin 3x  gives   
dv___
dx

 ex  and  u  
1
3 cos 3x

∫ ex sin 3x dx  
1
3 ex cos 3x ∫ ( 1

3 cos 3x ) ex dx

   
1
3 ex cos 3x 

1
3∫ ex cos 3x dx

Using integration by parts again on ∫ ex cos 3x dx with v  ex and   
du___
dx

 cos 3x  gives

∫ ex sin 3x dx  
1
3 ex cos 3x 

1
3 (1

3 ex sin 3x
1
3 ∫ ex sin 3x dx )

  
1
9 ex sin 3x

1
3 ex cos 3x

1
9 ∫ ex sin 3x dx

The required integral appears on both sides of the equation. Collecting it on the left-hand side gives

10__
9 ∫ ex sin 3x dx 

1
9 ex sin 3x

1
3 ex cos 3x ⇒ ∫ ex sin 3x dx 

1__
10 ex (sin 3x  3 cos 3x)  c

You may fi nd it easier to apply the formula for integration by parts by 
remembering it in the form

∫ f(x) g(x) dx  (∫ f(x) )  g(x)  ∫ (∫ f(x) 
d___
dx

 g(x) ) dx

Example

Evaluate  ∫
0



2
 x

2 cos x dx

Using integration by parts, ∫ x
2 cos x dx  x

2 sin x ∫ 2x  sin x dx

We need to use integration by parts again to fi nd ∫ 2x sin x dx

∴ ∫ x
2 cos x dx  x

2 sin x ( 2x cos x ∫ 2 cos x dx )  x
2 sin x  2x cos x  2 sin x  c

∴ ∫
0



2
 x

2 cos x dx  [x2 sin x  2x cos x  2 sin x ]
0



2  (__
2 )

2
 2

Exercise 1.22

1 Find 

(a) ∫2xe3x dx (b) ∫ ex cos x dx

(c) ∫ x ln x dx (d) ∫ x
2 sin 2x dx

2 Evaluate

(a) ∫
0

1

 ln (1  2x) dx (b) ∫
0



4
 3x sin 3x dx

(c) ∫
0



2
 e2x cos 2x dx
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The integral of sin1
x

To fi nd ∫ sin 1
x dx  we use integration by parts and the same device that 

we used to fi nd ∫ ln x dx,  i.e. we write ∫ sin 1
x dx  as  ∫ (1  sin 1

x) dx

Then, using ∫ v du___
dx

 dx  uv ∫u dv___
dx

 dx

with v  sin 1
x and  

du___
dx

 1

gives  
dv___
dx


1________

√
______

1 x
2
 and u  x

∴ ∫ sin 1
x dx  x sin 1

x ∫ x________

√
______

1 x
2
 dx

To fi nd ∫ x________

√
______

1 x
2
 dx we can use the substitution 

u  1 x
2 ⇒ 2x dx  du

∴ ∫ x________

√
______

1 x
2
 dx  ∫

1
2____

u

1
2

 du

  u
1
2  c

    √
______

1 x
2

 c

(You can also fi nd this integral by sight.)

∴ ∫ sin 1
x dx  x sin 1

x ( √
______

1 x
2 )  c

i.e. ∫ sin 1
x dx  x sin 1

x  √√
____________

1  x
2

 c

The integral of cos1
x

Using a similar method as we used above, 

∫ cos 1
x dx  ∫ 1  cos 1

x dx

   x cos 1
x ∫ (x 

1________

√
______

1 x
2 ) dx

   x cos 1
x  ∫ x________

√
______

1 x
2
 dx

 x cos 1
x √

______

1 x
2

 c

i.e. ∫ cos 1
x dx  x cos 1

x  √√
______

1  x
2

 c

Learning outcomes

 To fi nd the integrals of the 

inverse trigonometric functions

You need to know

 The differentials of the inverse 

trigonometric functions

 How to integrate using 

substitution

 How to use integration by parts

 Methods for integrating rational 

functions using partial fractions

1.23 Integration of inverse trigonometric 
functions
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The integral of tan1
x

Using ∫ tan 1
x dx  ∫ 1  tan 1

x dx  and integration by parts gives 

∫ tan 1
x dx  x tan 1

x ∫ x______
1  x

2 dx

Recognising ∫ x______
1  x

2 dx  as of the form   1__
2 ∫

f(x)____
f(x)

 dx 
1__
2

 ln f(x)  c

gives  ∫ x______
1  x

2 dx 
1__
2

 ln (1  x
2)  c

∴∴ ∫ tan 1
x dx  x tan 1

x 
1__
2

 ln (1  x
2)  c

These results can be quoted unless their derivation is asked for, 
although it is better to remember the method rather than learn 

the integrals.

Example

Find ∫ x tan 1
x dx

Using integration by parts gives

∫ x tan 1
x dx 

1__
2

x
2 tan 1

x ∫ x
2_________

2(1  x
2)

 dx

Now  x
2______

1  x
2 

1  x
2  1__________

1  x
2  1 1______

1  x
2

∴ ∫ x
2_________

2(1  x
2)

 dx 
1__
2 ∫ x

2______
1  x

2 dx

  
1__
2 (∫ 1 dx ∫ 1______

1  x
2 dx )

  
1__
2

x
1__
2

 tan 1
x  c

∴ ∫ x tan 1
x dx 

1__
2

x
2 tan 1

x
1__
2

 (x  tan 1
x)  c

  
1__
2

 (x2  1) tan 1
x

1__
2

x  c

Exercise 1.23

1 Find

(a) ∫ tan 1 3x dx (b) ∫ sin 1 2x dx (c) ∫ x
2 tan 1

x dx

2 Evaluate  

(a) ∫
0

1

 sin 1
x dx (b) ∫

0

1
√2    cos 1

x dx (c) ∫
0

1
2

 tan 1 (1  x) dx

Exam tip

When using integration by parts, it 

is sensible to check your answer by 

differentiating it: this should give the 

function you integrated. 
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1.24 Reduction formulae

Finding a reduction formula

If we need to fi nd ∫ sin4 x dx we can use the identity sin2  
1
2 (1  cos 2)

then square it to give sin4  
1
4 (1  2 cos 2  cos2 2). 

We can then use the identity cos2 2 
1
2 (1  cos 4) to give an integral 

involving cos 2 and cos 4, but this is tedious if used to fi nd the integral 
of higher powers of sin x. 

To do this we use integration by parts to give a formula that 
systematically reduces the power to one that we can easily integrate.

For example to fi nd ∫ sinn x dx, where n is a positive integer, we start by

calling this integral In

then, by writing ∫ sinn x dx  as ∫ sin x sinn  1 x dx  and using integration by 
parts, we have

 In  ∫ sinn x dx

 ∫ sin x sinn  1 x dx

   cos x sinn  1 x ∫ ( cos x) ((n  1) cos x sinn  2 x ) dx 

   cos x sinn  1 x  ∫ (n  1)(cos2 x sinn  2 x) dx

   cos x sinn  1 x  (n  1) ∫ ((1  sin2 x) sinn  2 x ) dx

   cos x sinn  1 x  (n  1)  (∫ sinn  2 x dx ∫ sinn x dx )
∴ In  cos x sinn  1 x  (n  1) (In  2 In)

⇒ nIn  cos x sinn  1 x  (n  1) In  2

⇒ In  
1__
n

 cos x sinn  1 x 
n  1______

n
In  2

This is called a reduction formula because it reduces an integral 
involving the power n to one involving the power n  2.

Depending on the function to be integrated, a reduction formula may 
reduce the power by 1 or by 2.

Using a reduction formula
A reduction formula can be used to systematically reduce the power to 
one where the integral can be found easily.

To fi nd ∫ sin6 x dx  we have I6  ∫ sin6 x dx  and using the formula above

I6  
1
6 cos x sin5 x 

5
6 I4      [1]

Using the formula again on I4 gives  

I4  
1
4 cos x sin3 x 

3
4 I2      [2]

Learning outcomes

 To derive and use reduction 

formulae

You need to know

 How to use integration by parts

 The integrals of standard 

functions
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Now I2  ∫ sin2 x dx

   ∫ 1
2 (1  cos 2x) dx

  
1
2 x

1
4 sin 2x  c

From [2], I4  
1
4 cos x sin3 x 

3
4 (1

2 x
1
4 sin 2x  c )

  
3
8 x

1
4 cos x sin3 x

3__
16 sin 2x  c

From [1], I6  
1
6 cos x sin5 x

5__
24 cos x sin3 x 

5__
16 x

5__
16 cos x sin x  c

Using sin 2x  2 sin x cos x

Note that when we found I2, we introduced a constant of integration, 
c. As c is an unknown constant, there is no need to multiply it by the 
fractions in the reduction formulae.

Example

(a) Given  In  ∫ xnex dx  show that  In  xnex nIn  1

(b) Hence fi nd ∫ x4ex dx

(a) In  ∫ xnex dx  xnex ∫nxn  1ex dx

   xnex n ∫ xn  1ex dx

 xnex nIn  1

(b) I4  ∫ x4ex dx

Now I1  ∫ xex dx

   xex ∫ ex dx

   ex (x  1)  c Using integration by parts

Using In  xnex nIn  1 with n  2 gives

I2  x2ex  2I1

   x2ex  2ex(x  1)  c

   ex (x2  2x  2)  c

Similarly I3  x3ex  3I2

   ex (x3  3x2
 6x  6)  c

and I4  x4ex  4I3

   ex (x4  4x3
 12x2  24x  24)  c

We can also fi nd a reduction formula for a defi nite integral, and in this 
case the formula is often easier to use.
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Example

(a) Given  In  ∫
0

1

x(x2  1)n dx  show that  In  
n______

n  1
In  1

(b) Hence evaluate   ∫
0

1

x(x2  1)5 dx

(a) We need an integral involving (x2  1)n  1 so we start by writing In as

∫
0

1

x(x2  1)(x2  1)n  1 dx

∴ In  ∫
0

1

x(x2  1)(x2  1)n  1 dx

We can now express this as two integrals, i.e.

In  ∫
0

1

x3(x2  1)n  1 dx ∫
0

1

x(x2  1)n  1 dx

   ∫
0

1

x3(x2  1)n  1 dx In  1

∴ In  In  1  ∫
0

1

x3(x2  1)n  1 dx

If we use integration by parts with v  (x2  1)n  1 we will reduce 
the power to n  2, which we do not want. Therefore we rearrange 
x3(x2  1)n  1 so that there is a term involving (x2  1)n  1 that can 
be integrated.

Now   ∫
0

1

 x3(x2  1)n  1 dx  ∫
0

1

(x2)  (x(x2  1)n  1 ) dx

Using integration by parts with   
du___
dx

 x(x2  1)n  1  gives

In  In  1  [(x2)  ((x
2  1)n

________
2n

)]
0

1

∫
0

1

2x ((x
2  1)n

________
2n

) dx

   0 1__
n

In

∴ In  In  1  
1__
n

In

⇒ In  
n______

n  1
In  1

(b) ∫
0

1

 x(x2  1)5 dx  I5

Now  I1  ∫
0

1

 x(x2  1) dx

   ∫
0

1

(x3 x) dx

   [x4__
4

x2__
2 ]

0

1

   
1__
4

Section 1 Complex numbers and calculus 2
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Using In  
n______

n  1
In  1 gives

 I2  
2
3  I1

   ( 2
3 )(

1
4 )


1
6

so I3  
3
4 I2

   
3
4 

1
6

 
1
8

and I4  
4
5 I3

   
4
5  

1
8


1__
10

so I5  
5
6 

1__
10

 
1__
12

i.e.  ∫
0

1

 x(x2  1)5 dx  
1__
12

Note that a formula like  In  
n______

n  1
In  1,  where I1 is known, produces

a sequence giving values for I2, I3, I4, …

Such a formula is called a recurrence relation.

Exercise 1.24

1 If  In  ∫ cosn x dx  show that 

In 
1__
n

 sin x cosn  1 x 
n  1______

n
In  2 ,  n  2

 Hence fi nd ∫ cos6 x dx

2 Use the reduction formula given in question 1 to show that, 

when In  ∫
0

__
2
 cosn x dx,

In 
n  1______

n
In  2

3 If In  ∫
0

1

xn √
______

1  x   dx  show that  

In 
2n_______

2n  3
In  1 ,  n  0

 Hence fi nd  ∫
0

1

 x6√
______

1  x   dx
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1.25 The trapezium rule

We have covered a variety of methods to integrate functions. However, 
there are many indefi nite integrals that cannot be found. But there are 
several methods that can be used to give an approximation for a defi nite 
integral when the function involved cannot be integrated. 
We look at one such method here.

The trapezium rule

The integral  ∫
a

b

 f(x) dx represents the area between the curve y  f(x), 

the x-axis and the ordinates x  a and x  b. 

When a function whose derivative is f(x) cannot be found, we can divide 
the area into a fi nite number of vertical strips as shown in the diagram. 
Joining the tops of the strips as shown gives a set of trapezia. 

The sum of the areas of these trapezia then gives an approximate value

for  ∫
a

b

 f(x) dx

y

xO

Taking n strips at equal intervals along the x-axis so that each strip is the 
same width, d, and labelling the vertical sides (i.e. the ordinates) y0, y1, ..., yn, 

then the area of the fi rst strip is  12 d (y0  y1), 

the area of the second strip is  12 d (y1  y2), and so on.

y

xO

d
(y

0


 y
1
)

1 2

d
(y

1


 y
2
)

1 2

d(
 y

 n
 

 2


 y
 n

 
 1

 )
1 2

d
(y

n
 

 1


 y
n
)

1 2

y

yn

xO

yn  1yn  2y2y1y0

d d d d

The sum of the areas of all the strips is given by

1
2 d (y0  y1) 

1
2 d (y1  y2)  …  1

2 d (yn  2  yn  1) 
1
2 d (yn  1  yn)


1
2 d (y0  2y1  2y2 …  2yn  2  2yn  1  yn)

∴∴ ∫
a

b

f(x) dx 
1_
2

d (y0  2y1  2y2 …  2yn 2  2yn 1  yn)

Learning outcomes

 To derive and use the trapezium 

rule to fi nd an approximate value 

for the area between a curve, the 

x-axis and two values of x

You need to know

 How to fi nd the area of a 

trapezium

 The meaning of the word 

ordinate

 The shape of the graphs of 

simple functions

 How to use integration by parts
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This formula is called the trapezium rule. 
It is easy to remember this formula in words as 

half the width of a strip  (fi rst  last  twice all the other) ordinates.

Note that there is one more ordinate than the number of strips.

Note also that the approximation gets better when the width of the strips, 
i.e. the value of d, gets smaller. 

Example

(a) Find an approximate value for  ∫
1

6

x3 dx  using the trapezium rule with 
fi ve intervals.

(b) Use a sketch to determine whether your answer is an over-estimate 
or an under-estimate.

(a) ∫
1

6

x3 dx represents the area between y  x3, the x-axis and the

 ordinates x  1 and x  6

There are fi ve units between x  1 to x  6 so we take our fi ve 
intervals as one unit wide, i.e. d  1

 This gives six ordinates:  y0  13
 1,  y2  23

 8,  y3  27,  
y4  64,  y5  125,  y6  216

 The trapezium rule gives

∫
1

6

x3 dx 
1
2 (1  216  2(8  27  64  125) )  332.5

(b) The sketch shows that the area of each trapezium is greater than 
the area under that part of the curve.

Therefore 332.5 is an over-estimate for the value of   ∫
1

6

x3 dx

Alternatively,  ∫
1

6

x3 dx  [14 x4 ]
1

6
 323.75 

This is the exact value of the area, confi rming that 332.5
is an over-estimate.

y

xO 1 2 3 4 5 6 7

50

100

150

200

Exercise 1.25

1 (a) Use the trapezium rule with fi ve intervals to fi nd an approximate

  value for  ∫
1

2
1__
x2 dx

(b) Sketch the graph showing the area represented by  ∫
1

2
1__
x2 dx

2 (a) Use the trapezium rule with fi ve intervals to fi nd an approximate

  value for  ∫
0

1_
2

 (1  x2) 
1_
2 dx

(b) Find the exact value of   ∫
0

1_
2

 (1  x2) 
1_
2 dx

(c) Use your answers to (a) and (b) to fi nd an approximate value for .



Section 1 Practice questions

64

1 A quadratic equation with real coeffi cients has 
one root equal to 3  2i

Write down

(a) the other root of the equation

(b) the equation.

2 (a) Simplify  2  i______
3  2i


1  2i______
3  2i

(b) If x  y  i(a  b) for real values of x, y, a
and b, write down two relationships between 
x, y, a and b.

 3 Find the values of a and b where z  a ib such 
that 

2iz  z*(2  i)  2z  2i

4 (a) Find the square roots of 11  60i

(b) Hence fi nd the roots of the equation

x2  (4  i)x  (1  17i)  0

 5 You are given that z  1  i

(a) Express z in the form r(cos   i sin )

(b) Find the modulus and argument of z2

(c) Illustrate z and z2 and z  z2 in an Argand 
diagram.

 6 You are given that z 
√

___

15  ____
2


√

__

5  ___
2

 i

(a) Express z in the form r(cos   i sin )

(b) Hence fi nd the two square roots of z.

 7 Solve the simultaneous equations

 z  (2  i)w  5  i

 (2  i)z  3w  3  i

 8 (a) Using the binomial theorem or otherwise, 
expand (cos   i sin )3

(b) Hence express 
(i) cos 3 in terms of cos 

(ii) sin 3 in terms of sin 

 9 (a) Describe the locus of points satisfi ed by  
(i) |z  4|  |z  6|    (ii) |z  1|  6

(b) Hence fi nd in the form a  ib the values of z
which satisfy the simultaneous equations 

|z  4|  |z  6|  and  |z  1|  6

 10 Find the smallest positive value of x for which 
y  ex sin x has a stationary value and determine 
the nature of that stationary value.

 11 Determine the number and nature of stationary 
points on the curve whose equation is 

y  ln  ( 2x______
x2  1 )

 12 The parametric equations of a curve are 

x  et, y  t

(a) (i) Find in terms of t the equation of the 
tangent to the curve at the point (et, t).

(ii) Hence fi nd the equation of the tangent to 
the curve at the point where t  2

(b) (i) Find the Cartesian equation of the curve.

(ii) Use the Cartesian equation to fi nd the 
equation of the tangent to the curve at the 
point where x  e2

 13 Given that y  ey sin x show that

dy___
dx


ey cos x_______
1  y

Hence fi nd a relationship between  
d2y____
dx2 ,  

dy___
dx

 and y.

 14 The parametric equations of a curve are 
x  12t2, y  3t

Find  
dy___
dx

  and  
d2y____
dx2  in terms of t.

 15 Find the derivatives of  

(a) x3xex

(b) sin1 (3x  2)

(c) x tan1 (2x)

 16 Given that z  x2  xy  y2,  fi nd  
  z___
  x

  and   
  z___
  y

Hence show that  (  z___
  x )2

 (  z___
  y )

2
 5z  3xy

17 Given that z  sin1 ( x__
y ), 

fi nd   
  z___
  x

 ,  
  z___
  y

  and   
 2z_____

  x  y
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 18 Evaluate  

(a) ∫
0



4
 ecos 2x sin 2x dx

(b) ∫
0

1
1  2e2x________
x  e2x  dx

 19 Express   x  1______________
(x  2)(x2

 1)
  in partial fractions.

Hence fi nd  
dy___
dx

  when y  x  1______________
(x  2)(x2

 1)

 20 Express   
3x2  6x  2_______________

(2x  1)(x  1)2  in partial fractions.

Hence evaluate  ∫
1

0
3x2  6x  2_______________

(2x  1)(x  1)2 dx

21 Find

(a) ∫ sin3 x dx

(b) ∫ sin 5x cos 3x dx

(c) ∫ cos4 x dx

 22 (a) Use the substitution u  ex to fi nd 

∫ ex_______
e2x

 1
 dx

(b) Hence or otherwise fi nd  ∫
0

1
ex_______

e2x
 1

 dx

 23 Use the substitution u  2x  to evaluate  ∫
1

2

 2x dx

 24 Find  

(a) ∫ xex dx

(b) ∫ ex cos x dx

(c) ∫ x sec2 x dx

 25 Find  

(a) ∫ e2x sin x dx

(b) ∫ 2x log2 x dx

 26 Show that 

2 cos x____________
cos x  sin x

 1 
cos x  sin x____________
cos x  sin x

Hence evaluate   ∫
0



2 2 cos x____________
cos x  sin x

 dx

27 (a) Given In  ∫ xne2x dx show that

In 
1__
2

xne2x n__
2

In  1

(b) Hence fi nd ∫ x3e2x dx

 28 (a) If  In  ∫
0



6
 secn x dx  show that 

In 
2n  2_____________

√3  
n  1

(n  1)


n  2______
n  1

In  2  for n  2

(b) Hence evaluate   ∫
0



6
 sec4 x dx

 29 (a) Use the trapezium rule with three intervals to

fi nd an approximate value for  ∫
0

1
1______

1  x2 dx

(b) Find the exact value of   ∫
0

1
1______

1  x2 dx  and

use it to determine whether your answer to 
part (a) is an over-estimate or an under-
estimate. 

 30 y

x2 O

0.5

1

1.5

0.5

(a) The diagram shows the area between the 

curve y  x2______
1  x2 , the x-axis and the

ordinates x  2 and x  2

Use the trapezium rule with four intervals to 
fi nd an approximate value for this area.

(b) Use the diagram to explain why it is diffi cult 
to judge whether your answer is an over-
estimate or an under-estimate.

(c) Find the exact value of  ∫
2

2
x2______

1  x2 dx
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Sequences
A sequence is an ordered list of terms. There is a fi rst term, a second 
term, and so on.

A sequence can have a fi nite number of terms or an infi nite number of 
terms.

We denote the terms of a sequence as u1 , u2 , …, u
n 
, … where u

n
 is the 

nth term.

(The notation a1 , a2 , …, a
n 
, … is also used.)

When u
n
 is a function of n, we can use this to fi nd a specifi c term. 

For example, if the nth term of a sequence is given by u
n

 2n  1 then 
we can fi nd a specifi c term by replacing n by the number of that term,

i.e. the fi rst term is given by replacing n by 1, so  u1  21  1  1 similarly,

u2  22  1  3,  u5  25  1  31,  u10  210  1  1023, and so on.

Recurrence relations
Sometimes the terms of a sequence are related by a recurrence relation. 
This is an equation which connects the nth term to previous terms, for 
example,  u

n
 2u

n  1  3  or  u
n

 u
n  1  u

n  2. A recurrence relation 
on its own is not enough to defi ne a sequence; we need to know the value 
of at least one term.

When u
n

 2u
n  1  3, if we know the fi rst term we can generate the 

sequence:

if u1  2, the recurrence relation tells us that each term is twice the 
previous term plus 3,

so u2  4  3  7, u3  2u2  3  17, and so on.

So the sequence is 2, 7, 17, 37, 77, …

When u
n

 u
n  1  u

n  2 we need to know the fi rst two terms in order to 
generate the sequence.

If u1  2 and u2  4, then the recurrence relation tells us that each term is 
the sum of the two previous terms, so  u3  4  2  6,  u4  6  4  10, 
and so on.

So the sequence is 2, 4, 6, 10, 16, 26, …

Any sequence where each term is the sum of the two previous terms (like 
the one above) is called a Fibonacci sequence. 

Example

A sequence is given by u1  7 and  u
n  1  2u

n
 1. Show that u

n
 3(2n)  1

 u
n

 3(2n)  1 ⇒ u
n  1  3(2n  1)  1

   2  3(2n)  1  2(u
n

 1)  1  2u
n

 1

and u
n

 3(2n)  1 ⇒ u1  7   (n  1)

This verifi es that the given formula for the nth term gives the fi rst term and the recurrence relation. 

Example

The nth term of a sequence is

given by u
n


n

2
 1_________

2n
2  3n

Find the value of u4

u4 
42

 1___________
2(42)  3(4)


17___
20

2 Sequences, series and approximations

2.1 Sequences

Learning outcomes

 To defi ne a sequence

 To use a formula for the nth 

term or a recurrence relation to 

fi nd a specifi c term of a sequence

 To defi ne arithmetic and 

geometric progressions
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Alternatively

un  1  2un  1 ⇒ un  1  1  2un

⇒ 3(2n  1)  1  1  2un Using  u
n

 1  3(2n  1)  1

⇒ 6(2n)  2  2un

⇒ un  3(2n)  1

Example

The nth term of a sequence is given by un  5n
 1. Find un  1 in terms of un

un  5n
 1 ⇒ un  1  5n  1

 1

   5(5n)  1

   5(5n
 1)  4

   5un  4

Arithmetic progressions

An arithmetic progression (AP) is a sequence where each term differs by a constant from 
the previous term.

For example, 2, 5, 8, 11, 14, … is an arithmetic progression as successive terms differ by 3.

A general AP whose fi rst term is a and where the difference between successive terms is d
(called the common difference) can be written as  a, a  d, a  2d, a  3d, … 

The recurrence relation that gives an AP is un  un  1  d

We can see that the nth term is given by un  a  (n  1)d

Geometric progressions

A geometric progression (GP) is a sequence where each term is a constant multiple of the 
previous term.

For example, 64, 32, 16, 8, 4,  2, … is a GP as each term is 1
2 the previous term.

A general GP whose fi rst term is a and where each term is the previous term multiplied by r
(called the common ratio) can be written as  a, ar, ar2, ar3, …

The recurrence relation that gives a GP is un  run  1

We can see that the nth term is given by un  arn  1

You need to be able to recognise an AP or a GP from a recurrence relation or from a 
formula for the nth term.

Exercise 2.1

1 State which of the following sequences are APs 
and which are GPs and in each case determine the 
10th term.  

(a) 5, 3, 1, 1, … 

(b) 1,  12 ,  14,  18 , …   

(c) 1, 1, 1, 1, 1, …

(d) 1,  12 , 0, 1
2 , 1, …

2 A sequence is defi ned by u1  10 and the 
recurrence relation un  1  un  3
Find a formula for un in terms of n

3 The nth term of a sequence is given by un  5n  4 
Find an equation giving un  1 in terms of un.  

4 The nth term of a sequence is given by 
un  3  2n n. Find the value of the 10th term.
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2.2 Convergence and divergence of sequences

Convergent sequences

Consider the sequence  1, 1 12 , 1 14 , 1 18 , 1 1__
16 , … 

The nth term of this sequence is given by u
n

 1  1___
2n

Now as n increases,  1___
2n

→ 0, so u
n

→ 1,  i.e.    lim
n → ∞

(u
n
)  1

So the terms of this sequence converge to the value 1, and the series is 
said to be convergent

A sequence is convergent if the nth term is such that   lim
n→ ∞→ ∞

 (un)  c
where c is a fi nite constant.

Divergent sequences

Consider the sequence  1, 3, 5, 7, 9, …

The nth term of this sequence is given by u
n

 2n  1 and, as n
increases, 2n  1 increases so    lim

n → ∞
(u

n
)  ∞. This sequence does not

converge, the terms diverge and the sequence is said to be divergent. 

A sequence that is not convergent is divergent.

Example

Determine whether the sequence whose nth term is  4n
2  1_____________

5n
2

 2n  1
converges or diverges.

4n
2  1_____________

5n
2

 2n  1


4 1___
n

2___________

5 
2__
n

1___
n

2

  By dividing both numerator and 

denominator by n2

∴ lim
n → ∞

4n
2  1_____________

5n
2

 2n  1
   lim

n → ∞

4 1___
n

2___________

5 
2__
n

1___
n

2


4__
5

Therefore the sequence converges.

Alternating sequences

When the terms in a sequence alternate between positive and negative, 
we have an alternating sequence.

For example, 1, 1, 1, 1, 1, … and 0.5, 0.05, 0.005, 0.0005, … are 
alternating sequences.

An alternating sequence may be convergent or divergent.

The nth term of 1, 1, 1, 1, 1, … is given by u
n

 ( 1)n  1 and

 lim
n → ∞

 (u
n
) does not exist, so this sequence is divergent.

The nth term of 0.5, 0.05, 0.005, 0.0005, … is given by 

u
n


1
2 (101 n)( 1)n  1 and   lim

n → ∞
 (u

n
)  0 so this sequence is convergent.

Note that a negative number to a power involving a multiple of n will 
alternate between positive and negative values.

Learning outcomes

 To describe the behaviour 

of convergent and divergent 

sequences

 To defi ne alternate, periodic and 

oscillating sequences

You need to know

 How to fi nd a limit of a function 

of n as n → ∞

 The limit theorems

 How to express an improper 

fraction as the sum of a 

polynomial and a proper fraction
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Periodic sequences

When the terms of a sequence form a repeating pattern, the sequence is 
called periodic. For example, 1, 2, 3, 1, 2, 3, 1, 2, 3, … is periodic.

A periodic sequence may also be alternating, for example, 1, 1, 1, 1, 1, … 

Periodic sequences are not convergent.

Oscillating sequences

The terms in an oscillating sequence move between higher and lower values.

Examples of oscillating sequences are  

(a)  1, 1, 1, 1, …    (b)  1, 2, 3, 1, 2, 3, …   

(c)  1, 0, 2, 0, 3, 0, …  (d)  5, 5, 6, 6, 7, 7, …

An oscillating sequence may be an alternating sequence as in (a) and (d),
or an oscillating sequence may be a periodic sequence as in (a) and (b)

Oscillating sequences are not convergent.

u
n

n

u
n

n

u
n

n

A periodic sequence
(also oscillating)

An alternating sequence
(also convergent)

An oscillating sequence

Exercise 2.2

1 Determine which of the following sequences, 
whose nth term is given, converges.

(a)
n  1_______
n2
 1

(b)
2n2

 1________
n2
 1

(c)
n3
 1_______

n2
 1

(d) ( 1)n

2 Determine whether each of the following 
sequences is alternating, periodic, oscillating or 
none of these.  

(a) u1  1, u2  1 and un 2  un 1  2un

(b) un  cos n (c) un  sin  
n___
2

Note that the nth term of an arithmetic progression is un  a  (n 1)d  so    lim
n → ∞

 (un)  ∞

Therefore all arithmetic progressions are divergent.

The nth term of a geometric progression is un  ar n  1 and    lim
n → ∞

 (un) depends on the value of r.  

If  1  r  1, r n  1 → 0 as n → ∞ so   lim
n → ∞

 (un)  0  and the sequence is convergent.

Example

Determine whether the sequence whose nth term is given by  un  5 ( 1
3 )n 1

 is alternating, periodic, 
oscillating or none of these.

 lim
n → ∞

 (un)  5, so the sequence converges and so is neither periodic nor oscillating.

( 1
3 )n 1

 alternates in sign, but  ⎥( 1
3 )n 1⎥  1 therefore  5 ( 1

3 )n 1
 is always positive. 

Therefore the sequence is not alternating.
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Series

A series is the sum of the terms of a sequence.

For example,  1  2  3  4  … is a series.

When the terms are real numbers the series is called a number series

We use ur to denote a general term of a series.

Example

Find the rth term of the series  1_____
(2)(3)


2_____

(3)(4)


3_____
(4)(5)

 …

The numerator of each term is equal to the term number, r, and the 
denominator is the product of r  1 and r  2

Therefore  ur 
r____________

(r  1)(r  2)

Check to see that the answer does give the fi rst 3 terms.

The sum of the fi rst n terms of a series

The nth term of the series 1  2  3  4  … is n.  

The sum of the fi rst n terms is  1  2  3  …  (n  1)  n

We can write this more briefl y using ∑ to mean ‘the sum of ’.

Taking the rth term as a general term (i.e. any term between the fi rst and 
nth term),

then   ∑
r = 1

r = n

r means the sum of all the values of r from r  1 to r  n

i.e.   ∑
r = 1

r = n

r  1  2  3  …  (n  1)  n

Similarly   ∑
r = 1

r = n
1_____

r  1

means   1__
2


1__
3


1__
4

 …  1_____
n  1

The sum of the fi rst n terms of an arithmetic progression

Any AP has the form a, a  d, a  2d,  a  3d, …  where the rth term is
a  (r  1)d

The sum of the fi rst n terms is 

∑
r = 1

r = n

 (a  (r  1)d)  a  (a  d)  (a  2d)  …  (a  (n  1)d)

Using Sn ∑
r = 1

r = n

 (a  (r  1)d) we have

Learning outcomes

 To defi ne a number series

 To introduce the ∑ notation

 To use the sum of the fi rst n

terms of a series to fi nd the sum 

to infi nity of the series

 To defi ne convergence and 

divergence of series

You need to know

 The meaning of an arithmetic 

progression and a geometric 

progression

 The general term of an 

arithmetic sequence and of a 

geometric sequence

Exam tip

When you are fi nding a general term 

of a sequence or a series, look for 

a relationship between the term 

number, r, and the numbers in the 

term. Common relationships are 

multiples r, of r  k, multiples of 

r2
 k, where k is a constant.
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Sn  a  (a  d)  (a 2d)  …  (a  (n  1)d) [1]

and (writing the right-hand side in reverse order)

Sn  (a  (n  1)d)  (a  (n  2)d)  (a  (n  3)d)  …  a [2]

Adding [1] and [2] gives   2Sn  n(2a  (n  1)d)

Exam tip

If you do not recognise the form of a 

series, write out the fi rst few terms:

in this example using    ∑
r 1

rm 1

5   (1
3 )

r

with r  1, 2, 3, … gives 

5
3


5___
32 

5___
33  …

Therefore 

Sn 
n__
2

 (2a  (n  1)d

You may quote this formula unless you are asked to derive it.

An alternative version of the formula above is  Sn 
n__
2

 (a  l)  where l is the

last term. This version is derived from [2] where  Sn 
n__
2

 (a  a(n l)d) 

For example, the terms of the series 1  3  5  7  … are an AP, where 
a  1 and d  2

The sum of the fi rst n terms is given by  Sn 
n__
2

 (2  2(n l))  n2

The sum of the fi rst n terms of a geometric progression

Any GP has the form a, ar, ar2, ar3, … , arn  1, …

The sum of the fi rst n terms is given by 

 Sn  a  ar  ar2
 ar3

 …  arn  1 [1]

Now rSn  ar  ar2
 ar3

 …  arn  1
 arn [2]

[1]  [2] gives  Sn(1 r)  a arn

Therefore

Sn 
a(1  rn)_________

1  r

You may also quote this formula unless you are asked to derive it.

Example

Find    ∑
r = 1

rm 1

5 (1__
3 )

r

∑
r = 1

rm 1

5 (1__
3 )

r

  is recognised as the sum of the fi rst m  1 terms of a

GP, with fi rst term  
5__
3

 and common ratio  1__
3

Therefore    ∑
r = 1

rm 1

5 (1__
3 )

r



5
3(1 (13 )

m 1)
______________

1 1
3

  =  
5__
2
(1 (13 )

m 1)
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Example

Given   ∑
r  1

r  n

ur  n(2 n2) fi nd un

∑
r  1

r  n

ur  u1  u2  …  un  1  un and   ∑
r  1

r  n  1

ur  u1  u2  …  un  1

Therefore un  ∑
r  1

r  n

ur ∑
r  1

r  n  1

ur

 n(2 n2)  (n  1) (2  (n  1)2 )

 1  3n  3n2

Exercise 2.3a

1 Find the rth term of the series  

(a)   1__
2


2__
5


3___

10


4___
17

 … 

(b)
1_____

(2)(4)


1_____
(3)(7)


1_______

(4)(10)


1_______
(5)(13)

 …

2 Find the sum of the fi rst n terms of the series

1  1__
2

 0 1__
2

 1 
3__
2

 …

3 Evaluate 

 (a) ∑
r  1

r  5

3 (1__
2 )

r

(b)  ∑
r  1

r  10

3 (1__
2 )

r

Hence fi nd   ∑
r  6

r  10

3 (1__
2 )

r

4 Given  ∑
r  1

r  n

 ur 
3 n______

3  n
, fi nd un in terms of n

5 Given  ∑
r  1

r  n

 ur 
n______

n  1
 , fi nd  ∑

r  10

r  20

 ur

The sum to infi nity of a series

The sum of the fi rst n terms of a series is given by  ∑
r  1

r  n

 ur  1  1__

n

As  n → ∞, 1  1__

n
→ 1 so the sum of the terms of this series converges to 1.

This is called the sum to infi nity of the series. 

A series is convergent when the sum to infi nity (i.e.   lim
n → ∞→ ∞ (∑

r 1

rn

ur) )
is a fi nite constant.

If   ∑
r  1

r  n

ur  n2
 1, then as n → ∞, n2

 1 → ∞ so   lim
n → ∞ (∑

r  1

r  n

 ur)
is not a fi nite constant and the series diverges.

Section 2 Sequences, series and approximations
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A series that does not converge is called a divergent series.

Clearly any series, u1  u2  u3  …, where the terms do not approach 
zero as n increases, will diverge as the sum of the fi rst n terms will 
continue to increase.

Therefore a necessary (but not suffi cient) condition for a series to 
converge is that the nth term approaches zero as n approaches infi nity.

Arithmetic progressions and geometric progressions

The sum of the fi rst n terms of an AP is  n__
2

(2a  (n  1) d ) and it is clear 
that this sum diverges as n → ∞

Therefore the sum of an AP always diverges.

The sum of the fi rst n terms of a GP is  
a(1 rn)________

1 r
 where a is the fi rst term 

and r is the common ratio.

Whether    lim
n → ∞

(a(1 rn)________
1 r )  is a constant depends on the value of r:

If  |r|  1, rn → ∞  as  n → ∞  so   
a(1 rn)________

1 r
→ ∞  and the series diverges.

If  r  1,  1 r  0 so   
a(1 rn)________

1 r
  is meaningless.

If  |r|  1,  rn → 0 as  n → ∞ so   
a(1 rn)________

1 r
→

a_____
1 r

 and the series 
converges.

Therefore, provided that |r|  1, the sum to infi nity of a GP is  
a______

1  r

Example

Show that the series   1__
3


1___
33 

1___
35 

1___
37  … is geometric and fi nd the

sum to infi nity of this series.

u1 
1__
3

 ,  u2  u1  ( 1___
32 ),  u3  u2  ( 1___

32 )  and so on. Therefore each

term is  1___
32 times the previous term, so the series is geometric with fi rst

term  1__
3

 and common ratio  1___
32 (1).

So the sum to infi nity is   

1
3______

1 1__
32


3__
8

Exercise 2.3b

1 Sn is the sum of the fi rst n terms of a series. Determine whether the 
series is convergent, and if it is, give the sum to infi nity when

(a) Sn 
2n______

n  1
(b) Sn 

n2______
n  1

(c) Sn  2n

2 (a) Show that the series   1__
2


1__
6


1___

18


1___
54

 …  is geometric.

(b) Find the sum of the fi rst n terms of the series in (a) and hence fi nd 
the sum to infi nity. 
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2.4 Method of differences

Finding the sum of the fi rst n terms of a series

We have found the sum of the fi rst n terms of a series whose terms are 
in arithmetic progression and a series whose terms are in geometric 
progression. There is no general method that will give the sum of the fi rst 
n terms of any series, but there are methods that work for some types of 
series.

Method of differences

This method works with a series whose general term can be expressed as 
f(r  1)  f(r), because most of the terms cancel when they are listed.

Consider the series   1______
1  2


1______

2  3


1______
3  4

 …  1_______
r(r  1)

 …

So  ur 
1_______

r(r  1)
  and we use partial fractions to express this as two 

separate fractions:

1_______

r(r  1)


A__

r


B_____

r  1
⇒ 1  A(r  1)  Br

r  0 ⇒ A  1    and    r  1 ⇒ B  1

∴
1_______

r(r  1)


1__

r
1_____

r  1

Hence   ∑
r  1

r  n

 ur ∑
r  1

r  n

(1__

r
1_____

r  1 )

We now list the terms vertically (this makes it easier to see the terms that 
cancel):

∑
r  1

r  n

(1__

r
1_____

r  1 ) 
1__
1

 
1__

3

 
1__

4

 
1__ 1∴∴

 … …

 
1______
 1 n

 
1 1______

n  1
 1 1______

n  1


n______

n  1

∴ ∑
r  1

n
1_______

r(r  1)


n______

n  1

Learning outcomes

 To use the method of differences 

to fi nd the sum of the fi rst n

terms of a number series

You need to know

 How to decompose a rational 

function into partial fractions

Exam tip

You need to list enough terms at the 

start and at the end so that you can 

clearly see the pattern of cancelling.
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Example

(a) Express   
1____________

(r  1)(r  2)
  in partial fractions.

(b) Hence fi nd  ∑
r  3

r  n
1____________

(r  1)(r  2)

(c) Deduce the sum to infi nity of the series

1______
2  1


1______

3  2


1______
4  3

 … 

(a)
1____________

(r  1)(r  2)


A_____

r  1


B_____

r  2
⇒ 1  A(r  2)  B(r  1) 

r  1 ⇒ A  1   and   r  2 ⇒ B  1

∴
1____________

(r  1)(r  2)
 

1_____

r  1


1_____

r  2

(b) Note that the fi rst term of this series is given by r  3, 

so   
1____________

(r  1)(r  2)
  is the (r  2)th term.

∑
r  3

r  n
1____________

(r  1)(r  2)
∑

r  3

r  n

( 1_____
r  1


1_____

r  2 )  
2


1__
1

 
__
3


1

 
1


1

 …  …

 
n


n

 
1______

n  1


1
n

 1 1______
n  1


n  2______
n  1

(c) Sum to infi nity   lim
n→∞

 (the sum of the terms up to r  n) 

  lim
n→∞ (1 1______

n  1 )  1

Exercise 2.4

1 (a) Express   
1____________

(r  1)(r  1)
  in partial fractions.

(b) Hence fi nd   ∑
r  2

r  n
1____________

(r  1)(r  1)

(c) Deduce the sum to infi nity of the series  

1______
1  3


1______

2  4


1______
3  5

 …

2 Express   1_____________
r(r  1)(r  2)

  in partial fractions and hence fi nd  

∑
r  1

r  n

( 1_____________

r(r  1)(r  2) )



76

2.5 Proving properties of sequences and series

A formula for the nth term of a sequence

When a sequence is defi ned by a recurrence relation, we may be able to 
deduce a formula for the nth term that works for the fi rst few terms, but 
we need to prove that it works for all the terms. We can do this using 
proof by induction.

Example

A sequence of positive integers, {Un}, is defi ned by U1  1 and 
3Un 1  2Un  1

Prove by mathematical induction that  Un  3 (2__
3 )

n

 1

Let Pn be the statement  Un  3 (2__
3 )

n

 1

Now P1 is  U1  3 (2__
3 )

1

 1  1, which is true. 

Assume that Pn is true when n  k, i.e. that  Uk  3 (2__
3 )

k

 1

Using the recurrence relation gives  

 3Uk 1  2 (3 (2__
3 )

k

 1 )  1

⇒ Uk 1 
2__
3 (3 (2__

3 )
k

 1 ) 1__
3
 3 (2__

3 )
k 1

 1 

Therefore if Pk is true, Pk 1 is also true.

As Pk is true when  k  1, then it is true when k  2, 3, 4, …, n

Therefore  Un  3 (2__
3 )

n

 1  is true for all n  

A formula for the sum of the fi rst n terms of a series

It is not always possible to fi nd the sum of the fi rst n terms of a given 
series. We may be able to deduce a formula that works for the fi rst few 
terms, but we need to prove that it works for all the terms. We can do 
this using proof by induction.

Consider, for example, the series 12
 22

 32
 42

 …  n2
 …

Now when r  1, 2, 3, 4, …   ∑
r 1

n

r2 gives the sequence 1, 5, 14, 30, …

From this we may be able to deduce that  ∑
r 1

n

r2


n__
6

 (n  1)(2n  1) is

true for n  1, 2, 3, 4 

Example

Prove by mathematical induction that  ∑
r 1

n

r2


n__
6

 (n  1)(2n  1) for all n  

Let Pn be the statement  ∑
r 1

n

r2


n__
6

 (n  1)(2n  1)

Learning outcomes

 To use proof by induction to 

prove properties of sequences 

and series

You need to know

 How to use proof by induction
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When  n  1, P1 
1__
6

 (2)(3)  1  12,  i.e. P1 is true.

Assume that Pn is true when n  k,  i.e. Pk  ∑
r  1

k

r2


k__
6

 (k  1)(2k  1) [1]

then adding the next term of the series gives Pk  1  ∑
r  1

k  1

r2


k__
6

 (k  1)(2k  1)  (k  1)2

We now aim to simplify the right-hand side so that it becomes [1] with k  1 replacing k

k__
6

 (k  1)(2k  1)  (k  1)2
 (k  1) (k__

6
(2k  1)  (k  1) ) 

(k  1)_______
6

 (k(2k  1)  6(k  1)) 


(k  1)_______

6
 (2k2

 7k  6)

  
(k  1)_______

6
 (k  2)(2k  3)


(k  1)_______

6
 [(k  1)  1][2(k  1)  1]

Therefore if Pk is true, Pk  1 is also true.

As Pk is true when k  1, then it is true when k  2, 3, 4, …, n

Therefore   ∑
r  1

n

r2


n__
6

 (n  1)(2n  1)  is true for all n  

There are some number series whose sums are worth remembering. 
These are:

the sum of the fi rst n natural numbers:   ∑
r  1

n

r 
n__
2

 (n  1)

(This is the sum of the terms of an AP so can be verifi ed using the 
formula derived in Topic 2.3.)

the sum of the squares of the fi rst n natural numbers:

∑
r  1

n

r
2


n__
6

 (n  1)(2n  1)

(This is proved above.)

the sum of the cubes of the fi rst n natural numbers:

∑
r  1

n

r
3


n

2___
4

 (n  1)2

(This can be proved by induction and is part of question 1 in 
Exercise 2.5 below.)

These results can be used to fi nd the sums of series whose general 
term is the sum or difference of ar, ar2 and/or ar3

Exercise 2.5

1 Prove by induction that    

(a)  ∑
r  2

n
1_______

r(r  1)


n  1______
n

(b) ∑
r  1

n

r3


n2___
4

 (n  1)2

2 (a) Find the rth term of the series 1(4)  2(7)  3(10)  4(13)

(b) Prove by induction that the sum of the fi rst n terms of this 
series is n(n  1)2

Example

Find   ∑
r  1

n

r(2r  1)

∑
r  1

n

r(2r  1)  ∑
r  1

n

(2r2
 r)

 2 ∑
r  1

n

r2
 ∑

r  1

n

r

   2 (n__
6

 (n  1)(2n  1) )
 (n__

2
 (n  1) )


n__
6

 (n  1)(4n  5)
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2.6 Power series and Maclaurin’s theorem

Power series

A series whose terms involve increasing or decreasing integral powers of a 
variable is called a power series

For example  2  3x  4x
2  5x

3  ….  and  xn
x

n – 1  x
n  2

…  are 
power series.

The factorial notation

There are several occasions when products such as 
1  2  3  4  5  …  40 occur.

There is a shorthand notation for products such as these. 

We denote 1  2  3 by 3! (called 3 factorial). 

6! means the product of all the integers from 1 to 6 inclusive and n! 
means the product of all the integers from 1 to n inclusive,

i.e.  n!  (1)(2)(3) … (n  2)(n  1)(n)

Example

Evaluate   
20!_____

17!3!

20! is the product of the integers from 1 to 20 and 17! is the product 
of the integers from 1 to 17, so we can cancel this product.

∴
20!_____

17!3!


18  19  20_____________
3  2  1

 3  19  20  1140

Exercise 2.6a

Evaluate  

1 4! 2 5! 3
5!__
3!

4
9!____

3!6!
5

3  4______
5!

Maclaurin’s theorem

If we assume that a function of x, f(x), can be expanded as a series of 
ascending powers of x and that this series can be differentiated term by 
term, then

f(x)  a0  a1x  a2x
2  a3x

3  a4x
4  …  a

r 
x

r  … [1]

where a0, a1, a2, … are constants.

Substituting 0 for x in [1] gives  f(0)  a0, i.e. a0  f(0)

Differentiating [1] with respect to x gives

f(x)  a1  2a2x  3a3x
2  4a4x

3  5a5x
4  … [2]

Substituting 0 for x in [2] gives  f(0)  a1, i.e. a1  f(0)

Learning outcomes

 To defi ne a power series

 To introduce the factorial 
notation

 To derive and use Maclaurin’s 
theorem to expand functions as 
a power series

You need to know

 How to differentiate simple 
functions

 How to differentiate products of 
functions

 The values of the trig ratios for 
multiples (including fractional) 
of 
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Differentiating [2] with respect to x gives

f (x)  2a2  (2)(3)a3x  (3)(4)a4x
2  (4)(5)a5 x

3  … [3]

Substituting 0 for x in [3] gives  f (0)  2a2, i.e. a2 
f (0)_____
2!

Differentiating [3] with respect to x gives

f (x)  (2)(3)a3  (2)(3)(4)a4x  (3)(4)(5)a5 x
2  … [4]

Substituting 0 for x in [4] gives  f (0)  (2)(3)a3, i.e. a3 
f (0)_____

3!

After differentiating r times we get

f r(x)  (2)(3)(4)…(r  1)(r)a
r

 (2)(3)…(r  1)a
r1x  … 

Substituting 0 for x gives  f r(0)  r!a
r
 i.e.  a

r


f r(0)_____
r!

Substituting these values for a1, … in [1] gives

 f(x)  f(0)  f(0)x 
f (0)_____
2!

x2 
f(0)_____

3!
x3  … 

f r(0)_____
r!

xr  … 

   ∑
n  0

∞  ∞ f n(0)x n
_______

n!

This is called Maclaurin’s theorem and you need to learn it.

The series can be found if the nth derivative of f(x) exists when x  0 
for all values of n. For the series expansion to equal f(x), the series must 
converge to f(x).

Some series converge to f(x) for all values of x and some converge for a 
limited range of values of x. In the following examples, the values of x for 
which the series converges is given but without proof.

Example

Use Maclaurin’s theorem to fi nd the power series expansion of f(x)  ex

Using f(x)  f(0)  f(0)x 
f (0)_____
2!

x
2 

f(0)_____
3!

x
3  … 

f r(0)____
r!

x
r  …

gives   f(x)  ex so f(0)  e0  1

 f(x)  ex so f(0)  e0  1

 f (x)  ex so f (0)  e0  1

 f(x)  ex so f(0)  e0  1

 …

 f r(x)  ex so f r(0)  e0  1 

Therefore  ex  1  x 
x

2__
2!


x

3__
3!


x

4__
4!

 …  x
 r__

r!
 … 

This series converges for all values of x
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Example

Use Maclaurin’s theorem to fi nd the power series expansion of f(x)  cos x

Using f(x)  f(0)  f(0)x 
f (0)_____
2!

x2 
f(0)_____
3!

x3  … 
f r(0)____

r!
xr  …

gives   f(x)  cos x so f(0)  cos 0  1

 f(x)  sin x so f(0)  sin 0  0

 f (x)  cos x so f (0)  cos 0  1

 f(x)  sin x so f(0)  sin 0  0

 f (x)  cos x so f (0)  cos 0  1

Therefore  cos x  1  (0)x x2__
2!


(0)x3
_____

3!


x4__
4!

 …  

We can see that values cycle from 1 to 0 to 1 to 0 to 1 again and so 
the series involves only even powers of x. Therefore the general term 

has the form  x2r____
(2r)!

; when r is odd the term is negative, and when r is

even the term is positive. We can show this using ( 1)r,

i.e.  cos x   1 x2__
2!


x4__
4!

 …  ( 1)r x2r___
2r!

 …

This series converges for all values of x

Example

Use Maclaurin’s theorem to fi nd the series expansion of f(x)  ln (1 x)

Using f(x)  f(0)  f(0)x 
f (0)_____
2!

x2 
f(0)_____
3!

x3  … 
f r(0)____

r!
xr  …

gives   f(x)  ln (1  x) so f(0)  ln 1  0

 f(x) 
1_____

1 x
  so f(0)  1

 f (x)  
1_______

(1 x)2 so f (0)  1

 f(x)  
2_______

(1 x)3 so f(0)  2

 f (x)  
2  3_______

(1 x)4 so f (0)  2  3  3!

Therefore  ln (1  x)  0  x
x2__
2!


2x3____
3!

3!x4____
4!

 …  and the general 
term has the form


(r  1)!xr
_________

r!
 

xr
__

r

This term is positive when r is negative and vice-versa, which we can 
show using ( 1)r  1

⇒ ln (1  x)  x
x2__
2


x3__
3

x4__
4

 …  ( 1)r  1 xr
__

r
 …

This series converges for 1  x  1

Note that it is not possible to use Maclaurin’s theorem to expand 
f(x)  ln x because f(0)  ln 0 and ln 0 is undefi ned.

Section 2 Sequences, series and approximations
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Standard expansions

These are the series you are expected to know:

 ex  1  x 
x2__
2!


x3__
3!


x4__
4!

 …  xr__

r!
 … for all values of x

 cos x  1 x2__
2!


x4__
4!

 …  ( 1)r x2r___
2r!

 … for all values of x

 sin x  x
x3__
3!


x5__
5!

 …  ( 1)r x2r  1________
(2r  1)!

 … for all values of x

ln (1  x)  x
x2__
2


x3__
3

x4__
4

 …  ( 1)r  1 xr__

r
 … for 1  x  1

ln (1 x)   x
x2__
2

x3__
3

x4__
4

 …  ( 1)r  1 xr__

r
 … for 1  x  1

Example

Expand ex sin 2x as a power series as far as the term in x3

Using the standard expansions for ex and sin x as far as the term in x3 gives

ex  1  x 
x2__
2!


x3__
3!

 …  and  sin 2x  (2x) 
(2x)3
_____

3!
 … Replacing x with 2x

∴ ex sin 2x  (1  x 
x2__
2!


x3__
3!

 … ) (2x
4x3____
3

 … )
Multiplying the brackets and ignoring any terms involving powers of x greater than 3 gives 

ex sin 2x  2x
x3__
3

 2x2  …  2x  2x2 x3__
3

 … 

The series found so far have been infi nite, but some series terminate. 
For example, using Maclaurin’s theorem to expand (1  x)4 gives

f(x)  f(0)  f(0)x 
f (0)_____
2!

x2 
f(0)_____

3!
x3  … 

f r(0)____
r!

xr  …

 f(x)  (1  x)4, f(x)  4(1  x)3, f (x)  12(1  x)2, f(x)  24(1  x), f (x)  24

so f(0)  1, f(0)  4, f (0)  12, f(0)  24, f (0)  24

All further differentials are 0, so the series terminates.

∴ (1  x)4  1  4x 
12___
2!

x2 
24___
3!

x3 
24___
4!

x4

i.e.  (1  x)4  1  4x  6x2  4x3  x4

Note that there are easier ways to expand functions of the form (1  x)n which we will look at later in this section.

Exercise 2.6b

Use Maclaurin’s theorem to expand each of the 
following functions as far as the term in x4 and give 
the range of values of x for which they are valid.

1 f(x)  e x 2 tan 2x

3 ln (1  3x) 4 ex cos x

5 (a) Use Maclaurin’s theorem to show that 

  (1 x) 1  1  x  x2  x3  x4  x5  …

(b) Write down un and un1 where un and un1 are 
the nth and (n1)th terms respectively of this 
series.

 Hence fi nd a recurrence relation between un

and un1

(c) Use the recurrence relation to show that the 
series is geometric and hence verify that the 
series converges to (1 x) 1, stating the range 
of values for which this is true.  
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2.7 Applications of Maclaurin’s theorem

Euler’s formula

We introduced the formula ei  cos   i sin  in Topic 1.7.

We can now use the Maclaurin expansions of cos  and sin  to prove it:

 cos   1 
2__
2!


4__
4!

 …  ( 1)r
2r___
2r!

 …

and sin   
3__
3!


5__
5!

 … ( 1)r
2r  1________

(2r  1)!
 …

∴ cos   i sin   1  i
2__
2!

i3___
3!


4__
4!


i5___
5!

 …

Now replacing x with i in the expansion of ex gives

 ei  1  i 
(i)2
____
2!


(i)3
____
3!


(i)4
____
4!


(i)5
____
5!

 …

   1  i
2__
2!

i3___
3!


4__
4!


i5___
5!

 … 

 cos   i sin  

Expanding a composite function

To expand a function such as f(x)  esin x we start with the expansion of ex

and replace x with sin x. We can then replace sin x by its series expansion.

By terminating the series we can fi nd a polynomial that is an 
approximation for the function.

Example  

Find a quadratic function that is an approximation for esin x

esin x  1  sin x 
(sin x)2
_______

2!


(sin x)3
_______

3!
 … 

Now sin x  x
x

3__
3!

 … so we can replace sin x with its expansion.

∴ esin x  1  (x x
3__

3!
 … ) 

(x x
3__

3!
 … )2

______________
2!



(x x
3__

3!
 … )3

______________
3!

 …

To fi nd a quadratic function we can ignore all terms containing powers 
of x greater than 2.

Now   (x x
3__

3!
 … )2

 x
2 2x

4____
3!

  higher powers of x

(and we ignore the x4 term).

And   (x x
3__

3!
 … )3

 x
3   higher powers of x

so we can ignore this term and further terms.

Learning outcomes

 To prove Euler’s formula

 To use Maclaurin’s theorem to 
expand further functions and fi nd 
approximations

You need to know

 How to evaluate powers of i
(i.e.  √

___

1  )

 The standard Maclaurin series

 The values of the trig ratios for 
multiples (including fractional) 
of 

 The meaning of a quadratic 
function
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∴  esin x
 1  x 

x2__
2!

 …

⇒ esin x
 1  x 

x2__
2

Using a series expansion of a function to fi nd an 
approximate value of a function

By expanding a function as a Maclaurin series of ascending powers of x, 
we are expressing the function as an infi nite polynomial. We can use the 
fi rst few terms of the polynomial to fi nd an approximate value for the 
function. By adding more terms we can improve on the approximation to 
give a value to as great a degree of accuracy as we choose, provided that 
the series converges for the value of x we use.

For example, we can fi nd an approximate value for cos  
__
4

 by using the 

Maclaurin expansion of cos x which converges for all values of x

Using the fi rst three terms of the series, i.e. cos x  1 x2__
2!


x4__
4!

 …

gives cos  
__
4

 1 
(__
4 )

2

_____
2!



(__
4 )

4

_____
4!

 …

 0.707429…

The calculator gives cos  
__
4

 0.707106… 

so the approximation is correct to 3 decimal places.

Adding more terms will improve the approximation. 

Adding the next term in the series, i.e. 
(__
4 )

6

_____
6!

 gives 

 cos  
__
4

 1 
(__
4 )

2

_____
2!



(__
4 )

4

_____
4!

(__
4 )

6

_____
6!

   0.707102…

and this agrees with the calculator value to 5 decimal places.

Exercise 2.7

1 Expand ln (1  2x2) as a series of ascending powers of x as far as and 
including the term in x4. Give the range of values of x for which the 
expansion is valid.

2 Use the fi rst four terms of a Maclaurin series to fi nd approximate 
values for:

(a) e2

(b) ln 1.1 (i.e. 1  0.1)      

(c) sin  
__
3

3 Write down the fi rst fi ve terms in the Maclaurin series expansion of e x

(a) By substituting 1 for x, fi nd an approximate value for e.

(b) Find the value of the sixth term of the expansion when x  1 and 
hence estimate the accuracy of your approximation.  

Did you know?

The summation of infi nite series 

goes back to the Ancient Greeks. 

Archimedes used the summation 

of an infi nite series to fi nd the area 

under an arc of a parabola. He also 

used a series to fi nd a fairly accurate 

value for .
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2.8 Taylor’s theorem and applications

Taylor’s theorem

We have seen that we cannot expand ln x using Maclaurin’s theorem. 
This problem and others where the Maclaurin series does not give a valid 
expansion can sometimes be overcome by using a Taylor series which 
gives an expansion of f(x) in ascending powers of (x  a),

i.e. f(x)  a0  a1(x – a)  a2(x – a)2  a3(x – a)3  a4(x – a)4  …

The values of a0, a1, a2, … can be found using a method similar to the 
one we used to fi nd the Maclaurin series giving    

f(x)  f(a)  f(a)(x  a) 
f (a)(x  a)2
____________

2!


f(a)(x  a)3
___________

3!
 … 

f r(a)(x  a)r
__________

r!
 …

=  ∑
n  0

∞∞ fn(a)_____
n!

 (x  a)n

This is called Taylor’s theorem and you need to learn it.

You can assume that this series converges for values of x close to a for 
any expansion you are asked to fi nd.

Example

Find the fi rst four terms in the Taylor expansion of ln (x) about a

Using f(x)  f(a)  f(a)(x a) 
f (a)(x a)2
___________

2!


f(a)(x a)3
____________

3!
 …

gives

 f(x)  ln ( x) so f(a)  ln a

 f(x)  1__
x

 so f(a) 
1__
a

 f (x)   
1__
x

2 so f (a)  
1__
a

2

 f(x)  2__
x

3 so f(a)  
2__
a

3

∴ ln x  ln a 
x a______

a

(x a)2
________

2a
2 

(x a)3
________

3a
3  …

Exercise 2.8a

Find the fi rst three terms in the Taylor expansion about a of

1 tan x 2 sin x 3 ex cos x

Learning outcomes

 To derive and use Taylor’s 

theorem

You need to know

 The meaning of a differential 

equation

 How to differentiate an implicit 

function

Did you know?

Maclaurin series are named after 

Colin Maclaurin and Taylor series 

after Brook Taylor, both working in 

the UK in the early 18th century. 

However, several Maclaurin 

series and Taylor’s theorem were 

discovered some decades earlier 

by James Gregory, a Scottish 

mathematician. 
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Using Taylor series to fi nd approximations 

A Taylor series can sometimes be used when either the Maclaurin series 
is not valid or the series converges slowly.

Example

Find the fi rst three terms of the expansion of sin x as a series of

ascending powers of  (x __
4 ). 

Hence fi nd an approximate value of sin 46° given that 1°  0.017 rad.

Using Taylor’s theorem with a 
__
4

 gives

sin x  sin  
__
4
 (cos  

__
4 )(x __

4 )  ( sin  
__
4 )

(x __
4 )2

_________
2!

 …


1___

√2  


x
__
4______

√2  

(x __
4 )2

_________

2 √2  
 ...

Now sin 46°  sin (45°  1°)  sin  (__
4
 0.017 )

so when x  46°, i.e.  (__
4
 0.017 ) rad,  (x __

4 )  0.017

∴ sin 46° 
1___

√2  


0.017______

√2  

(0.017)2
________

2 √2  
 … 

 0.707106…  0.0120208…  0.000102…  0.719025… 

Therefore sin 46°  0.7190

(sin 46°  0.7193 correct to 4 decimal places)

Note that we could use the Maclaurin series to fi nd an approximate 

value for sin  (__
4
 0.017 ) but the terms decrease in value more slowly

(the third term of the expansion of sin  (__
4
 0.017 ) is 0.00277… ) so we

would need more terms to give a reasonable approximation.

Using Taylor series to fi nd polynomial approximations for the 
solution of differential equations

There are some differential equations that cannot be solved to give 
y  f(x), but we can sometimes use Taylor’s theorem to fi nd a polynomial 
that is an approximation for f(x) for values of x close to a given value.  

To do this we need to know a pair of corresponding values of x and y

for an equation involving  
dy___
dx

 and, for an equation involving  
d2y____
dx2 , 

corresponding values of x, y and  
dy___
dx

.

These are called the initial conditions.

Then, stopping the series after a given number of terms, we can often 
approximate the solution for values of x close to a where a is the initial 
value of x. How good the approximation is depends on several things 
such as the number of terms included, how close x is to a, and so on.
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Differential equations are usually given in terms of x, y,  
dy___
dx

,  
d2y____
dx2 , …, so

we use Taylor’s theorem in the form 

y  ya  (dy___
dx

)
a

(x  a)  (d
2y____

dx2 )a

(x  a)2
_______

2!
 (d

3y____
dx3 )a

(x  a)3
_______

3!
 …

where  ya,  (dy___
dx

)
a
, … means the value of y,  

dy___
dx

, … when x  a, where a is 

the initial value of x

We illustrate this with a simple fi rst example.

Example

Find a Taylor series polynomial up to and including the term in x2 to

approximate the solution of  
dy___
dx

 xy for values of x close to 0, given

that y  1 when x  0

We stop the series after the term containing x2, 

i.e. y  ya  (dy___
dx

)
a
 (x a) 

d2y____
dx2

(x a)2
________

2!

The term involving x2 involves  
d2y____
dx2 so we differentiate the given 

differential equation to give an equation containing  
d2y____
dx2

dy___
dx

 xy ⇒
d2y____
dx2 

dy___
dx

 y

a is the initial value of x, so a  0, 

and y  1 when x  0 so ya  1

∴ (dy___
dx

)
a

 (0)(1)  0 ⇒ (d
2y____

dx2 )a
 (0)(0)  1  1

∴ y  ya  (dy___
dx

)
a
 (x a)  (d

2y____
dx2 )a

(x  a)2
_______

2!

gives y  1  x2__
2

The differential equation in the example above has an exact solution, y  e 
1
2x2

Try to judge the accuracy of the approximate solution by fi nding values of

1  x2__
2

  and   e 
1
2x2

  when x  0.01, 0.1, 0.2

Example

The displacement, s metres, of a particle at time t seconds is given by 
the differential equation

d2s___
dt2  2  

ds___
dt

 sin s  0

When t  0, s  0 and  
ds___
dt

 0.5

Find a Taylor series approximation for s in ascending powers of t up to 
and including the term in t3

Section 2 Sequences, series and approximations
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For the term in t3 we need the value of  
d3s___
dt3 so we differentiate the 

given differential equation.

d2s___
dt2  2  

ds___
dt
 sin s  0 [1]

⇒
d3s___
dt3  2  

d2s___
dt2  (cos s)  

ds___
dt
 0 [2]

We use the Taylor series in the form 

s  sa  (ds___
dt

)
a
 (t a)  (d2s___

dt2 )a

(t a)2
_______

2!
 (d3s___

dt3 )a

(t a)3
_______

3!
 …

Using the initial values we have a  0

so sa  0  and   (ds___
dt

)
a
 0.5

Substituting these values in [1] gives

(d2s___
dt2 )a

 2(0.5)  sin 0  0 

⇒ (d2s___
dt2 )a

 1

Substituting these values in [2] gives

(d3s___
dt3 )a

 2( 1)  (cos 0)(0.5)  0 

⇒ (d3s___
dt3 )a


3__
2

Therefore s  0  (0.5)t  (–1)  
t2__
2
 (3__

2 ) t3__
6

⇒ s 
t__
2

t2__
2


t3__
4

Remember that this approximation is only reasonable when t is very 
small (i.e. close to zero).

Exercise 2.8b

1 Find a Taylor series approximation to y in ascending powers of x up to 
and including the term in x3 when x is close to zero, given that

dy___
dx

 2xy  ex

and that y  1 when x  0

Hence fi nd an approximate value of y when x  0.1

2 Use a Taylor series expansion to fi nd a cubic function that is 
approximately equal to y when

d2y____
dx2  (dy___

dx
)

2

given  y  1 and   
dy___
dx

 2  when x  1

Hence fi nd an approximate value of y when x  0.9
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Binomials

A binomial is an expression with two terms, for example,  2  x,  
3x  2y,  s2  5t

In this topic we investigate how to expand powers of binomials as a series.

Pascal’s triangle

We can expand, for example, (a  b)5, by multiplying out the brackets, 
but a quicker method is to use Pascal’s triangle.

First look at these expansions:

(a  b)1 = a + b

(a  b)2 = a2 + 2ab + b2

(a  b)3 = a3 + 3a2b + 3ab2 + b3

(a  b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

Notice that the powers of a and b form a pattern.  

From the expansion of (a  b)4 you can see that the fi rst term is a4 and 
then the power of a decreases by 1 in each succeeding term while the 
power of b increases by 1. In all the terms, the sum of the powers of a
and b is 4. There is a similar pattern in the other expansions.

Now look at just the coeffi cients of the terms. Writing these in a 
triangular array gives:

1

1

4

3

6

3

4

1

1

2

1

1

1

1

1

This array is called Pascal’s triangle and it also has a pattern: 

Each row starts and ends with 1 and each other number is the sum of the 
two numbers in the row above it, as shown. Also, the numbers in each 
row are symmetric about the middle of the row.

You can now write down as many rows as you need. 

For example, to expand (a  b)6, go as far as row 6:

1

1

4

3

6

3

4

1

1

2

1

1

1

1

1

15

10

1

1

6

5

20

10

15

5

6

1

1

2.9 Derivation of the binomial theorem 

for nn  

Learning outcomes

 To introduce Pascal’s triangle

 To derive the binomial theorem 

for n  

 To introduce and use the nCr

notation

You need to know

 Maclaurin’s theorem

 The use of factorial notation
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Using what we know about the pattern of the powers and using row six of 
the array gives

(a  b)6  a6  6a5b  15a4b2  20a3b3  15a2b4  6ab5  b6

The binomial theorem for x  

We can use Pascal’s triangle to expand (a  b)n for any n  , but this 
will clearly be a time-consuming activity for values of n greater than 5. 
However, we can use Maclaurin’s expansion of (1  x)n to get a general 
form for the expansion of (a  b)n for any n  

Using f(x)  (1  x)n, 

 f(x)  n(x  1)n  1,  

 f (x)  n(n  1)(x  1)n  2,   

 f(x)  n(n  1)(n  2)(x  1)n  3, …, 

 f r(x)  n(n  1)…(n  r  1)(x  1)r, …, 

 fn(x)  n(n  1)…(n  (n  1))(x  1)0  n(n  1)…(1)  n!

so all further derivatives of f(x) are zero and the series terminates.

∴  f(0)  1,  f(0)  n,  f (0)  n(n  1),  f(0)  n(n  1)(n  2), …,

 f r(0)  n(n  1)…(n  r  1), …, f n(0)  n!

⇒ (1 + x)n  1 + nx 
n(n  1)________

2!
x2 

n(n  1)(n  2)_______________
3!

x3  … 


n(n  1)…(n  r  1)____________________

r!
xr  …  xn

(Note that  
n!___
n!

 1 )
This expansion can be adapted to give the expansion of (a  b)n, 
but before we do that, we will introduce a simpler notation for the 
coeffi cients of x, x2, … . (These coeffi cients are called the binomial 
coeffi cients.)

The nCr notation

The coeffi cient of x3 in the expansion above is   
n(n  1)(n  2)_______________

3!
, which

we can write using only factorials as   
n!_________

(n  3)!3!

Similarly,   
n(n  1)…(n  r  1)____________________

r!
  can be written as   

n!_________
(n  r)!r!

, which we

denote by nCr, i.e.

nCr 
n!_________

(n  r)!r!

Therefore 4C2 
4!_________

(4  2)!2!


4  3  2  1______________
2  2

 6 

and   8C3 
8!_________

(8  3)!3!


8!_______
5!  3!


8  7  6__________

6
 56 
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Now nCr is the coeffi cient of xr in the expansion of (1  x)n so nCn is the

coeffi cient of xn, which we know is 1, but  nCn 
n!__________

(n n)!n!


n!____
0!n!

.  

To make this equal to 1, we defi ne 0! as 1

0!  1

Example

Show that  nCn  r 
nCr

nCn  r 
n!___________________

(n  (n r))!(n r)!


n!_________
r!(n r)!


n!_________

(n r)!r!


nCr

Example

Find a relationship between n and r given that  nCr 
n  1Cr 1

 nCr 
n!_________

(n r)!r!
 and 

n  1Cr 1 
(n  1)!______________________

(n  1 r  1)!(r  1)!


(n  1)!______________
(n r)!(r  1)!

∴
n!_________

(n r)!r!


(n  1)!______________
(n r)!(r  1)!

Now n!  n(n  1)!  and  r!  r(r  1)!

Cancelling gives i.e.  
n(n  1)!_______________

(n r)! r(r  1)!


(n  1)!______________
(n r)! (r  1)!

n__
r
 1

⇒ n  r

Exercise 2.9a

1 Find the value of n when  nC8 
n  1C7

2 Find the value of n when  5(nC3)  4(n 1C3)

3 Find a relationship between n and r given that  n 1Cr 
nCr 1

The expansion of (a  b)n for n  

We can now write the expansion of (1  x)n as  

nC0 
nC1x 

nC2x
2
 …  nCr x

r
 …  nCn x

n

Then (a  b)n
 an (1 

b__
a
)

n

and replacing x by  
b__
a

 in the expansion above

gives

(a  b)n
 an (nC0 

nC1(b__
a
)  nC2(b__

a
)

2

 …  nCr(b__
a
)

r

 …  nCn(b__
a
)

n

)

Section 2 Sequences, series and approximations
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Multiplying through by an and noting that nC0 
nCn  1 gives

(a  b)n
 an


nC1a

n  1b 
nC2a

n  2b2
 …  nCr a

n  rbr
 …  bn

You need to learn this, but you may fi nd it easier to 
remember in the form

(a  b)n
 an

 nan  1b 
n(n  1)________

2!
an  2b2


n(n  1)(n  2)_______________

3!
an  3b3

 … 
n(n  1)…(n  r  1)_____________________

r!
an  rbr

 …  nabn  1
 bn

Either of these forms confi rms the observations we made from Pascal’s 
triangle, i.e. the sum of the powers of a and b in each term is n and the 
power of a decreases by 1 in each succeeding term while the power of b
increases by 1.

We have shown that nCn  r 
nCr so the coeffi cients are symmetric about 

the centre.

To expand (1  x)10 in ascending powers of x as far as the term in x3 we 
replace n with 10, a with 1 and b with x to give

 (1  x)10
 1(1)10

 10(1)9x 
10  9_______
2  1

 (1)8x2


10  9  8___________
3  2  1

 (1)7x3
 … 

 1  10x  45x2
 120x3

 …

Knowing the properties of the expansion, we can also write down the last 
four terms, i.e.

…  120x7
 45x8

 10x9
 x10

To expand (1  x)8 in descending powers of x as far as the term in x6, we 
can either write (1  x)8 as (x  1)8, then replace n with 8, a with x

and b with 1 to give

 (1  x)8
 1(x)8

 8(x)7(1) 
8  7______

2
 (x)6(1)2 … 

   x8
 8x7

 28x6
 …

or we can expand (1  x)8 in ascending powers and use the symmetry 
property, i.e.

 (1  x)8
 1  8x  28x2

 …  28x6
 8x7

 x8

then reverse to give descending powers of x.

Note that the general term in the expansion of 

(1  x)8 is 8Cr(x)r


8Cr(1)r x r

We look at further expansions using this work in Topic 2.10.

Exercise 2.9b

1 Expand (1  2x)7 in ascending powers of x as far as the term in x3.

2 Find the coeffi cient of the term in x4 in the expansion of (3  x)5
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The expansions of (1  x)n and (1  x)n

(1  x)n
 1  nx 

n(n  1)________
2

x2


n(n  1)(n  2)_______________
3!

x3
 …  xn

and

(1 x)n  1 nx 
n(n  1)________

2
x2


n(n  1)(n  2)_______________
3!

x3
 …  ( 1)n xn

These are the most straightforward binomial expansions and you need 
to recognise the left-hand side when you see it. For example, you should 
recognise 1  3x  3x2

 x3 as the expansion of (1  x)3

Compound interest problems
Suppose $A is deposited in an account that pays interest of  r____

100
 of $A

(where r is the rate % per annum (pa)) and the interest is credited to the
account each year on the anniversary of the deposit. Then, if no 
withdrawals are made, at the end of year 1, the amount in the

account is $A(1  r____
100 )

at the end of year 2, the amount is 

$A(1  r____
100 )  r____

100
  of  $A(1  r____

100 )  $A(1  r____
100 )

2

at the end of year 3, the amount is  

$A(1  r____
100 )

2


r____
100

  of  $A(1  r____
100 )

2
 $A(1  r____

100 )
3

By deduction, the amount at the end of year n is $A(1  r____
100 )

n

This formula is used to calculate compound interest (where the interest 
is added to the capital each year).

For example, if $10 000 is deposited in an account paying 2% pa 
compound interest, then the amount in the account after 4 years is 
$10 000(1  0.02)4

 $10 000(1.02)4

Example

(a) Rachel has a pension that each year increases by 3% of its value the previous year. 
Her initial pension was $3000 when she retired. What was her pension at the end of the 8th year of her 
retirement?

(b) How much in total did Rachel receive in pension payments for the fi rst 8 years of her retirement? 

(a) Pension at the end of the 8th year  $3000(1.03)8
 $3800 (to the nearest $)

(b) Total pension paid for the fi rst 8 years is $3000(1  1.03  1.032
 1.033

 ...  1.038)

The expression in brackets is the sum of the fi rst 8 terms of a GP, with a  1 and r  1.03

 total paid  $3000 
1(1  1.038)____________

1  1.03
 $3000 

1.038  1_________
0.03

 $26 677 (to the nearest $) 

Learning outcomes

 To apply the binomial expansion 
for n  

You need to know

 The expansion of (a b)n for 
n  

 The meaning of compound 
interest

 The sum of the fi rst n terms of a 
geometric progression

2.10 Applications of the binomial expansion 
for nn  
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Expansions using the binomial theorem

The examples that follow illustrate some problems involving expansions.

Example

Find the terms up to and including x3 in the expansion of  (1  2x)4(1 1
2 x )6

(1  2x)4(1 1
2 x )6

 (1  4(2x)  6(2x)2
 4(2x)3

 … )(1  6  ( 1
2 x ) 

6  5______
2!

( 1
2 x )2 6  5  4__________

3!
( 1

2 x )3
 … )

There is no need to go beyond the term in x3 in either expansion

  (1  8x  24x2
 32x3

 … )(1  3x 
15___
4

x2 5__
2

x3
 … )

  1  3x 
15___
4

x2 5__
2

x3
 …

  8x  24x2
 30x3

 …

  24 x2  72x3
 …

  32x3
 …

 1  5x 
15___
4

x2  12  1__
2

x3
 …

Example

Find the term independent of x in the expansion of   (1__
x

 2x2)
9

The general term in the expansion of   (1__
x

 2x2)
9

 is 

9Cr (1__
x

)
9 r

 ( 2x2)r


9Cr ( 2)r ( x2r____

x9 r )
This term is independent of x when  2r  9 r,  i.e. when r  3

Therefore the term independent of x is  9C3( 2)3


9!  ( 8)_________
3!6!

 672

Example

Use the binomial expansion of  (1  2x)8  to fi nd the value of 0.988 correct to 3 decimal places.

(1  2x)8
 1  8(2x)  28(4x2)  56(8x3)  70(16x4)  56(32x5)  …

 0.98  1  2(0.01)  So substituting 0.01 for x gives

 0.988
 1  0.16  0.0112  0.000448  0.0000112  0.0000001792 ...   

We stop here as the fi rst signifi cant fi gure of the next term will be in the 7th or 8th 

decimal place so will not alter the 4th decimal place

 0.851 correct to 3 d.p.

Exam tip

Be systematic when you expand 

brackets like this: multiply the 

second bracket by 1, then by 8x and 

so on. Then add the results.

Exercise 2.10

1 Find the coeffi cient of x3 in the expansion of (1  x x2)6

 (Hint: treat it as (1  X)6 and then substitute x x2 for X.)

2 Find the real part of (1  2i)6

 (Hint: expand (1  x)6, replacing x by 2i and only consider 
even powers of i.)

3 Find the coeffi cient of x7 in the expansion

of  (x2 1__
x

)
8
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2.11 The binomial expansion for nn  

The binomial theorem for  n  
Using Maclaurin’s theorem to expand (1  x)n gives

(1  x)n  1  nx 
n(n  1)________

2!
x2 

n(n  1)(n  2)_______________
3!

x3

 … 
n(n  1)…(n  r  1)_____________________

r!
xr  …

Now r is a positive integer, but when n is a negative integer or a fraction, 
there is no value of r for which (n  r  1) is zero. In this case the series 
does not terminate. 

The series expansion of (1  x)n converges to (1  x)n

only when 1  x  1

Note that the term in xn is the (n  1)th term, not the nth term.

For example, to expand (1  x ) 
1
2  we substitute  12 for n giving 

 (1  x ) 
1
2  1  1

2 x 

1
2  ( 1

2 )_________
2!

x2


1
2  ( 1

2 )  ( 3
2 )_________________

3!
x3

 …  

 1  1
2 x 1

8 x2


1__
16 x3

 … for 1  x  1

Note that when n is a positive integer, the series (1  x)n terminates and 
is valid for all values of x, but when n is not a positive integer, the series 
is infi nite and converges only when |x|  1.  

There are other differences: 

we cannot use nCr for the coeffi cients 

and we cannot use the form of the expansion for (a  b)n

To expand (a  b)n when n  , we take a outside the bracket to give

an (1
b__
a )

n

For example, to expand  √
________

(2 x2)  , we express  √
________

(2 x2)   as  2 
1
2 (1 x2__

2 )
1
2

then replacing n by  12 and x by   ( x2__
2 )  we have  

2 
1
2 (1 x2__

2 )
1
2

 2 
1
2 (1  (12 ) ( x2__

2 ) 

1
2  ( 1

2 )_________
2! ( x2__

2 )2

 … )
   √2  

x2√2  _____
4

x4√2  _____
32

 …

This expansion is valid when 1  x2__
2

 1 

i.e. when 0  x2__
2

 1      x
2

__
2

    cannot be negative

⇒ x2
 2 ⇒ √2   x  √2  

Learning outcomes

 To derive the expansion of 
(1  x)n when n is a fraction or a 
negative integer

 To apply the binomial theorem 
to problems

You need to know

 Maclaurin’s theorem

 Factorial notation

 The meaning of a convergent 
series

 How to express a rational 
function in partial fractions
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Example

Expand (1  x) 1 as a series of ascending powers of x up to and 
including the term in x4.  

Give the term in xn

Using the binomial theorem,

(1  x) 1

 1 x 
( 1)( 2)_________

2!
x

2


( 1)( 2)( 3)_____________
3!

x
3


( 1)( 2)( 3)( 4)_________________

4!
x

4
 …

 1 x  x
2

x
3

 x
4

 …

The pattern is now clear, i.e. the coeffi cients are 1 when the power 
of x is even and 1 when the powers of x are odd.

Therefore the term in x n is ( 1)n
x

n

The series expansion of (1  x)1 is similar to the series in the example 
above, i.e.

(1  x)1
 1  (x) 

(1)(2)_________
2!

 (x
2) 

(1)(2)(3)_____________
3!

 (x
3) 

    
(1)(2)(3)(4)_________________

4!
 (x)4

 …

   1  x  x
2

 x
3

 x
4

 …

The series expansions of  (1  x)1  and  (1  x)1  are worth 
remembering and may be quoted unless their derivation is 

asked for, i.e.

(1  x)1
 1  x  x

2
 x

3
 x

4
 …  (1)n xn

 … 1  x  1

(1  x)1
 1  x  x

2
 x

3
 x

4
 …  x

n
 … 1  x  1

Note that both of these series are geometric, so starting with the 
right-hand side and fi nding the sum to infi nity of a GP verifi es these 
expansions.

Exercise 2.11a

1 Expand (1  x) 
1_
2  as a series of ascending powers of x as far as the 

term in x5. 
Give the range of values for which the expansion is valid. 

2 (a) Expand (1  3x) 
1_
2 as a series of ascending powers of x as far as the 

term in x5. 

(b) Find the term in xn and give the range of values for which the 
expansion is valid.

3 Find the term in xn in the binomial expansion of (1  2x)2 and give 
the range of values of x for which the expansion is valid.
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Applications of the binomial theorem

We can apply the binomial theorem to a variety of functions if we can 
express them as binomials. 

To use the binomial theorem to expand a function such as f(x)  (x  1) 1

we write it as x 1 (1 1__
x

)
1

. We can then expand the function as a series

of descending powers of x,

i.e. f(x) 
1__
x

(1  1__
x

 ( 1__
x

)
2

 ( 1__
x

)
3

 … ) 
1__
x


1__
x2 

1__
x3  … 

   x 1
 x 2

 x 3
 …

This series is valid for 1  1__
x

 1,  i.e.  for x  1 or x  1

Example

Find the coeffi cient of xn in the expansion of (3  2x) 2 in ascending powers of x and give the range of values 
of x for which the expansion is valid.

 (3  2x) 2
 3 2 (1 2x___

3 )
2

  
1__
9 (1  ( 2)  ( 2x___

3 ) 
( 2)( 3)_________

2! ( 2x___
3 )

2


( 2)( 3)( 4)_____________

3! ( 2x___
3 )

3


( 2)( 3)( 4)( 5)_________________

4! ( 2x___
3 )

4

 … )
  

1__
9 (1  2  (2x___

3 )  3  (2x___
3 )

2

 4  (2x___
3 )

3

 5  (2x___
3 )

4

 … )
You need to write down suffi cient terms so that the pattern of the coeffi cients is clear.

From this we can see that the coeffi cient of xn is  1__
9

 (n  1)  2
n___

3n


2n (n  1)__________
3n 2

The expansion is valid for  1  2x___
3

 1 ⇒
3__
2

 x 
3__
2

The binomial theorem can be used to expand rational functions with 
factors in the denominator by using partial fractions to express them as 
the sum or difference of simpler functions.

Example

(a) Express f(x)  1______________
(1  x2)(1 x)

  in partial fractions. 

(b) Hence fi nd the fi rst four terms in the expansion of f(x) as a series 
of ascending powers of x, stating the range of values of x for which 
the expansion is valid.

(c) Find the coeffi cient of xr

(a) 
1______________

(1  x2)(1 x)


Ax  B_______
1  x2 

C______
1 x

 ⇒ 1  (Ax  B)(1 x)  C(1  x2)

∴ C 
1
2 ,  B 

1
2  and  A 

1
2

⇒
1______________

(1  x2)(1 x)


x  1_________
2(1  x2)


1________

2(1 x)

Section 2 Sequences, series and approximations
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(b)  f(x) 
1
2 (x  1)(1  x

2) 1


1
2 (1 x) 1


1
2 (x  1)(1 x

2
 x

4
x

6
 …)  1

2 (1  x  x
2

 x
3

 x
4 …)


1
2 (x x

3
 x

5
x

7
 …)  1

2 (1 x
2

 x
4

x
6

 …) 


1
2 (1  x  x

2
 x

3
 x

4
 …)


1
2 (1  x x

2
x

3
 x

4
 x

5  …) 


1
2 (1  x  x

2
 x

3
 x

4
 x

5
 …)

 1  x  x
4

 x
5

 …

The series is valid for 1  x  1

(c) The coeffi cient of xr is 1.

The terms in x2 and x3

cancel so we have to 

add another term to the 

expansion of (1 x) 1

The binomial theorem can also be used to fi nd approximate values for 
some irrational numbers.

Example

(a) Expand  (1 x) 
1
2  as far as the term in x3

(b) Substitute 0.02 for x in  (1 x) 
1
2  and its expansion.

 Hence fi nd an approximate value for  √2   and state the degree of 
accuracy of your answer. 

(a)  (1 x) 
1
2  1 1

2 x 

(12)(
1
2)( x

2)

2!


(12)(
1
2)(

3
2)( x)3

3!
 …

    1 1
2 x

1
8 x

2 1__
16 x

3  …

(b) Substituting 0.02 for x gives   

 (0.98 ) 
1
2  1  0.01  0.000 05  0.000 000 5  …

This expansion is valid because x  0.02 is within the range 1  x  1

⇒ √
____

98____
100

 0.989 949 5…  This is correct to 7 d.p. as the 

next term is 5  10 9

⇒ 7___
10

√2   0.989 949 5… ⇒ √2   1.41421 correct to 5 d.p.

Exercise 2.11b

1 Expand  (x  2 ) 
1_
2  as a series of descending powers of x as far as and 

including the fourth term. Give the range of values of x for which the 
expansion is valid.  

2 Express   1______________
(1  x)(1  3x)

  in partial fractions. Hence expand 

1______________
(1  x)(1  3x)

  as a series of ascending powers of x as far as and

including the term in x4. Give the range of values of x for which the 
expansion is valid.

3 Use the expansion of   
1_______

√
______

1  x  

  with x  0.1 to fi nd the value of

√
___

10   correct to 4 d.p.
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2.12 Locating a root of an equation

The intermediate value theorem

Consider a function f(x) that is continuous between x  a and x  b

The diagram shows that if f(c) is a value of f(x) between f(a) and f(b), then 
c lies between a and b

O

y  f(x)

f(a)

x

f(c)

f(b)

a c b

There may be more than one value of x between x  a and x  b, as the 
diagram below shows.

f(a)

O

y  f(x)

x

f(c)

f(b)

a c1 c2 b

However, if f(x) is not continuous between a and b then there may not be 
a value of x between x  a and x  b

This is illustrated in the next diagram.

f(a)

O

y  f(x)

x

f(c)

f(b)

Learning outcomes

 To introduce the intermediate 

value theorem

 To use the intermediate value 

theorem to locate a root of an 

equation

You need to know

 The meaning of a continuous 

function

 How to sketch graphs of simple 

functions
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The intermediate theorem states that:

Provided that f(x) is continuous between x  a and x  b,

there must be at least one value of x between x  a and x  b

for which f(x) has a given value between f(a) and f(b).

Locating a root of an equation

It is not possible to fi nd the exact roots of some equations.

However, we can sometimes use the intermediate theorem to locate a 
root in an interval.

If the equation f(x)  0 has a root between x  a and x  b, and if f(x) 
is continuous in this interval, then the curve y  f(x) crosses the x-axis 
between x  a and x  b

The intermediate value theorem tells us that f(x)  0 is between f(a) and f(b).

Therefore f(x) changes sign between x  a and x  b, i.e.

O

y

x

f(b)

ba

f(a)

If f(x) is continuous between x  a and x  b and
if one root of the equation f(x)  0 lies between x  a and x  b

then f(a) and f(b) are opposite in sign, i.e. f(a)  f(b)  0

The fi rst step is to roughly locate the roots of an equation using a sketch 
where possible.

For example, the equation ex  2x  2  0 has roots where the graphs of 
y  ex and y  2x  2 intersect.

y

x3 2 1

6

4

2

2

O 1 2 3

From the sketch, we can see that there appears to be a root between x  1 
and x  2

We can test this by using f(x)  ex
 2x  2 (which is continuous) and 

fi nding f(1) and f(2).

 f(1)  e  4  0 

and f(2)  e2
 6  0      e2

 7.3…

As f(1) and f(2) are opposite in sign, i.e. f(1)  f(2)  0, there is a root 
between 1 and 2.
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Example

Use a sketch to show that the equation x3  2x2
 x  1  0 has only 

one real root. 

Find two consecutive integers between which this root lies.

The roots of x3  2x2
 x  1  0 are the values of x where the graph 

of y  x3  2x2
 x  1 intersects the x-axis.

The curve is a cubic which crosses the y-axis where y  1, and y →∞

as x →∞

To locate the curve we will fi nd the turning points:

dy___
dx

 3x2  4x  1

⇒ 3x2  4x  1  0

⇒ (3x  1)(x  1)  0

⇒ x 
1
3  and  x  1

When  x  1
3 , y  1 4__

27
and when x  1, y  1

The curve crosses the x-axis once so there is only one real root.

y

x

1

O
11

3

Alternatively, the roots of x3  2x2
 x  1  0 are where 

x3
 2x2 x  1

A sketch of the curves y  x3 and y  2x2 x  1 ( (2x 1)(x  1)) 
also shows that there is only one real root.

y

x2

4

2

2

4

O 1 2

Section 2 Sequences, series and approximations
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From either sketch it appears that the root is between 1 and 0. 

Using  f(x)  x3  2x2
 x  1,

f( 1)  3  and  f(0)  1

f( 1) and f(0) are opposite in sign, therefore the root lies between 
1 and 0.

(It is likely that this root is nearer 0 than 1, as f(0) is nearer zero

than is f( 1). We can test this by fi nding the sign of f ( 1
2 ). 

If f ( 1
2 )  0, the root lies between 1

2 and 0.)

Exercise 2.12

1 Draw a sketch to show that the equation ln x  1__
x

 has one real root. 

  Hence fi nd two consecutive integers between which the root of the 
equation x ln x  1 0 lies. 

2 Show, using a sketch or otherwise, that the equation e x
 x2  1 has 

only one root. 

 Find two consecutive integers between which this root of the equation 
lies.

3 The diagram shows a sketch of the curve 

y  tan 1 x  ln (1  x2)

y

x1

0.5

1

0.5

1

1.5

2

(a) Verify that zero is one root of the equation 

tan1 x  ln (1  x2)  0

(b) Use the intermediate value theorem to show that another root of 
the equation lies between 1 and 1.5
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2.13 Interval bisection

Numerical methods for solving equations

Numerical methods use repeated applications of a method to successively 
improve on an approximation for a root of an equation. 

Interval bisection method

In the last topic, we showed how to locate a root between successive 
integers. The interval bisection method refi nes this approach to give the 
value of the root to any degree of accuracy.

Consider again the equation ex  2x  2  0

We have shown in Topic 2.12 that this equation has a root between 1 and 2 
and that f(1)  0 and f(2)  0

So if this root is  we know that 1    2

y

xO 0.5

f(2)

f(1)

We then bisect the interval to give x  1.5 and fi nd the sign of f(1.5):  
f(1.5)  e1.5  5  0.5… Therefore f(1.5)  0  and  f(2)  0   so   
1.5    2

y

xO 0.5

f(2)

f(1.5)

We then bisect the interval again to give x  1.75 and fi nd the sign of f(1.75):
f(1.75)  e1.75  5.5  0.25…  0

Therefore f(1.5)  0  and f (1.75)  0   so   1.5    1.75

y

xO 0.5

f(1.75)

f(1.5)

Bisecting the interval 1.5 to 1.75 gives x  1.625  and  
f(1.625)  0.17…  0 

Learning outcomes

 To use interval bisection to fi nd a 

root of an equation to a specifi ed 

degree of accuracy 

You need to know

 How to use sketch graphs and 

the intermediate value theorem 

to locate a root of an equation 

within an interval
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Therefore f(1.625)  0  and  f(1.75)  0   so   1.625    1.75

y

xO 0.5

f(1.75)
f(1.625)

We are narrowing down the interval in which the root lies, but we still do not 
have a value correct to even 1 decimal place, so we continue.

There is no need to draw diagrams, we just need to keep track of the sign of f(x).

Bisecting the interval again gives x  1.6875

f(1.6875)  0.03…  0 and we know that f(1.625)  0 

Therefore 1.625    1.6875

Bisecting the interval again gives x  1.65625

f(1.65625)  0.072…  0  and  f(1.6875)  0

Therefore 1.65625    1.6875

The last interval is less than 0.05, so we can now say that the root of the 
equation is 1.7 correct to 1 decimal place.

To get an answer correct to 2 decimal places, we need the interval to be less 
than 0.005

This method is an example of an iterative method. An iterative method for 
fi nding a root of an equation starts with a fi rst approximation and then uses that 
to feed into the next step to give a better approximation. This is then repeated 
until the desired degree of accuracy is obtained. Each step is called an iteration.

The interval bisection method is slow to converge (i.e. to get close to the value 
of the root). 

In the example above it took fi ve iterations to get an answer correct to 1 decimal 
place.

However, it does have the advantage that the method will only fail if the 
conditions for the intermediate value theorem are not met, i.e. if the function is 
not continuous or there is more than one root in the initial interval. 

In the next topic we look at an iteration method that improves on the interval 
bisection method.

Exercise 2.13

1 (a) Find the stationary points on the curve  y  x3
 3x  4  and hence 

sketch the curve.

(b) Use your sketch to fi nd consecutive intervals in which the root of the 
equation x3

 3x  4 lies.

(c) Use the interval bisection method to fi nd this root correct to 
1 decimal place.
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2.14 Linear interpolation

Linear interpolation

Linear interpolation is similar to the interval bisection method but uses 
proportion to fi nd the next value in the interval rather than taking the 
mid-point.

Consider an equation f(x)  0 which has a root  which we know lies 
between x  a and x  b

f(b)

f(a)

x

The line joining the points on the curve y  f(x) where x  a and 
x  b cuts the x-axis at c. Assuming that f(a)  0 and f(b)  0, the 
diagram shows that the interval between x  a and x  c is likely to 
be smaller than the interval from x  a to the interval bisection point. 
Therefore this method is likely to converge more quickly than the 
interval bisection method. 

The line joining the points on the curve y  f(x) where x  a and x  b
forms a pair of similar triangles. Therefore the point x  c1 divides the 
line between x  a and x  b in the ratio 

|f(a)| : |f(b)|,   i.e.   
c1 a______
b c1


|f(a)|______
|f(b)|

⇒⇒ c1 
a|f(b)|  b|f(a)|________________
|f(a)|  |f(b)|

where c1 is the fi rst approximation for 

You need to learn this.

Consider again the equation  ex  2x  2  0

We have shown in Topic 2.12 that this equation has a root between 1 and 2 
and that f(1)  0 and f(2)  0

y

xO 0.5

f(2)

f(1)

Learning outcomes

 To use linear interpolation to 

fi nd a root of an equation to a 

specifi ed degree of accuracy

You need to know

 How to use sketch graphs and 

the intermediate value theorem 

to locate a root of an equation 

within an interval

 The properties of similar 

triangles

Did you know?

There is evidence that a method 

similar to this was used over 2000 

years ago.
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Working with the fi rst four decimal places throughout gives

f(1)  1.2817…  and  f(2)  1.3890…

Therefore  c1 
(1)(1.3890)  (2)(1.2817)_______________________

1.2817  1.3890
 1.4799 

This is the 1st approximation for 

f(c1)  0.5672…  0  so   is in the interval 1.4799 to 2

Repeating the process:  c2 
(1.4799)(1.3890)  (2)(0.5672)____________________________

0.5672  1.3890
 1.6307 

2nd approximation

f(c2)  0.1539…  0  so   is in the interval 1.6307 to 2

Repeating again: c3 
(1.6307)(1.3890)  (2)(0.1539)____________________________

0.1539  1.3890
 1.6675

3rd approximation

f(c3)  0.0360…  0  so   is in the interval 1.6675 to 2

And again: c4 
(1.6675)(1.3890)  (2)(0.0360)____________________________

0.0360  1.3890
 1.6759

4th approximation

f(1.6759)  0.0081… and this is small enough to be worth checking to 
see if the 4th approximation is correct to 2 decimal places:

f(1.675)   0.011…  and  f(1.685)  0.022…  so  1.675    1.685

Therefore   1.68 correct to 2 decimal places.

We have found the value of  correct to 2 decimal places in four 
iterations. This compares with fi ve iterations to give a value correct 
to 1 decimal place using interval bisection (Topic 2.13). Therefore the 
convergence rate is quicker.

The rate of convergence of linear interpolation depends on
the shape of the curve in the initial interval.

If the gradient changes a great
deal and if c1 is not very close 
to , the rate of convergence 
is slow.

If the gradient does not change 
much and if c1 is close to , 
the rate of convergence is fast.

As with interval bisection, this 
method fails if the function is not 
continuous or has more than one 
root in the initial interval.

Exercise 2.14

1 (a) Show that the equation ln x x  2  0 has a root between x  3 
and x  3.5 

(b) Use linear interpolation twice to get an approximate value for this 
root.

(c) Show that the approximation is correct to 3 decimal places.

a

c b x

a

c b x
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2.15 Newton–Raphson method

Newton–Raphson method

The Newton–Raphson method uses a linear approximation for a function. 

If the equation f(x)  0 has a root  then the curve y  f(x) cuts the 
x-axis where x  

If c1 is an approximate value of , then the tangent to the curve at the 
point A where x  c1 cuts the x-axis at a point where x  c2

c1

A

c2α

y  f(x)

x

In most cases, c2 will be closer to  than is c1. Therefore c2 is a better 
approximation to 

The coordinates of A are (c1, f(c1)) and the gradient of the curve at A is f(c1).

Therefore the equation of the tangent is  y  f(c1)  f(c1)(x c1)

This tangent cuts the x-axis where  y  0 ⇒ x  c1

f(c1)_____
f(c1)

Therefore if c1 is an approximation for a root of an 

equation f(x)  0 then c2  c1 
f(c1)_____
f(c1)

is a better approximation.

You also need to learn this.

Using this method to fi nd the root of ex  2x  2  0 and using c1  2 
as the fi rst approximation, we have  f(x)  ex  2

Therefore c2  2 
e2  6______
e2  2

 1.74224...

and c3  1.74224… 
e1.74224  5.48449…___________________

e1.74224  2
 1.68142…

and c4  1.68142… 
e1.68142  5.36284…___________________

e1.68142  2
 1.67835…

so  is probably equal to 1.68 correct to 2 decimal places.

We have already tested this in Topic 2.14, so we know that   1.68 
correct to 2 decimal places.

If we do another iteration, we get

c5   1.67835… 
e1.67835  5.3567…_________________

e1.67835  2
 1.67834…

so we can see that  is likely to be 1.6783 to 4 decimal places.

Learning outcomes

 To use the Newton–Raphson 

method to fi nd an approximate 

value for the root of an equation 

to any degree specifi ed

 To give a geometric 

interpretation of the method 

You need to know

 How to locate an interval in 

which a root of an equation lies

 How to fi nd the equation of a 

tangent to a curve at a given 

point

Did you know?

The method was fi rst published 

by Sir Isaac Newton and it is often 

called simply Newton’s method. 

However, it was simplifi ed by Joseph 

Raphson a few years later. Neither of 

these early methods used calculus – 

this was fi rst introduced by Thomas 

Simpson. The version we use today 

was published nearly a century later 

by the French mathematician Joseph 

Lagrange. 
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We can check whether   1.6783 is correct to 4 decimal places: 
f(1.67825)  0.0003…, f(1.67835)  0.00001… Therefore 
1.67825    1.67835 so  = 1.6783 correct to 4 decimal places.

The Newton Raphson method is the best method considered so far for 
fi nding a root of an equation because when it works it converges rapidly, 
as the example above shows.

However, there are factors that cause the method to fail: 

 the fi rst approximation, c1, is too far from 

c2 c1

A

α

y  f(x)

x

 the gradient of the curve at the point where x  c1 is too small

c2c1 α

A

y  f(x)

x

 the gradient of the curve increases rapidly

c2c1

A

α

y  f(x)

x

Exercise 2.15

1 (a) Use a sketch to show that the equation x2
 ln (x  2) has two 

roots.

(b) Use the NewtonRaphson method three times to fi nd an 
approximate value of the larger root.

(c) State, with reasons, the accuracy of your approximation.
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2.16 Using a given iteration

Iteration

As we have seen with linear interpolation and Newton–Raphson, 
iteration produces a sequence of values by using a formula (called an 
iteration formula) of the form

 x
n1  f(x

n
)

Taking x1 as the fi rst value, then x2  f(x1)

 x3  f(x2)

 x4  f(x3)

 x5  f(x4)   and so on.

For example, when x
n  1  (x

n
 1 ) 

1
2  and  x1  2

 x2  (2  1) 
1
2   1.732…

 x3  (1.732…  1) 
1
2  1.652…

 x4  (1.652…  1) 
1
2  1.628…

 x5  (1.628…  1) 
1
2  1.621…  and so on.

This is the same as a recurrence formula used to generate a sequence 
and we now look at the convergence of such a sequence in the context of 
fi nding a root of an equation.

The sequence of values generated above converge to a value , because as 
n increases, x

n
gets closer and closer to x

n  1, i.e. x
n

→ . This value, ,

is when x
n
 x

n  1, i.e. when    (  1 ) 
1
2. Therefore  is a root of the

equation    (  1 ) 
1
2

Not all iterations give values that converge.

For example, using the iteration formula, x
n  1 

√
_______

e xn  2  , and taking 
x1  2 gives 

x2 
√
______

e2
 2   3.064…

x3 
√
__________

e3.064…
 2   4.839…

x4 
√
__________

e4.839…
 2   11.32…

This sequence of values diverges because the values are increasing 
(rapidly in this case).

Using an iteration formula to fi nd a root

We have seen that we can use an iteration formula to fi nd a good 
approximation to a root, , of an equation f(x)  0

Learning outcomes

 To use a given iteration to fi nd an 

approximate value of a root of an 

equation

You need to know

 How to use the intermediate 

value theorem
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When f(x)  0 can be written in the form x  g(x) we can use this to 
make the iteration formula 

xn  1  g(xn)

The roots of the equation x  g(x) are the values of x at the points of 
intersection of the line 

y  x and the curve y  g(x)

The diagram shows how this iteration works.

O

D{x2, g(x2)}

A{x1, g(x1)}

E

B
C

y

y  x

y  g(x)

xx2 α x3 x1

Using x1 as the fi rst approximation to the root , then in the diagram

A is the point on y  g(x)  where  x  x1  so  y  g(x1)

B is the point where x    and  y  g(x1)

C is the point on the line y  x where x  x2 and y  g(x1)

Now x2 will be closer to  than is x1 provided that, near the root, the 
curve is less steep than the gradient of the line y  x, i.e. provided that 
|g(x)|  1 

Therefore x2 is a better approximation to  than is x1, 
provided that |g( x)|  1 

Now C is on the line y  x,  therefore x2  g(x1)

We can repeat this process to get x3, x4, … .

The rate of convergence of this sequence depends on the value of g (x) 
near the root.

The smaller |g(x)| is, the more rapid is the rate of convergence.

O

y

xα x1

O

y

xα x1
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The sequence diverges (i.e. fails to fi nd a root) if |g(x)| 1

O

y

xα x1

O

y

xα x1

We will use this method to try and fi nd the roots of the equation 
ex  1 x  3  0

The graph of y  ex  1 x  3 shows that the equation has two roots, 
one near 3 and the other near 0.

y

xO

1

1

2

2

11234

Rearranging the equation as  x  ex  1  3  and changing this to the 
iteration formula gives

xn  1  e xn  1  3

Taking x1  3  gives

 x2  e 2  3  2.8646…

 x3  e 1.8646…  3  2.8450…

 x4  e 1.8450…  3  2.8419…

 x5  e 1.8419…  3  2.8414…

so this iteration is converging. 

Using f(x)  ex  1 x  3,  
f( 2.8415)  7.9  10 5  0  and  f( 2.8405)  7.6  10 4  0, 
therefore   2.841 correct to 4 signifi cant fi gures.

Now taking x1  0 as the fi rst approximation to the other root gives

 x2  e1  3  0.2817…

 x3  e1  0.2817…  3  0.9490…

 x4  e1  0.9490…  3  1.9477…

This sequence is diverging so it fails to fi nd the root near zero.

Section 2 Sequences, series and approximations
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We could predict that this will happen by looking at the gradient function 
of ex 1  3:

d___
dx

 (ex 1  3)  ex  1  and  ex 1  1  for x  1, 

i.e. |g(x)|  1 for values of x near x  0

Example

(a) Show that the equation cos x x  0 has a root between 0 and  
__
3

(b) Taking 0.75 as a fi rst approximation to this root, use the iteration  
xn1  cos xn  three times to fi nd an approximation to this root. 

(c) Hence show that the root is 0.74 correct to 2 decimal places.

(a) f(x)  cos x x  so  f(0)  1 and f  (__
3 )  0.5  1.04…  0.5…

f(0)  0  and  f  (__
3 )  0  therefore  cos x x  0 has a root between

0 and  
__
3

(b) Using x1  0.75  and  xn1  cos xn  gives 

x2  cos 0.75  0.73168…

x3  cos 0.73168…  0.74404…

x4  cos 0.74404…  0.73573…

Therefore 0.73573… is an approximate value of the root.

(c) f(0.735)  cos 0.735  0.735  0.0068…  0

f(0.745)  cos 0.745  0.745  0.0099…  0

Therefore the root, , lies between 0.735 and 0.745, so   0.74 
correct to 2 decimal places.

Note that x is measured in radians, so the root is 0.74 rad.

Exercise 2.16

(a) Show that the equation x3  5x  3  0 has a root between 1 and 0.

(b) Use 0.5 as a fi rst approximation for this root and the iteration 

given by xn 1 
x n

3  3______
5

 Use six iterations to fi nd a better approximation for the root, writing 
down 5 decimal places for each iteration. 

(c) Show that your root is correct to 3 decimal places.

(d) The equation x3  5x  3  0 also has a root near x  2

 Explain why the iteration formula given will fail to fi nd this root.

Exam tip

Iterations are easy to do on most 
scientifi c calculators: enter the value 
of x1 and press EXE (or ENTER). Then 
enter the formula for g(x

n
) using ANS 

for each value of x. Then press EXE 
and continue to press EXE for each 
iteration.
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 1 A sequence is given by u1  8 and un  un 1  2
Show that the sequence is an arithmetic 
progression and write down the common 
difference.

 2 The fi rst three terms in a sequence are

a__
b

, a and ab respectively, b  0

(a) Show that the terms are in geometric 
progression.

(b) The fi rst term is 2 and the product of the 
three terms is 216.
Find the values of a and b and the fi fth term.

 3 The nth term of a sequence, un, is given by 

un  2(3n)  4

Show that un 1  3un  8

 4 The nth term of a sequence, un, is given by 

un 
2n2

 n________
4n2

 1

  Show that the sequence converges and give the 
value to which it converges.

 5 Determine whether the sequence whose nth term

  is n sin  
n___
2

  is alternating, periodic or oscillating.

 6 Given   ∑
r 2

r  n

ur 
n  1_______

2n  1
  fi nd:

(a) un (b) ∑
rn

r 2n

ur

(c) the sum to infi nity of the series.

 7 (a) Show that the terms of the series

3_
2 

1_
2 

1_
6 

1__
18  …

are in geometric progression.

(b) Find the sum of the fi rst n terms of the series 
in (a). 

(c) State with a reason whether the series is 
convergent.

 8 (a) Express   1____________
(r  1)(r  3)

  in partial fractions.

(b) Hence fi nd  ∑
r 1

r  n

1____________
(r  1)(r  3)

(c) Deduce the sum to infi nity of the series 

1______
2  4


1______

3  5


1______
4  6

 …

 9 (a) Express   1_____________
(r  1)r(r  1)

  in partial fractions.

(b) Hence fi nd  ∑
r 2

r  n

1_____________
(r  1)r(r  1)

 10 The nth term of a sequence, un, is given by

un  n2
 n

Prove by mathematical induction that the sum of 
the fi rst n terms is given by  1_3 n(n2

 1)

 11 $2000 is invested in an account that accrues 
interest at 5% per annum paid yearly. At the end 
of each year $500 is withdrawn from the account.

  Show that the amount $An in the account after 
n years is given by 

An  2000 (5  4(1.05)n )

 12 The rth term of a series, ur, is given by 

ur  (2r  1)(r 2)

Find  ∑
r 1

r  n

ur

 13 (a) Use Maclaurin’s theorem to fi nd the fi rst two 
terms in the expansion of 

f(x)  ex sin x

as a series of ascending powers of x. 

(b) Use your series to fi nd an approximate value

for  e 
__
6.

14 (a) Use Maclaurin’s theorem to fi nd the fi rst 
four terms in the expansion of 

ln  √
______

1  x______
1  x

 , 1  x  1

as a series of ascending powers of x, stating 
the values of x for which the expansion is 
valid.

(b) Use your series to fi nd an approximate value 
for ln 3.

 15 (a) Find the fi rst three terms of the expansion of

cos x as ascending powers of  (x  __
3 )

(b) Hence fi nd an approximate value of cos 61° 
given that 1°  0.017 rad.

 16 (a) Expand tan x as a series of ascending powers 
of (x  a) as far as the term in (x  a)2

(b) Use a 
__
3

 to fi nd a quadratic function that

gives an approximate value for tan x when 

x is close to  
__
3
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 17 (a) Prove that  nCr 
nCn r

(b) Find a relationship between n and r when
nCr 

n  1Cr  1

 18 In the expansion of  (1 1
2 x )9

 in ascending 
powers of x fi nd: 

(a) the fi rst four terms

(b) the coeffi cient of x7

(c) the general term. 

 19 Find the terms up to and including x2 in the 
expansion of 

(1  2x)4(1  4x)6

 20 Find the real part of (1  2i)5

 21 Find the term independent of x in the expansion

of  (x2 2__
x
)9

 22 Find the coeffi cient of x4 in the expansion of

1________

√
_______

2  3x  

 23 (a) Express   1____________________
(x  1)(x  2)(x2

 1)
in partial fractions.

(b) Hence expand   1____________________
(x  1)(x  2)(x2

 1)
as a 

series of ascending powers of x up to and 
including the term in x3, and give the range 
of values for which the expansion is valid.

 24 Expand  (1  x  2x2) 1  in ascending powers of x
up to and including the term in x3

 25 The diagram shows the graphs of the curves

y  ex  1 and  y 
x  2______

x

y

x4 2

4

2

2

4

O 2 4

(a) Verify that one solution of the equation

x ex  1 x  2  0

 lies between x  1 and x  2

(b) Use the interval bisection method twice to 
show that this root lies between x  1.75 and 
x  2

 26 (a) Sketch the graphs of 

y  x  1 and y  ln (x  2)

Use your sketch to show that the equation 
1 x  ln (x  2)  0 has only one positive 
root, 

(b) Use the intermediate value theorem to fi nd 
two consecutive integers between which  lies.

(c) Use linear interpolation twice to fi nd an 
approximate value for . Give your answer 
correct to 3 signifi cant fi gures.

 27 (a) Show that the equation x3  4x2
 5  0 

has a root between the turning points on the 
curve y  x3  4x2

 5

(b) Use the intermediate value theorem to fi nd 
consecutive integers between which this root 
lies. 

(c) Use the Newton–Raphson method to fi nd 
this root correct to 2 decimal places.

 28 The diagram shows the curve y  x3  6x  4

y

x4 2

10

8

4

2

2

O

(a) Confi rm that the equation x3
 6x  4  0

has one root equal to 2.

(b) Using 1 as a fi rst approximation to the other 
positive root, show that an iteration formula 
of the form 

xn  1  g(xn) 

converges to the value of this root and fi nd it 
correct to 2 decimal places.

(c) Taking the negative root as lying between 
3 and 2, show that the same iteration 
formula fails to converge to this root.

(d) Use another numerical method to fi nd this 
root correct to 2 decimal places.

 29 Use a numerical method to solve the equation 

ex
 3x

giving the roots correct to 3 decimal places.
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Counting

To answer any question starting ‘How many … ?’, we need an effi cient 
method of counting.

When the entities to be counted can be placed in a one-to-one 
correspondence with the numerals, 1, 2, 3, … , counting them is easy. 
For example, to count the balls in a box, you can take them out one at a 
time counting 1, 2, 3, …  as you go.

However, there are many situations where this is not possible. 
For example, how many different meals are possible when there is a 
choice of 3 main courses, 2 desserts and 2 drinks on a menu?

We can illustrate the different meals that can be chosen using a diagram:

drink1

drink2

drink1

drink2

drink1

drink2

drink1

drink2

drink1

drink2

drink1

drink2

dessert1

dessert2

main3

dessert1

dessert2

main2

dessert1

dessert2

main1

For each of the three ways of choosing a main course there are two ways 
of choosing a dessert.

Therefore there are 3  2 ways of choosing a main course and a dessert.

For each of these 3  2 ways there are two ways of choosing a drink.

Therefore there are 3  2  2 different meals possible.

Now consider a multiple choice examination with 30 questions, each 
of which has a choice of four different possible answers. In how many 
different ways can this examination be answered?

Taking just the fi rst two questions: for question 1 there are four different 
ways of choosing an answer and each of these four can be paired with one 
of the four different answers for question 2. This gives 4  4 different 
ways of answering the fi rst two questions, i.e. 42 different ways.

Repeating this argument for all 30 questions gives 430 different ways.

3 Counting, matrices and differential equations

3.1 The principles of counting

Learning outcomes

 To introduce and use the 

fundamental counting principle
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Question  Question  Question  …  Question
 1  1  1    30

 4  4  4  …  …  4

These two examples illustrate that

if there are n ways of doing one task, m ways of doing another, l ways 
of doing yet another task … and so on, 

then the number of different ways of doing all the tasks is

n  m  l  …

This is known as the fundamental counting principle

Example

Three ordinary six-sided dice, one red, one blue and one green, are rolled and a coin is tossed. 
How many different outcomes are there?

There are six ways in which each dice can land and two ways in which the coin can land.

Therefore there are  6  6  6  2  432 different outcomes.

Example

A company selling software products uses a six-character code on each item.

The fi rst character is one of the digits 1 to 9.

The next two characters are letters of the alphabet, not including vowels.

The next two characters are one of the digits 0 to 9.

The fi nal character is a letter of the alphabet, not including the letter O.

How many different codes are possible when digits and letters can be repeated?

There are 9 choices for the fi rst character, 21 choices for the next two characters, 10 choices for the fourth 
and fi fth characters and 25 choices for the last character.

Therefore there are 9  21  21  10  10  25

 9 922 500 different codes.

There are many other situations where we need an effi cient method of 
counting, and we look at some of them in the next few topics.

Exercise 3.1

1 There are three different colours of paper that can 
be used to make a poster and there is a choice of 
one of four different colours that can be used for 
the print on the poster.

 How many different colour combinations are 
there?

2 The number plate on a car consists of three digits 
followed by two letters of the alphabet, followed by 
one digit. The fi rst digit is 1 to 9, the next two digits 
are 0 to 9, the two letters of the alphabet do not 
include the letters I or O and the last digit is 1 or 0.

 How many different number plates are possible 
when digits and letters can be repeated?
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3.2 Permutations

Permutations

A permutation is an ordered arrangement of a number of objects.

For example, if four books, A, B, C and D, are placed on a shelf, one way 
of arranging them is A, B, C, D. Another is B, D, A, C.

or

A B C D B D A C

Each of these arrangements is called a permutation of the books and each 
arrangement is a different permutation.

The number of permutations is the number of different arrangements.

For the books, there are 4 different choices for the left-hand book. This 
leaves 3 different choices for the next book, so there are 4  3 different 
ways of selecting the fi rst and second book. There are now only 2 ways 
of choosing the third book in the row, giving 4  3  2 ways of arranging 
the fi rst three books. There is only one book left, so the number of 
permutations of the four books is 4  3  2  1  4!

In general

the number of permutations of n different objects is n!

For example, the number of permutations of the 52 playing cards from an 
ordinary pack is 52!

The examples of the books and cards are straightforward arrangements 
in a line. In the next example we look at the number of different 
arrangements of some of the n objects.

Example

How many different three-digit numbers can be made using the 
integers 2, 3, 4, 5, 6 if each digit can only be used once?

There are 5 ways of choosing the fi rst integer, 4 ways of choosing the 
second integer and 3 ways of choosing the third integer.

Therefore there are 5  4  3  60 different three-digit numbers that 
can be made.

The example is an illustration of a general case: the number of 
permutations of r objects from n different objects is 
n  (n  1)  (n  2)  … (n r  1)

This can be written in factorial notation as   
n!_______

(n  r)!
  and is denoted by nPr

i.e. the number of permutations of r objects from 

n different objects is  nPr 
n!________

(n  r)!

In the next examples we look at arrangements that have conditions 
placed on them.

Learning outcomes

 To defi ne a permutation and 

introduce the notation nP
r

 To fi nd a variety of types of 

permutation

You need to know

 Factorial notation

 The fundamental principle of 

counting
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Example

How many different three-digit even numbers can be made using the integers 2, 3, 4, 5, 6 if the digits can 
be repeated?

The number has to be even so the last digit is restricted to 2, 4 or 6.

Starting from the right-hand end of the number, there are 3 different digits that can be used.

The next two digits can be any of the 5 given digits.

So there are 5  5  3  75 different three-digit even numbers that can be made.

Circular arrangements
When n different objects are arranged in a circle, there is no fi rst or last object.

For example, if fi ve people, A, B, C, D and E, are to sit 
in chairs round a circular table, then there are 
5 choices for chair 1, 4 choices for chair 2, and 
so on giving 5! different ways to be seated. This 
number includes the fi ve arrangements shown 
in the diagrams:

Now for any one of these arrangements, the people can 
be moved clockwise fi ve times and each person will 
still have the same people on either side. Therefore the 
number of ways of seating the fi ve people in numbered 
chairs is fi ve times the number of ways of seating them 
round a circular table.

Therefore there are   
5!__
5
 (5  1)! ways of arranging fi ve different objects in a circle.

In general

there are (n  1)! ways of arranging n different objects in a circle and
n!_________

r(n  r)!
 ways of arranging r objects from n different objects in a circle.

Now consider the number of arrangements of fi ve different beads on a circular ring.

The  
5!__
5

 different arrangements include these two:

A ring can be turned over, so these two arrangements are the same.

Therefore the number of different arrangements in a ring is half the 

number of different arrangements in a circle. So there are  
5!______

2  5
 12

ways of arranging the fi ve beads on a ring.

In general

when n different objects are arranged in a ring that can be 

turned over there are  
n!___
2n


1__
2

(n  1)! different ways of doing this.

1

25

34

A

CD

1

25

34

E

BC

1

25

34

C

EA

1

25

34

B

DE

1

25

34

D

AB

A

BE

CD

A

EB

DC

Exercise 3.2a

1 In how many different ways can the letters in the 
word PAGES be arranged?

2 How many three-digit numbers can be made from 
the digits 3, 5, 6 and 7 if

(a) the number is odd and each digit can be used once

(b) the number is even and each digit can be 
used more than once?

3 In how many different ways can three beads 
from fi ve different beads be threaded on a ring?
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Permutations when not all the objects are different

Consider the number of different ways of arranging the letters in the 
word LOOK.

There are two letters O in this word. If we label them as O1 and O2 then 
the number of different arrangements of the letters L O1 O2 K is 4!

But this number includes the two arrangements

L O1 O2 K    and    L O2 O1 K

so the arrangement L O O K appears twice in the 4! number.

This means that the number of arrangements of the letters L O O K is

4!__
2!

 12

Applying the same argument to the letters in the word CURRICULUM, 
we have two Cs, two Rs and three Us, so the number of arrangements of 
the letters C1 U1 R1 R2 I C2 U2 L U3 M is 10!

But 10! includes the 2! ways of arranging the two Cs, the 2! ways of 
arranging the two Rs and the 3! ways of arranging the three Us. 

Therefore the number of arrangements of the letters in CURRICULUM

is  
10!______

2!2!3!
 151 200 

In general

the number of permutations of n objects when p are the 

same and q are the same is  
n!____

p!q!

Permutations when some objects have to be kept 
together or kept apart

To fi nd the number of permutations of the letters in the word THREE 
when the two Es are kept together, we can consider the two Es as one 
object, i.e. fi nd the number of permutations of the four objects 
T H R (EE), which is 4!

This means that the number of permutations where the two Es are apart 
is the total number of permutations of the letters minus the number 
where the Es are together,

i.e.  
5!__
2!

 4!  36

Independent permutations

Two tasks are independent when the execution of one task has no effect 
on the execution of the other task.

For example, the number of different number plates with any two 
letters followed by any four digits is the number of permutations of two 
letters of the alphabet, 26P2, and the number of permutations of four 
digits, 10P4. These two permutations have no effect on each other, so 
the permutations are independent. Using the fundamental principle of 
counting, the number of different number plates is 26P2 

10P4

Therefore when two tasks are independent, the number of ways of 
doing both is the product of the number of ways of doing each task.

Section 3 Counting, matrices and differential equations



119

Section 3 Counting, matrices and differential equations 

Mutually exclusive permutations

Two tasks are mutually exclusive when they cannot both be executed. 

For example, it is impossible to make a two-digit number and a three-digit 
number  a number either has two digits or it has three digits, not both.

Using the digits 1, 2, 3, 4, 5 without repeating a digit,

the number of permutations giving a two-digit number is  
5!__
3!
 20

the number of ways of making a three-digit number is  
5!__
2!
 60

and these two permutations cover all the different two-digit numbers and 
three-digit numbers so there are 20  60  80 ways of making a two-digit 
number or a three-digit number from 1, 2, 3, 4, 5 without repeating a digit.

When two tasks are mutually exclusive, the number of ways 
of doing either one task or the other is the sum of the

number of ways of doing each task.

Example

A number plate with fi ve characters on it consists of at least three letters together followed by at least one digit. 
The letters are chosen without repetition from the letters A, B, C, D, E, F and the digits are selected without 
repetition from the digits 1 to 9 inclusive. 
The letters must include the letter A. Find the number of different number plates possible. 

There must be either 3 letters and 2 digits or 4 letters and 1 digit:

 3 letters and 2 digits
There are 2 letters available from the 5 remaining letters (B, C, D, E, F) and 2 digits from the 9 digits. 
There are 5  4 ways of arranging the two letters and for each of these there are 3 positions that A can be 
in. So there are 3  5  4 permutations of the letters. There are 9  8 permutations of the digits.
The permutations of letters and digits are independent, so the number of permutations of 3 letters and 
2 digits is 3  5  4  9  8  4320

 4 letters and 1 digit
The number of permutations of letters including A (using similar reasoning to the fi rst case) is 
5  4  3  4 and the number of permutations of one digit is 9. Therefore the number of permutations 
of 4 letters and 1 digit is 5  4  3  4  9  2160

The two cases considered are mutually exclusive, so the number of different number plates is 

4320  2160  6480

Exercise 3.2b

1 Find the number of arrangements of the letters in the word 
PROBABILITY in which

(a) the Bs are together

(b) the Is are apart

(c) the Bs are together and the Is are apart.

2 Three multiple choice questions each have one correct answer and 
three incorrect answers. 

 In how many ways can these questions be answered so that there is at 
least one correct answer?

3 A code is made from three digits selected from the digits 1, 2, 3, 4, 5, 6.

 In how many of these codes are the digits in ascending order of size?
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3.3 Combinations

Combinations

We have seen that the number of different arrangements of 4 books on a 
shelf is 4!, but there is only one set, or combination, of books. 

A combination is a group of objects when the order of the objects in the 
group does not matter.

Suppose we want to fi nd how many groups of 5 books can be selected 
from 8 different books. 

There are 8P5 different arrangements of 5 books selected from the 
8 books, but this number of arrangements includes the 5! arrangements 
of the 5 books selected among themselves. 

different permutations

same combination

A B C D E B D E C A

Therefore the number of different combinations of 5 books selected from 
8 different books is 

8P5___
5!


8!_________

5!(8  5)!

Now   
8!_________

5!(8  5)!


8C5 so we can denote the number of combinations of 

objects chosen from 8 different objects by 8C5

The same argument applies to the general case:

the number of different combinations of r objects selected from 
n different objects 

is given by  nCr 
n!_________

r!(n  r)!

For example, the number of different ways of selecting 8 people from a 
group of 10 people is  

10C8 
10!___________

8!(10  8)!
 45

Example

In how many ways can a set of 8 students be divided into two equal groups?

There must be 4 students in each group.

The number of ways of selecting 4 students from 8 is 8C4 and this leaves the remaining students as the 
other group.

Labelling the students A, B, C, D, E, F, G, H, one selection is the group (A, B, C, D).

Learning outcomes

 To defi ne a combination

 To fi nd a variety of combinations

 To distinguish between a 

permutation and a combination

You need to know

 How to fi nd a permutation

 What independent permutations 

are

 What mutually exclusive 

permutations are

 The meaning of nC
r
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This gives (A, B, C, D) and (E, F, G, H) as the two groups. But (E, F, G, H) is one of the selections included 
in the 8C4 selections and this gives (E, F, G, H) and (A, B, C, D) as the two groups. So 8C4 gives twice the 
number of divisions into two equal groups.

Therefore the number of ways the students can be divided into two equal groups is 
8C4____
2


8!___________

2  4!  4!
 35

Exercise 3.3a

1 A box holds a large number of red, blue, yellow, 
green, black and brown balls. How many selections 
of four balls can be made if

(a) they are all different colours

(b) two balls only are the same colour?

2 In how many ways can 10 children be divided 
into two groups of 6 children and 4 children?

Distinguishing between permutations and combinations

Problems do not usually include the words permutation or combination. 
You need to read the problem carefully and use the context to decide 
whether or not the order of any selection matters.

For example, the number of different hands of cards that can be dealt 
from an ordinary pack of 52 playing cards is a number of combinations 
as a hand of cards is a group and the order does not matter. The number 
of different numbers than can be made from 4 of 5 different digits is a 
permutation as the order of digits in a number does matter.

Example

How many different ways can 4 students be selected from 10 students 
if either Martha or Sergio but not both must be selected?

Either Martha is selected and Sergio is not, which leaves 3 students 
to be selected from the remaining 8 students, giving 8C3

different groups,

or  Sergio is selected and Martha is not, which again leaves 
3 students to be selected from the remaining 8 students, 
giving 8C3 different groups.

These are mutually exclusive combinations so the number of different 
groups is 28C3  112

B

A

Exercise 3.3b

1 Find the number of ways in which 10 girls can be 
placed in a line so that Alice, Grace and Maria are 
separated.

2 The diagram shows a grid of 8 vertical lines and 7 
horizontal lines.

Starting at A, and either moving left or up at 
each intersection, how many routes are there to 
get to B?
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3.4 Sample spaces

Sample spaces

When we perform a task, one of the items that results from the task is 
called an outcome

For example, if the task is choosing two letters from the letters A, B, C, 
D, one possible outcome is AB.

All the possible outcomes of a task is called a sample space

Tables

When a task involves just two items, drawing up a two-way table is a 
good method for ensuring that all the possible outcomes are listed.

For example, this table lists all the possible outcomes when two letters 
are chosen from A, B, C and D.

A B C D

A AA AB AC AD

B BA BB BC BD

C CA CB CC CD

D DA DB DC DD

The possible choices of letter are listed along the top and down the left-
hand side of the table. Then the table can be fi lled in with the outcomes.

This table gives all the outcomes when a coin is tossed and a six-sided 
dice is rolled. The table shows, for example, that there are two outcomes 
resulting in a head and a score greater than 4.

1 2 3 4 5 6

H H1 H2 H3 H4 H5 H6

T T1 T2 T3 T4 T5 T6

Tables are also useful when a sample space contains only a few different 
outcomes but each outcome occurs several times.

For example, this table shows the outcomes and the number of times 
each outcome occurred in a drug trial for a new treatment for migraine.

Gender

Big improvement Mild improvement No improvement

No

side-effects

Some

side-effects

No

side-effects

Some

side-effects

No

side-effects

Some

side-effects

Male 25 3 65 2 38 1

Female 21 5 97 1 14 0

From this we can read, for example, that the number of outcomes giving 
a big improvement is 54 in total.

Learning outcomes

 To defi ne a sample space

 To introduce different ways of 

drawing a sample space

You need to know

 How to draw Venn diagrams
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Tree diagrams

Tables are not suitable when there are several different outcomes for a 
task involving more than two items, for example when three different 
letters, chosen from the letters A, B, C, D, are arranged in a line. We 
know that there are 4P3  24 different outcomes, but not what these 
outcomes are. We can fi nd these outcomes by drawing a tree diagram:

Start by drawing 4 

branches to show the 

4 different choices 

for the fi rst letter, 

writing the letter on 

each branch

At the end of 

each branch, 

repeat for the 

3 different 

choices of the 

second letter

Repeat 

for the 

2 different 

choices for 

the third 

letter

At the end of 

the branch read 

along the path to 

list the outcome

ABCC

D

B

D

B

C

C

D

A

D

A

C

B

D

A

D

A

B

B

C

A

C

A

B

C

D

A

C

B

A

B

ABD

ACB

ACD

D

A

B

D

A

C

D

B

C

ADB

ADC

BAC

BAD

BCA

BCD

BDA

BDC

CAB

CAD

CBA

CBD

CDA

CDB

DAB

DAC

DBA

DBC

DCA

DCB

The list at the right-hand end of the diagram is the sample space for this task.

Venn diagrams

When a task involves overlapping outcomes, we can sometimes use a Venn 
diagram to illustrate and fi nd the numbers of the different outcomes.

Consider, for example, this information for 50 students from a college 
entered for CAPE examinations:

 10 students entered for physics, P

 12 students entered for chemistry, C

 5 students entered for both physics and chemistry.
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This does not give the numbers of students who entered for physics 
but not for chemistry, or vice-versa. It does tell us how many entered 
for physics and chemistry, so there is an overlap between the numbers 
entered for physics and the number entered for both subjects.

We can represent this on a Venn diagram using overlapping circles to 
represent the numbers entered both for P and for C. In the overlap region, 
we enter 5, which leaves 5 in the non-overlapping part of the circle P and 
7 in the non-overlapping part of the circle C. 

33

5

Therefore 17 students were entered for physics or chemistry or both, 
leaving 33 who were entered for neither subject. This number goes in the 
box outside the circles. 

Example

Of the 100 students in a school entered for CSEC examinations:

45 were entered for mathematics 30 were entered for economics

25 were entered for geography 15 were entered for mathematics and economics

18 were entered for mathematics and geography 15 were entered for economics and geography

36 were entered for none of these subjects.

(a) Draw a Venn diagram to show this information.

(b) Find the number of students who 
(i) entered for all of these subjects   (ii) entered for mathematics but not economics nor geography.

This needs a Venn diagram with three overlapping circles. We will use M for mathematics, E for economics 
and G for geography to label the circles containing the numbers for each subject. We need regions where just 
M and E overlap, just M and G overlap, just E and G overlap and where all three overlap.

G

x  8

x

15 x x12  x

18 x 15 x

36

(a) We do not know how many students entered for all three  subjects so we put x in the region where all 
three circles overlap. 

Looking at the numbers for mathematics and geography, we know that 18 students entered both. The 
region where M and G overlap already contains x, so that leaves 18 x for the region where just M and 
G overlap. 

Section 3 Counting, matrices and differential equations
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Now looking at the numbers for mathematics and economics, 15 enter for both. Taking out the number 
who enter all three subjects leaves 15 x for the region where just M and E overlap.  

We know that 45 is the total number in M, so that leaves (45  (33 x))  12  x in the region where 
M does not overlap either of the other circles.

The numbers in the remaining regions can be fi lled in using similar reasoning, 

(b) (i) The sum of the numbers in all the regions is 88  x

There are 100 students in total, therefore 88  x  100 ⇒ x  12
Therefore 12 students were entered for all three of these subjects.

(ii) Reading from the diagram, 24 students entered for mathematics but not economics nor geography.

Exercise 3.4

1 An ordinary six-sided red dice and an ordinary six-sided blue dice are both rolled.

(a) How many different outcomes are there?

(b) Draw a table showing the sample space.

2 The table shows the outcomes of an investigation into the age of cars owned.

Age of car Over 10 years 510 years

Age of owner 1825 2640 4160 over 60 1825 2640 4160 over 60

40 35 15 30 55 60 32 65

Age of car Under 5 years

Age of owner 1825 2640 4160 over 60

5 8 56 20

(a) How many people owned a car over 10 years old?

(b) How many people up to the age of 60 own a car that is 10 years old or less?

3 Four different coins are tossed at the same time. 

(a) Draw a tree diagram to show all the outcomes. 

(b) How many outcomes result in at least two heads?

4 Of the 100 customers at a market stall selling vegetables:

37 bought sweet potatoes

28 bought tomatoes

56 bought carrots

15 bought sweet potatoes and tomatoes

12 bought tomatoes and carrots

16 bought sweet potatoes and carrots

12 did not buy sweet potatoes, tomatoes or carrots.

(a) Draw a Venn diagram to show this information.

(b) (i) How many people bought sweet potatoes, tomatoes and carrots?
(ii) How many people bought just carrots?
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3.5 Basic probability

Terminology

Probability gives a measure for how likely it is that an event will happen, 
i.e. probability gives a measure of predictability.

Up to now we have talked about tasks, but in the context of probability 
we call tasks experiments. For example, choosing three letters from A, B, 
C and D is called an experiment.

An event is an outcome or a group of outcomes from an experiment. For 
example, the outcome ABC is an event when choosing three letters from 
A, B, C and D. An event can also be all the outcomes containing the 
letter A.

When one letter is selected from A, B, C and D, then the selection is 
random when the selection of any one letter is as likely as the selection 
of any other letter. In this case, we can say that each outcome is equally 
likely

When coins or dice are involved in experiments, they are described as 
fair or unbiased if the coins are equally likely to land heads up or tails 
up and if the dice are equally likely to show any one of the possible 
scores.

Defi nition of probability

When all the outcomes of an experiment are known the probability that 
an event A is likely to happen is denoted by P(A) and is given by

P(A) 
the number of equally likely outcomes giving A____________________________________________

the total number of equally likely outcomes

Depending on the nature of the event A, the numerator of this fraction 
can be any number from zero (no outcomes giving A) to the number in 
the denominator (all equally likely outcomes giving A). 

Therefore 0  P(A)  1

When P(A)  0, the event A is impossible and when P(A)  1, the event 
is certain to happen.

Probabilities are given as fractions or decimals or percentages.

For example, when an ordinary fair dice is rolled, each of the 6 scores is 
equally likely.  

To fi nd the probability that the score will be greater than 4, we know that 
the number of equally likely outcomes is 6 and the event ‘a score of 5 or 
6’ is 2 of the equally likely outcomes. 

Therefore P(5 or 6)  2__
6


1__
3

Also  P(score is 7)  0  and  P(score is 6 or less)  1

Learning outcomes

 To introduce the terminology 

used in probability

 To defi ne and use basic 

probability

You need to know

 How to fi nd permutations and 

combinations

 How to read tables and Venn 

diagrams

 What outcomes and sample 

spaces mean
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Example

The table gives a breakdown of car theft in an island for the year 2012.

Cost of a replacement
Age of stolen car in years

Less than 1 13 Older than 3

Less than $10 000 22 30 60

$10 000$30 000 78 56 84

More than $30 000  14 25 8

Find the probability that a randomly selected theft was

(a) of a car up to 3 years old 

(b) of a car older than one year and costing $10 000 or more to replace?

(a) There are 377 thefts listed in the table and any one of these is equally likely to be selected.

  Thefts of cars up to 3 years old are listed in the fi rst two columns: there 225 of these.  

∴ P(theft was a car up to 3 years old) 
225____
377

 0.597 (3 s.f.)

(b) Let B be the event ‘thefts of cars older than one year and costing $10 000 or more to replace’. 

 These are listed in the lower two right-hand columns and rows of the table: there are 173.

∴ P(B) 
173____
377

 0.459 (3 s.f.)

Example

Two cards are drawn at random from a pack of 20 cards containing 5 red cards, 5 blue cards, 5 yellow cards 
and 5 green cards. Find the probability that both cards are red.

The number of combinations of two red cards is 5C2 and the number of combinations of any two cards is 20C2

Therefore the probability that two red cards are drawn is 
5C2____

20C2


5  4________
20  19

 0.0526 (3 s.f.)

Exercise 3.5

1 Two digits are selected at random from the digits 
1, 2, 3, 4, 5, 6, 7 to make a two-digit number.
What is the probability that this number  

(a) is even

(b) contains two odd digits?

2 Three different letters, chosen at random from the 
letters A, B, C, D, are arranged in a line. Using the 
tree diagram in Topic 3.4 or otherwise, fi nd the 
probability that the letters A and B are next to each 
other.

3 A box contains 200 different patterned tiles of 
mixed colours on a white background.

In the pattern, 65 tiles include red, 39 tiles 
include blue, 53 tiles include yellow, 20 tiles 
include red and blue, 18 tiles include red and 
yellow, 25 tiles include blue and yellow and 10 
tiles include all three colours.

(a) Draw a Venn diagram to show this 
information.

(b) One tile is selected at random. Find the 
probability that the pattern on it contains
(i) only red   
(ii) red and blue but not yellow.
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3.6 Probability that an event does not happen

The probability that an event does not happen

If A is an event, then the event ‘not A’ is denoted by A. 

When an ordinary six-sided dice is rolled, the sample space is the set 
S  {1, 2, 3, 4, 5, 6}.

S contains 6 elements so n(S)  6

This sample space contains every possible outcome so it is exhaustive

If the dice is unbiased, the outcomes are all equally likely, so if A is the 
event of scoring 1 or 2,

then the number of ways in which A can occur is 2, so P(A)  2__
6

Now the number of ways in which A cannot occur is 6  2,

Therefore P(A) 
6  2______

6


6__
6

2__
6

 1  P(A)

In general if the number of equally likely ways an event A can happen 
is x and the sample space is S, then the number of ways in which A

cannot happen is  n(S)  x,

∴ P(A) 
n(S) x________

n(S)


n(S)____
n(S)

 
x____

n(S)
 1  P(A)

i.e. P(A)  1  P(A)

For example, the probability that an unbiased dice shows 6 when rolled 

is  16, therefore the probability that the dice does not show 6 is 1 1
6 

5
6

and if the probability that it will rain tomorrow is 67%, then the 
probability that it will not rain tomorrow is 100%  67%  33%

In simple cases, P(A) can be found directly, for example when one letter 
is chosen at random from the letters A, B, C, D, the probability that it is 
not the letter D is  34

In other cases it may be easier to fi nd P(A) fi rst.  

Example

A two-digit number, greater than zero, is made by choosing two 
integers at random from the digits 0 to 9 inclusive. A digit can be 
chosen more than once. What is the probability that the number is 
not a multiple of 5?

It is easier to fi nd how many numbers are multiples of 5 than how 
many are not. 

A number is divisible by 5 if it ends in 0 or 5.

The number of permutations of two digits ending in 0 or 5 is 9  2

The number of permutations of two digits is 9  10    

A number cannot start with 0 but it can end with 0

So if A is ‘the integer is a multiple of 5’  

P(A) 
9  2_______

9  10


1__
5

 ,  ∴ P(A)  1  P(A)  1 1__
5


4__
5

Learning outcomes

 Finding the probability that an 

event does not happen

You need to know

 Simple set notation

 What a sample space is

 How to use basic probability

 The meaning of mutually 

exclusive
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Example

This Venn diagram (from Topic 3.4) shows, out of the 100 students 
who were entered for CSEC examinations, the numbers who were 
entered for mathematics, economics and geography.

One of these 100 students is chosen at random. What is the 
probability that they were entered for at least one of the subjects 
mathematics, economics or geography?

G

4

12

3 1224

36

It is easier to fi nd the probability that a student was not entered for 
at least one of the subjects. The Venn diagram shows that this number 
is 36. 

Taking A as the event ‘a student is entered for at least one of the 
subjects mathematics, economics or geography’, A is the event ‘a 
student is not entered for any of the subjects mathematics, economics 
or geography’.

Then P(A) 
36____

100
 0.36

Using P(A)  1  P(A)  gives 0.36  1  P(A)

∴ P(A)  0.64

Exercise 3.6

1 Two pens are chosen at random from a box containing 6 red, 4 blue and 8 black pens.

 What is the probability that at least one pen is blue?

2 This table from Topic 3.4 shows the outcomes for 272 people taking part in a drug trial for a 
new treatment for migraine.

Gender

Big improvement Mild improvement No improvement

No

side-effects

Some

side-effects

No

side-effects

Some

side-effects

No

side-effects

Some

side-effects

Male 25 3 65 2 38 1

Female 21 5 97 1 14 0

Find the probability that one person, chosen at random, had no side-effects.
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3.7 Probabilities involving two events

Mutually exclusive events

Two events are mutually exclusive when they cannot both occur 
simultaneously.

For example, choosing an even number and choosing an odd number are 
mutually exclusive because a number cannot be both even and odd.

However, choosing a number that is a multiple of 3 and choosing any 
even number are not mutually exclusive because 6, for example, is both. 

If A and B are mutually exclusive events, the set of ways in which A can 
occur and the set of ways in which B can occur will have no members in 
common. They can be represented in a Venn diagram as two circles that 
do not overlap. The set S is the sample space.

S

BA

If there are n equally likely outcomes in the sample space of which A can 
occur in p ways and B can occur in q ways, 

then the probability of A or B occurring is   
p  q______

n


p__
n


q__
n
 P(A)  P(B)

The probability that A or B will occur is denoted by  P(A  B). 

Therefore when A and B are mutually exclusive events
P(A  B)  P(A)  P(B)

Example

The probability that a girl walks to school is  14 and the probability that she takes a bus to school is  35. 
What is the probability that she goes to school by another method?

P(she goes to school by another method)  P(she does not walk nor take a bus)

 1  P(she does walk or take a bus)

Walking and taking a bus are mutually exclusive, therefore 

P(she does walk or take a bus)  1
4 

3
5 

17__
20

∴ P(she goes to school by another method)  1 17__
20 

3__
20

Independent events

Two events are independent when one event, whether or not it occurs, 
has no effect on whether or not the other event occurs.

For example, rolling an ordinary fair six-sided dice and tossing a fair coin 
are independent experiments. 

The number of ways the dice can land and the coin can land is 6  2

The number of ways the dice can show fi ve uppermost and the coin can 
show a head is 1  1

Learning outcomes

 To fi nd the probability that 

events A and B will both occur

 To fi nd the probability that 

either event A will occur or event 

B will occur

You need to know

 How to use set notation

 The meaning of union and 

intersection of sets

 Basic probability

 About independent 

permutations and combinations



131

Section 3 Counting, matrices and differential equations 

Therefore P(5 and H)  1  1______
6  2


1__
6


1__
2
 P(5)  P(H)

If there are n outcomes in an experiment in which an event A can occur 
in p ways, 

then P(A) 
p__
n

If there are m outcomes in an independent experiment in which event B

can occur in q ways, then P(B) 
q___
m

As the experiments are independent, A and B are independent. 

There are n  m outcomes for the fi rst and second experiment in which 
A and B can occur in p and q ways, 

so P(A and B) 
p  q_______
n  m


p__
n


q___
m

 P(A)  P(B)

P(A and B) is denoted by P(A  B).

Therefore when A and B are independent events 
P(A  B)  P(A)  P(B)

Example

Three ordinary six-sided dice are rolled together. Two of the dice are fair but the third dice is biased so that it 
is twice as likely to show 6 as any other number. Find the probability that all three dice will show 6.

The equally likely outcomes from the biased dice are 1, 2, 3, 4, 5, 6, 6. Therefore the probability that this 
dice shows 6 is  2

7
. The probability that a fair dice shows 6 is  16

There are three dice, so we will call the fair dice a and b and the biased dice c and events of showing a 6 as, 
6a, 6b and 6c

The way in which one of the dice lands has no effect on the way the others land, so the events are independent.

∴ P(6a  6b  6c)  P(6a)  P(6b)  P(6c)


1
6 

1
6 

2
7


2___
252

Probability that A or B occurs when A and B are not 
mutually exclusive

Suppose that one number is chosen at random from the integers 1 to 12 
inclusive and we want to fi nd the probability that the number is even 
or a multiple of 3.

If A is the event ‘choosing an even number’ and B is the event ‘choosing 
a multiple of 3’ then A and B are not mutually exclusive because 
6 and 12 are both even and multiples of 3.

We can illustrate the sample space in a Venn diagram.

A1

5

7

108

2 4 6

12

A and B

9

3

11

B
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This diagram shows that the number of elements in either A or B, i.e. in  
A  B, is not (number of elements in A)  (number of elements in B) 
because this includes the elements 6, 12, i.e. in A  B, twice. 

The number of ways in which A can occur is 6 so P(A) 
6___

12

The number of ways in which B can occur is 4 so P(B)  4___
12

The number of ways in which A and B can occur is 2, so P(A  B)  2___
12

The number of ways in which A or B can occur is 8  6  4  2, 

so P(A  B) 
6  4  2__________

12


6___
12


4___

12
2___

12
 P(A)  P(B)  P(A  B)

For any two events A and B that are not mutually exclusive:

(the number of ways in which A or B can occur) 

 (number of ways in which A can occur)  (number of ways in which B
can occur)  (number of ways in which A and B can occur).

This is because (number of ways in which A can occur)  (number of 
ways in which B can occur) includes (number of ways in which A and B
can occur) twice.

Therefore when A and B are not mutually exclusive events
P(A  B)  P(A)  P(B)  P(A  B)

Notice that the set of elements in the part of B that excludes {A  B} is 
described by the set {A  B} and similarly for the set of elements in the 
part of A that excludes {A  B}

{A ∩ B A ∩ B}{A ∩ B}

Example 

This table from Topic 3.4 shows the outcomes for 272 people taking part in a drug trial for a new treatment
for migraine.

Gender

Big improvement Mild improvement No improvement

No

side-effects

Some

side-effects

No

side-effects

Some

side-effects

No

side-effects

Some

side-effects

Male 25 3 65 2 38 1

Female 21 5 97 1 14 0

Find the probability that one person, chosen at random, is male or has side-effects.

Section 3 Counting, matrices and differential equations
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Being male and having side-effects are not mutually exclusive. Therefore  

P(male or side-effects)  P(male)  P(side-effects)  P(male and side-effects)

The number of {males} is 134, the number of {side-effects} is 12, 

the number of {male and side-effects} is 6.

Therefore P(male or no side-effects) 
134____
272


12____

272
6____

272

 
140____
272

 0.515 (3 s.f.)

Example

Two fair normal six-sided dice are rolled together. Find the probability of rolling at 
least one 6 or at least one 5.

At least one 6 and at least one 5 are not mutually exclusive, therefore 

P(at least one 6 or at least one 5) 

 P(at least one 6)  P(at least one 5)  P(at least one 6 and at least one 5) 

 P(at least one 6)  1  P(no 6)  1 
5  5______

36


11___
36

 P(at least one 5)  1  P(no 5)  1 
5  5______

36


11___
36

 P(at least one 6 and at least one 5)  2  2______
36


4___

36

∴ P(at least one 6 or at least one 5)  22  4_______
36


1__
2

Exercise 3.7

1 Two boys, A and B play a game that involves rolling an ordinary six-
sided dice. 
The fi rst person to roll a six wins. A goes fi rst. Find the probability 
that B wins on his fi rst turn.

 (Hint: For B to win on his fi rst turn, A must lose on his fi rst turn.)

2 A and B are independent events. P(A)  2_
5, P(B)  1_

4 and 

 P(A  B)  1__
10

Find (a) P(A  B) (b) P(A  B)

3 A tennis player A has a probability of  3_5 of winning a set against player 
B. The fi rst player to win 2 sets out of 3 wins the match. 
Find the probability that when A plays B, A wins the match.

4 A and B are two events such that P(A)  0.3, P(B)  0.5 and 
P(A  B)  0.6

 Explain why A and B are neither mutually exclusive nor independent.
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3.8 Probabilities involving two or more events

Events that are not independent

If a card is removed at random from a pack of 4 cards numbered 1, 2, 
2, 3 and not put back, and then a second card is chosen, the options for 
the number on the second card depend on which number was removed 
fi rst.  

Therefore these two events are not independent as the ways in which the 
second event can occur have been reduced by one and depend on which 
number was removed fi rst.

The number of equally likely outcomes is therefore 4  3  12

We can show the probabilities for each card and the different outcomes 
on a tree diagram:

(2, 1)

(2, 3)

(2, 2)

(3, 1)

(3, 2)P(2) 

(1, 2)

Second cardFirst card

(1, 3)

2
3

P(1)  1
3

P(3)  1
3

P(2)  2
3

P(3)  1
3

P(3)  1
4

P(1)  1
4

P(2)  1
2

P(1)  1
3

P(2)  1
3

Notice that this tree diagram shows the seven different outcomes, 
which are mutually exclusive, but it does not show all the equally likely 
outcomes (there are 12).

For example, there are two ways in which the fi rst card is 1 and the 
second card is 2, i.e. (1, 21) and (1, 22)

so P(1st card is 1 and 2nd card is 2)  2__
12 

1
6

Using the tree diagram,

 P(1st card is 1)  P(2nd card is 2)  1
4 

2
3 

1
6

Similarly,

 P(1st card is 2 and 2nd card is 1)  1
6  P(1st card is 2)  P(2nd card is 1)

Learning outcomes

 To use tree diagrams to solve 

problems involving two events

 Finding the probability that an 

event occurs given that another 

event has already occurred

You need to know

 How to use basic probability

 How to draw a tree diagram

 How to fi nd probabilities of 

mutually exclusive events
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So, to fi nd the probability of an outcome shown on a tree diagram, we 
multiply the probabilities on the path leading to that outcome.

There are two outcomes where the two cards are 1 and 2 in any order, i.e. 
(1, 2) and (2, 1).

These are mutually exclusive, so to fi nd the probability that one card is 1 
and the other is 2, we add the probabilities of each. 

Therefore P(the cards removed are numbered 1 and 2)  1
6 

1
6 

1
3

To fi nd the probability of two or more outcomes shown on a tree diagram, 
we add the probabilities of each outcome.

Tree diagrams can be extended to cover more than two events.

This diagram shows the probabilities when three coins are tossed, two of 
which are fair and one is biased so that a head is twice as likely as a tail.

(H, H, H)

Fair coinFair coinBiased coin

(H, H, T)

(H, T, H)

(H, T, T)

(T, H, H)

(T, H, T)

(T, T, H)

(T, T, T)

P(H)  2
3

P(T)  1
3

P(T)  1
2

P(H)  1
2

P(T)  1
2

P(H)  1
2

P(T)  1
2

P(H)  1
2

P(T)  1
2

P(H)  1
2

P(T)  1
2

P(H)  1
2

P(T)  1
2

P(H)  1
2

To fi nd the probability of any one of the outcomes, we multiply the 
probabilities along the path giving that outcome.

For example, to fi nd the probability that the biased coin shows a head, 
and the other two coins show tails, we follow the path leading to (H, T, T)

giving P(H, T, T)  2_
3 

1_
2 

1_
2 

1_
6

To fi nd the probability of more than one outcome we add the probabilities 
of each.

For example, to fi nd the probability that the three coins land showing two 
heads and a tail, we add the probabilities of the events 

(H, H, T), (H, T, H) and (T, H, H) giving  1_6 
1_
6 

1__
12 

5__
12
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Conditional probability

We refer to the card situation outlined at the start of this topic, namely, 
a card is removed at random from a pack of 4 cards numbered 1, 2, 2, 3 
and not put back, and then a second card is removed at random. Suppose 
we want to fi nd the probability that the second card removed is number 
2, given that the fi rst card is 1. 

This is an example of conditional probability and we write it as 
P(2nd card is 2|1st card is 1)

In general  P(A|B)  means the probability that A occurs given 
that B has already occurred.

There are problems involving two events when we are interested in 
only some of the possible outcomes. In cases like these we can draw a 
simplifi ed tree diagram. 

Example

Three ordinary six-sided dice are rolled together. Two of the dice are fair and one is biased so that a six is 
three times as likely as any other score. 

Find the probability that exactly two sixes are rolled. 

We are interested in whether sixes are rolled or not, so we need only show probabilities and outcomes for 
sixes or not sixes.

Fair diceFair diceBiased dice

(6, 6, 6)

(6, 6, 6)

(6, 6, 6)

P(6)  3
8

P(6)  5
8

P(6)  5
6

P(6)  1
6

P(6)  5
6

P(6)  1
6

P(6)  5
6

P(6)  1
6

P(6)  5
6

P(6)  1
6

P(6)  5
6

P(6)  1
6

P(6)  5
6

P(6)  1
6

Therefore P(two 6s)  (3
8 

1
6 

5
6 )  (3

8 
5
6 

1
6 )  (5

8 
1
6 

1
6 )  35___

288  0.122

Section 3 Counting, matrices and differential equations

Exercise 3.8a

1 A pack of ten cards are numbered 1 to 10. One 
card is removed at random and not replaced. A 
second card is then removed at random. Find the 
probability that the sum of the numbers on the 
two cards is 3.

2  A bag contains 3 red pens and 2 blue pens. One 
pen is removed at random and not replaced, then 
a second pen is removed. Find the probability that 
one red and one blue pen are removed.
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Exercise 3.8b

1 A bag contains 3 white balls and 2 black balls. 
A second bag contains 1 white ball and 4 black 
balls. One bag is chosen at random and one ball is 
removed at random from that bag. 

 If the ball is black, what is the probability that it 
came out of the second bag?

2 A telephone call from one cell phone to another 
cell phone goes through three sets of independent 

equipment, the cell phone making the call, the 
operator’s network and the cell phone receiving 
the call. 

 The probability that the outgoing phone is faulty 
is 0.001, the probability that the network is faulty 
is 0.01 and the probability that the receiving 
phone is faulty is 0.005

 Find the probability that if a call fails to connect, 
it is at least partly a fault of the network.

If the fi rst card is numbered 1, there are 2 out of 3 ways of removing a 
card numbered 2, so

 P(2nd card is 2|1st card is 1)  2
3

Now P(1st card is 1  2nd card is 2)  1
4 

2
3  and  P(1st card is 1)  1

4

∴

P(1st card is 1  2nd card is 2)____________________________
P(1st card is 1)

 P(2nd card is 2|1st card is 1)

In general if A and B are two events then
P(A  B)  P(A)  P(B|A)

Example

One coin is selected at random from two coins and tossed. One of the 
coins is biased so that a head is twice as likely as a tail and the other 
coin is fair. If the coin shows a head, what is the probability that it is 
the biased coin? 

The two events we are interested in are the choice of coin and whether 
it shows a head.

Shows a headChoice of coin

P(biased)  1
2

P(not biased)  1
2

P(H)  1
2

P(H)  2
3

(not biased, H)

(biased, H)

If B is the selection of the biased coin and H is tossing a head, then the 
probability that the coin is biased given that a head is tossed is P(B|H).

Using P(H  B)  P(H)  P(B|H), then from the tree diagram

 P(H  B)  1
2 

2
3 

1
3

and P(H)  1
2 

2
3 

1
2 

1
2 

7__
12

∴ P(B|H)  1
3 

7__
12 

4
7
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3.9 Introduction to matrices

Matrices

A matrix is an array of elements in rows and columns (numbers or 
algebraic expressions) that are enclosed in brackets, for example

( 2 1 0 3 4

2 6 4 5 0
)

A matrix is denoted by A, B, etc.

The size of a matrix is defi ned by the number of rows and the number of 
columns, in that order. For example,

( 2 1 0 3 4

2 6 4 5 0
) has 2 rows and 5 columns and is 

called a 2  5 matrix.

When a matrix has m rows and n columns it is called an m  n matrix.

The position of a particular element is identifi ed by suffi xes to show 
which row and column (in that order) it is in. For example, a21 means the 
element in the second row and fi rst column and aij means the element in 
the ith row and jth column. In the example above, a21  2

A matrix with just one column is called a column vector and a matrix 
with just one row is called a row vector. Column vectors and row vectors 
are denoted by a, b, etc.

For example, a  (
6

2

1
)  and   b  ( 8 5 10 )

A matrix with the same number of rows and columns is called a square

matrix, e.g.  (3 8

0 9
)

Two matrices A and B are equal when each element in A is equal to the 
corresponding element in B, i.e.

A  B  ⇔⇔ aij  bij for all values of i and j

For example,   (3 8

0 9
)  (3 8

0 9
)  but   (3 8

0 9
)  (3 6

1 9
)

Example

Find x and y given that   ( x 0

1 4
)  ( 3 0

1 y)
As aij  bij for all values of i and j, x  3 and y  4

Addition and subtraction of matrices

Matrices can be added when they are the same size by adding 
corresponding elements.

For example,  (
2 3

4 0

6 1
)  (

4 0

2 7

5 5
)  (

 6 3

 2 7

11 6
)

Learning outcomes

 To defi ne a matrix

 To add and subtract matrices

 To multiply a matrix by a scalar

You need to know

 The meaning of commutative 

operations
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The matrices   (2 1

8 2
)  and   (

4 1

2 6

4 1
)  are different sizes and cannot be

added, so their sum has no meaning.

The addition of real numbers is commutative, so if A and B are two matrices of the 
same size, it follows that

A  B  B  A

Matrices can be subtracted when they are the same size, by subtracting 
corresponding elements.

For example,  (
 2 3

 4 0

 6 1
) (

4 0

2 7

5 5
)  (

2 3

6 7

1 4
)

Subtraction of real numbers is not commutative, so if A and B are two matrices of 
the same size, it follows that

A  B  B  A

Matrices that are the same size are said to be conformable for addition and 
subtraction

Multiplication of a matrix by a scalar

The elements in the matrix A are each  times the corresponding elements in A

For example, when A  (
2 3

4 0

6 1
), 3A  (

 6 9

12 0

18 3
)

Example

Given A  (5 4 1

2 5 0
)  and  B  ( 2 0 2

4 6 1
),  fi nd 

(a) A  B (b) 2A B

(a) A  B  (5 4 1

2 5 0
)  ( 2 0 2

4 6 1
)

   (3 4 3

6 1 1
)

(b) 2A  (10 8 2

 4  10 0
),  therefore  

 2A B  (10 8 2

 4  10 0
) ( 2 0 2

4 6 1
)

 (  12 8 0

 0  16 1
)

Exercise 3.9

A  (
4 5

2 0

3 6
),  B  (

1 2

3 2

3 1
),  C  (

x 2x x

  y xy x2

 3x 2x xy
) ,  D  (

 5x 2y x

  y xy y2

 3y 2x 2y2
)

1 Use the given matrices to fi nd:

(a) B  A (b) 3A  2B (c) D  C

2 If cij is an element in C, write down the element c31.

3 Explain why A  C has no meaning.
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3.10 Matrix multiplication

The product of a row vector and a column vector

Provided that a row vector and a column vector each have the same 
number of elements, 

the product (a11 a12 … a1n)(
b11

b21
…

bn1

) is defi ned as a11b11  a12b21 …  a1nbn1

For example,  (2 1 1) (
3

4

2
)  (2)(3)  (1)(4)  ( 1)( 2)  12

The product of a matrix and a column vector

Provided that a matrix has the same number of columns as the number

of elements in a column vector, the product (
a11 … a1n

a21 … a2n

… … …

am1 … amn

)(b11

…

bn1

)
is defi ned as the column vector whose top element is the product of the 
top row of the matrix and the column vector, whose second element is 
the product of the second row of the matrix and the column vector, and 
so on,

i.e. (
a11 … a1n

a21 … a2n

… … …

am1 … amn

)( b11

…

bn1

)  (
a11 b11  a12 b21  …  a1n bn1

a21 b11  a22 b21  …  a2n bn1

…

am1 b11 am2 b21  … amn bn1

)
For example,

( 5 2 7
1 6 2)(

1

2

5
)  (( 5 2 7) (

1

2

5
)

( 1 6 2) (
1

2

5
) )

   ( (5)( 1)  (2)(2)  (7)( 5)

( 1)( 1)  ( 6)(2)  (2)( 5))
 ( 36

21
)

This defi nition of the product is precise: Ab exists when b is a column 
vector only if the number of columns in A is equal to the number of 
elements in b. 

bA is meaningless and bA is said to be non-conformable

For any product of an (m  n) matrix by an (n  1) column vector, the 
result is an (m  1) column vector.

Learning outcomes

 To defi ne the product of a row 

vector and a column vector

 To defi ne the product of a square 

matrix and a column vector

 To defi ne the product of two 

matrices

You need to know

 The meanings of column matrix, 

row matrix, m  n matrices

 The notation for the elements of 

a matrix

 The double angle trig identities
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Example

Evaluate   (
2 x

1 y

0 z
)( 1

2
)

(
2 x

1 y

0 z
)( 1

2
)  (

2  2x

1  2y

2z
)

Exercise 3.10a

Evaluate these products.

1 (5 2) (4

2
) 2 (2 5 1) (

4

0

3
) 3 (3 1 4)(

x

y

z
)

4 ( 2 1

3 1
)(4

2
) 5 (

5 1

2 1

0 3
)( 3

2
) 6 (

3 1 4

2 2 0

1 5 1
)(
x

y

z
)

The product of two matrices

For two matrices A and B, the product AB exists provided that the 
number of columns in A is equal to the number of rows in B. Two 
matrices that satisfy this condition are called conformable for 
multiplication.

AB is then defi ned as the matrix C where the element cij is the product of 
the ith row of A and the jth column of B, i.e. 

(
a11 … a1n

a21 … a2n

… … …

am1 … amn

)(
b11 … b1m

b21 … b2m

… … …

bn1 … bnm

)  (
c11 … c1n

… cij …

cm1 … cnm
)

where cij is the product of the ith row and jth column, i.e. cij  (ai1 … ain)(
b1j

…

bnj

)
For example, 

(3 1

1 1
)( 1 3 2

1 1 2
)  ((3 1) ( 1

1
)

 (1 1) ( 1

1
)

(3 1) (3

1
)

 (1 1) (3

1
)

(3 1) (2

2
)

 (1 1) (2

2
))

  (2 10  8

2  2  0
)

However,  ( 1 3 2

1 1 2
)(3 1

1 1
) is meaningless because the fi rst matrix

has three columns and the second matrix has only two rows, i.e. the 
matrices are not conformable.

Now consider the matrices A and B where A  (2 4 1

1 0 1
) and B  (

2 1

0 2

1 1
)
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The product AB exists because A has three columns and B has three 
rows, so

AB  (2 4 1

1 0 1
) (

2 1

0 2

1 1
)

   (((2)(2)  (4)(0)  (1)( 1) ) ((2)(1)  (4)( 2)  (1)(1) )

((1)(2)  (0)(0)  ( 1)( 1) ) ((1)(1)  (0)( 2)  ( 1)(1) ))
 (3 5

3 0
)

The product BA also exists because B has two columns and A has two 
rows, so

BA  (
2 1

0 2

1 1
) (2 4 1

1 0 1
)

   (
(2)(2)  (1)(1) (2)(4)  (1)(0) (2)(1)  (1)( 1)

(0)(2)  ( 2)(1)  (0)(4)  ( 2)(0)  (0)(1)  ( 2)( 1)

( 1)(2)  (1)(1) ( 1)(4)  (1)(0) ( 1)(1)  (1)( 1)
)

 (
5 8 1

2 0 2

1 4 2
)

This example illustrates the following key points.

When AB and BA both exist, in general AB  BA 
so matrix multiplication is not commutative.

The order in which the matrices are multiplied matters, so for AB we 
say that A premultiplies B and for BA we say that A postmultiplies B.

When A is an m  n matrix and B is an n  p matrix,
the size of AB is m  p

Note that A2 means AA

Example

Given  A  (4 1

3 6
)  and  I  (1 0

0 1
)  show that  

(a) AI  IA (b) A2 A  9I  ( 0 9

27  18
)

(a) AI  (4 1

3 6
)(1 0

0 1
)  (4 1

3 6
)

and IA  (1 0

0 1
)(4 1

3 6
)  (4 1

3 6
)

∴ AI  IA ( A)

Section 3 Counting, matrices and differential equations
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(b) A2
 (4 1

3 6
)(4 1

3 6
)  (13 10

30 33
)

A2 A  (13 10

30 33
) (4 1

3 6
)  (  9 9

27  27
)

∴ A2 A  9I  (  9 9

27  27
) (9 0

0 9
)  (  0 9

27  18
)

∴ A2 A  9I  (  0 9

27  18
)

Example

Given  A  (2 1

3 2
),  B  (1 4

0 1
) and  C  ( 2 0

2 3
)

show that (AB)C  A(BC)

AB  (2 1

3 2
)(1 4

0 1
)  ( 2  7

3 14
),  

∴ (AB)C  ( 2 7

3 14
)( 2 0

2 3
)  ( 18 21

34 42
)

BC  (1 4

0 1
)( 2 0

2 3
)  ( 10 12

2  3
)

∴ A(BC)  (2 1

3 2
)( 10 12

2  3
)  ( 18 21

34 42
)

Therefore (AB)C  A(BC)

In general if the products can be found, then for 
three matrices A, B and C 

(AB)C  A(BC)

i.e. matrix multiplication is associative. 

Exercise 3.10b

1 Evaluate  

(a) (1 0

2 4
) ( 2 3

1 0
) (b) (

2 4 5

1 3 0

2 1 2
) (

1 0

1 2

4 1
)

(c) (5 2 6 1

3 1 4 2
)(

1 5

3 4

2 5

2 1 

)
2 Given A  (1 1

4 1
) and B  (1 1

2 1
) show that (A  B)2

 A2
 B2

3 Given A  (
cos  

__
2

 sin  
__
2

sin  
__
2

 cos  
__
2
) show that A2

 (1 0

0 1
)
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Square matrices

A square matrix has an equal number of rows and columns.

For example   ( 2 4

1 3
)  is a 2  2 square matrix and   (

1 2 1

2 0 3

1 4 2
)  is 

a 3  3 square matrix.

Unit matrices

A unit matrix is a square matrix such that the elements in the leading 
diagonal (that is top left to bottom right) are all 1 and all the other 
elements are zero.

For example,   (1 0

0 1
)  and   (

1 0 0

0 1 0

0 0 1
)  are unit matrices. 

A unit matrix is denoted by I

Zero matrices

All the elements in a zero matrix are zero. A zero matrix is denoted by 0

and is not necessarily square, for example,   (0 0 0

0 0 0
)  is a zero matrix.

Multiplication of a matrix by a zero matrix of a suitable size will give a

zero matrix, for example,  (
a c e

b d f )(
0 0

0 0

0 0
)  (0 0

0 0
)

However, unlike real numbers where ab  0 ⇒ a  0 or b  0, 
when AB  0, neither A nor B may be 0

For example,  (2 1

0 0
)(0 1

0 2
)  (0 0

0 0
)

i.e. AB  0    A  0  or  B  0 

For real numbers, ab  ac ⇒ a  0 or b  c

However, given  A  (1 1

1 1
),  B  (1 0

0 1
),  C  (0 1

1 0
)

AB  (1 1

1 1
)(1 0

0 1
)  (1 1

1 1
)

and  AC  (1 1

1 1
)(0 1

1 0
)  (1 1

1 1
)

so  AB  AC  but  A  0  and  B  C

i.e. AB  AC    A  0  or  B  C 

Learning outcomes

 To defi ne zero and unit matrices

 To determine identity matrices 

for addition and multiplication

You need to know

 How to fi nd the product of two 

matrices

 What is meant by the concept of 

identity

3.11 Square matrices, zero matrices, 
unit matrices and inverse matrices
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Identity matrices

Under addition and subtraction of real numbers, the identity number is 0 
as it leaves unchanged any number it is added to or subtracted from.

There is no single identity matrix that can be added to or subtracted 
from any matrix that will leave that matrix unchanged.

The identity matrix for addition and subtraction is a zero matrix of the 
same size. 

For example,

(a c e

b d f )  (0 0 0

0 0 0)  (a c e

b d f )  but   (a c e

b d f )  (0 0

0 0)
is meaningless.

Under multiplication of real numbers, the identity number is 1 as it 
leaves unchanged any number multiplied by 1.

Again, there is no single identity matrix that can premultiply and/or 
postmultiply any matrix and leave it unchanged.

The identity matrix for multiplication is a unit matrix and its size 
depends on the matrix it multiplies. 

For a square matrix, the identity is the same size. For example,

(a c

b d
) (1 0

0 1
)  (a c

b d
)  and   (1 0

0 1
) (a c

b d
)  (a c

b d
)

( a d g

b e h

c f i
) (1 0 0

0 1 0

0 0 1
)  ( a d g

b e h

c f i
) and   (1 0 0

0 1 0

0 0 1
) ( a d g

b e h

c f i
)  ( a d g

b e h

c f i
)

Therefore, a unit matrix of the same size as a square matrix is both a 
premultiplicative and a postmultiplicative identity.

Now consider the matrix A  (a c e

b d f )
We can premultiply A by the unit matrix   (1 0

0 1
)  giving 

(1 0

0 1)(a c e

b d f )  (a c e

b d f )
and we can postmultiply A by the unit matrix   (1 0 0

0 1 0

0 0 1
)  giving

(a c e

b d f ) (1 0 0

0 1 0

0 0 1
)  (a c e

b d f )
In general, for an m  n matrix, an m  m unit matrix is 
a premultiplicative identity and an n  n unit matrix is a 
postmultiplicative identity.

Exercise 3.11

1 Given  A  (i 0

0 i  
)  where i  √

___

1    show that A4
 I
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3.12 Determinants, minors and cofactors

Determinant of a matrix

The determinant of a square matrix is a real number that is associated 
with that matrix. Only square matrices have determinants.

The determinant of a matrix A  (
a11 … … a1n

a21 … … a2n

 … … … …

an1 … … ann

)  is denoted by 

|A|  ⎥
a11 … … a1n

a21 … … a2n

 … … … …

an1 … … ann

⎥
|A| is also written as det A

The determinant of a 2  2 matrix 

The determinant of the matrix  ( a b

c d
)  is defi ned as the value of  ad bc,

i.e. as the value of the product of the elements in the leading diagonal 
minus the product of the elements in the other diagonal.

Therefore ⎥ a b

c d
⎥  ad  bc

For example, if A  (2 1

3 5
) then |A|  ⎥ 2 1

3 5
⎥  (2)(5)  ( 1)(3)  13

Exercise 3.12a

Find the determinant of each matrix.

1  ( 3 2

1 2
) 2 ( 6 2

5 1
) 3 (

1
2

2
3

5
6

10__
9
) 4 (2x y

 x x2 )

Cofactors

The determinant of an n  n matrix is based on extracting smaller 
determinants.

The determinant of a 3  3 matrix is based on 2  2 determinants 
extracted from the 3  3 determinant.

These 2  2 determinants are found from the elements left when the row 
and column through a particular entry are crossed out.

Learning outcomes

 To defi ne determinants

 To calculate the determinant of 

an n  n matrix

 To defi ne a singular matrix

You need to know

 The notation for identifying 

elements in a matrix

 The meaning of the leading 

diagonal in a square matrix
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For example, when we cross out the elements from the row and column

through the element 8 in  ⎥ ⎥
we are left with the 2  2 determinant  ⎥ 2 1

5 9
⎥

This determinant is called the minor of the element 8.

Each minor in a determinant has a sign,  or , associated with it. This 
sign depends on the position of the element of which it is minor. 

These signs are  ⎥
  

  

  

⎥
The minor of an element together with its sign is called the 

cofactor of that element.

So, for example, the sign  is associated with the element 8 in  ⎥
2 1 3

6 4 8

5 9 7
⎥

so the cofactor of 8 is ⎥ 2 1

5 9
⎥

The cofactors of 2, 1 and 3 are   ⎥4 8

9 7
⎥,  ⎥6 8

5 7
⎥  and   ⎥6 4

5 9
⎥  respectively.

The determinant of a 3  3 matrix

The determinant of a 3  3 matrix is defi ned as the sum of the products 
of each element in the fi rst row and its cofactor.

So, for example,  ⎥
2 1 3

6 4 8

5 9 7
⎥  2 ⎥ 4 8

9 7
⎥  1 ⎥ 6 8

5 7
⎥  3 ⎥ 6 4

5 9
⎥

   (2)( 44)  (1)(2)  (3)(34)  12

In general

⎥
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎥  a11⎥
a22 a23

a32 a33
⎥  a12⎥

a21 a23

a31 a33
⎥  a13⎥

a21 a22

a31 a32
⎥

It is not sensible to try and remember this as a general method, just 
remember the process.

The determinants of larger matrices are found by extending the defi nition 
of a 3  3 determinant, i.e. by the sum of the products of the elements in 
the fi rst row and their cofactors.

For a 4  4 determinant, the cofactors are 3  3 determinants, and these 
in turn are broken down to 2  2 determinants. However, the calculation 
involved in fi nding a determinant larger than 3  3 is tedious and is 
usually done using a specialist calculator or software.

Exam tip

It is easy to make mistakes when 

fi nding a 3  3 determinant, so do 

not be tempted to try and calculate 

it in one step.
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Example

Evaluate   ⎥
1 2 0

3 1 1

2 0 5
⎥

⎥
1 2 0

3 1 1

2 0 5
⎥  ( 1) ⎥ 1 1

0 5
⎥  (2) ⎥ 3 1

2 5
⎥  (0) ⎥ 3 1

2 0
⎥

   ( 1)(5)  (2)( 13) 

 21

Example

Solve the equation ⎥
 2 x 1

 x 3 1

 4 1 1 
⎥  24

Expanding the determinant gives 

⎥
 2 x 1

 x 3 1

 4 1 1 
⎥  2( 3  1) x( x  4)  1(x  12)

   4  x
2  4x  x  12 

 x
2  3x  16

∴ x
2  3x  16  24

⇒ x
2  3x  40  0

⇒ (x  8)(x  5)  0

∴ x  5  or  x  8

An application of 3  3 determinants in coordinate 
geometry

y

xO

A(x1, y1)

S T U

B(x2, y2)

C(x3, y3)

The area of the triangle ABC in the diagram is  
(area SACT)  (area TCBU)  (area SABU)

Section 3 Counting, matrices and differential equations
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
1_
2 (y1  y3)(x3  x1) 

1_
2 (y2  y3)(x2  x3) 

1_
2 (y1  y2)(x2  x1)


1_
2 (x2 y3  x3 y2  x1 y3  x3 y1  x1 y2  x2 y1)

Writing this as


1_
2

((1)(x2 y3  x3 y2) (1)(x1 y3  x3 y1) (1)(x1 y2  x2 y1) )

shows that it is the expansion of the determinant

1__
2 ⎥

 1 1 1

 x1 x2 x3

y1 y2 y3

⎥
Hence the area of a triangle whose vertices are at 

the points (x1, y1), (x2, y2) and (x3, y3) is

1__
2 ⎥

1 1 1

x1 x2 x3

y1 y2 y3

⎥
Also, if the points A, B and C are collinear, the area of triangle ABC is 
zero, so 

the condition for three points (x1, y1), (x2, y2) and (x3, y3)
to be collinear is 

⎥
1 1 1

x1 x2 x3

y1 y2 y3

⎥  0

Exercise 3.12b

1 Calculate each determinant.

(a) ⎥
2 1 7

0 1 2

1 2 3
⎥ (b) ⎥

1 4 3

0 5 2

0 3 1
⎥ (c) ⎥

1 0 1

3 2 0

1 2 4
⎥

2 Expand and simplify the determinant ⎥
 1 1 1

cos  cos2  1

sin  sin2  1 
⎥

3 Show that ⎥
 a b c

 a2 b2 c2

a3 b3 c3
⎥  abc(a  b)(b  c)(c  a)

4 Determine whether the following points are collinear.

(a) (0, 6), (1, 3), (3, 3) 

(b) (0, 1), (1, 0), (1, 1)
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3.13 Simplifi cation of determinants

Simplifi cation of determinants

When the elements in a determinant are large numbers or complicated 
algebraic expressions, it is easy to make mistakes when evaluating the 
determinant. However, there are properties of determinants that can be 
used to reduce elements to more manageable quantities.

Transposing the rows and columns of |A|  ⎥
 a1 a2 a3

 b1 b2 b3

c1 c2 c3

⎥  gives ⎥
 a1 b1 c1

 a2 b2 c2

a3 b3 c3

⎥
which we denote by |AT|.

Now |A|  a1(b2c3 b3c2) a2(b1c3 b3c1)  a3(b1c2 b2c1)

 a1(b2c3 b3c2) b1(a2c3 a3c2)  c1(a2b3 a3b2)  |AT|

Therefore the value of a determinant is not changed when 
the rows and columns are transposed.

Hence any property proved for rows is also valid for columns.

The following properties can be proved using a method similar to that above.

A determinant can be expanded using any row or column 
and the respective cofactors.

For example,   ⎥
1 3 4

0 2 6

0 1 2
⎥  can be found from the fi rst column giving 

(1) ⎥ 2 6

1 2
⎥  0  0  10

The value of a determinant is unchanged when any row (or column) 
is added to or subtracted from any other row (or column).

For example,   ⎥
2 3 5

1 2 1

2 3 2
⎥  ⎥

0 0 3

1 2 1

2 3 2
⎥ Subtracting the third 

row from the fi rst row

It follows from this property that if two rows or columns are the same, 
simplifi cation will give a row or column of zeroes, so the determinant is 
equal to zero.

A matrix whose determinant is zero is called a singular matrix

The value of a determinant is unchanged when a multiple 
of any row (or column) is added to or subtracted from any 

other row (or column).

For example, ⎥
2 1 4

1 2 2

2 3 1
⎥  ⎥

2 1 0

1 2 0

2 3 3
⎥ Adding twice the fi rst 

column to the third column

The aim when simplifying a determinant is to get as many zeroes as 
possible in one row or column to make the evaluation easier and with less 
risk of mistakes, but be careful that you do not overdo it. It is also easy to 
make mistakes when adding and subtracting multiples of rows or columns.

Learning outcomes

 To simplify determinants

You need to know

 How to fi nd a 3  3 determinant

 The meaning of a cofactor
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Example

Solve the equation ⎥
1 2 1

 x x  1 x  1

 2x 2x  1 x  1
⎥  0

Subtracting the fi rst column from the second and from the third 
column simplifi es the elements containing x and gives a zero in the 
top row.

⎥
1 2 1

 x x  1 x  1

 2x 2x  1 x  1
⎥  ⎥

1 1 0

 x 1 1

 2x 1 x  1 
⎥  0

Expanding the determinant gives 

(1)⎥ 1 1

1 x  1
⎥ 1 ⎥  x 1

 2x x  1 
⎥  0  0

⇒ (x 1)  1  ( x2 x  2x)  0  ⇒ x2
 4x  0

⇒ x (x 4)  0

⇒ x  0  or  x  4

Example

Given f(x, y, z) ⎥
1  x2 x 1

1  y2 y 1

1  z2 z 1 
⎥  show that (x  y) is a factor of the

function f.

Subtracting the top row from the second and third row gives 

f(x, y, z)  ⎥
1  x2 x 1

 y2 x2 y x 0

 z2 x2 z x 0 
⎥

Expanding using the third column and its cofactors gives 

 f(x, y, z)  (1) ((y2 x2)(z  x)  (y  x)(z2 x2) )

   (y x) ((y  x)(z  x)  (z2 x2) )

   (x y) ((z2 x2)  (y  x)(z  x) )

Therefore (x y) is a factor of the function f.

Exercise 3.13

1 Evaluate (a) ⎥
1 6 10

2 8 16

1 8 14
⎥ (b) ⎥

 100 200 100

  20 18  16

  21  36 14 
⎥

2 Express  ⎥
 x 1 x2

 x2 1 x

x3 1 x3
⎥  as a product of factors.
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3.14 Multiplicative inverse of a matrix

The meaning of a multiplicative inverse of a matrix

If for a matrix A, a matrix B exists so that AB  I, B is called the 
multiplicative inverse of A

B is denoted by A 1, so AA 1
 I, and we will show that when A 1 exists, 

AA 1
 A 1A  I

This is similar to a multiplicative inverse for real numbers. Multiplying

any real number by its reciprocal gives 1, e.g. 2  1
2  1, so  12 is the

multiplicative inverse of 2, and vice-versa.

In future we will call a multiplicative inverse of a matrix simply an 
inverse matrix

The inverse of a 2  2 matrix

If A  ( a b

 c d
)  then postmultiplying A by the matrix  ( d b

c a
)  gives

( a b

 c d
) ( d b

c a
)  ( ad  bc 0

 0 ad  bc
)

   (ad  bc)  (1 0

0 1
)

Premultiplying A by  ( d b

c a
)  gives

( d b

c a
) ( a b

 c d
)  ( ad  bc 0

 0 ad  bc
)

   (ad  bc)  (1 0

0 1
)

Now ad  bc  |A|

Therefore both premultiplying and postmultiplying A by  ( d b

c a
)  gives

|A|I so both premultiplying and postmultiplying A by   1____
|A| ( d b

c a
)

gives I

Therefore when A  ( a b

 c d
),  A 1


1____

|A| ( d b

c a
)

If |A|  0, A 1 does not exist and A is a singular matrix.

Notice that the matrix  ( d b

c a
)  is obtained from the matrix  ( a b

 c d
)

by transposing the elements in the leading diagonal and changing the 
signs of the elements in the other diagonal.

Learning outcomes

 To fi nd the multiplicative inverse 

of a matrix

You need to know

 How to multiply matrices

 What a unit matrix is

 How to evaluate a determinant

 The meaning of a singular matrix

 The effect of multiplying a 

matrix by a scalar

 How to fi nd the cofactor of an 

element in a matrix
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Example

Find the inverse of (a) (2 1

5 3
) (b) (2 5

3 4
)

(a) First transpose the elements in the leading diagonal and change

 the sign of the other elements to give   ( 3 1

5 2
)

Then  ⎥2 1

5 3
⎥  1 

therefore   (2 1

5 3
)

1

 ( 3 1

5 2
)

(b) First transpose the elements in the leading diagonal and change

 the sign of the other elements to give   ( 4 5

3 2
)

Then  ⎥2 5

3 4
⎥  7

therefore  (2 5

3 4
)

1

 
1__
7 ( 4 5

3 2
)

   (
4
7

5
7

3
7

2
7
)

Note that each of these answers can be checked by multiplying it 
by the original matrix.

Exercise 3.14a

Find, when it exists, the inverse of each matrix.

1  (4 2

1 1
) 2 (4 2

4 1
) 3 ( 2 3

4 6
) 4 (sin  cos 

 cos  sin 
)

The inverse of a 3  3 matrix

The inverse of the matrix A  (
 a1 a2 a3

 b1 b2 b3

c1 c2 c3

)  is found by fi rst transposing 

the rows and columns to give  (
 a1 b1 c1

 a2 b2 c2

a3 b3 c3

) This is denoted by AT

then replacing each element of A with its cofactor. Denoting the cofactor

of a1 by A1 and so on, this gives the matrix  (
 A1 B1 C1

 A2 B2 C2

A3 B3 C3

)  and fi nally 

dividing by |A|, i.e.
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 when A  (
 a1 a2 a3

 b1 b2 b3

c1 c2 c3

)
 A 1


1____

|A| (
 A1 B1 C1

 A2 B2 C2

A3 B3 C3

)
where A1, A2, … are the cofactors of a1, a2, …

If |A|  0, A 1 does not exist and A is a singular matrix.

For example, to fi nd the inverse of  A  (
4 1 0

1 2 1

3 2 1
) , fi rst fi nd AT

AT
 (

4 1 3

1 2 2

0 1 1
)

Next replace each element in AT by its cofactor:

(
 ⎥ 2 2

1 1
⎥ ⎥ 1 2

0 1
⎥  ⎥ 1 2

0 1
⎥

⎥ 1 3

1 1
⎥  ⎥ 4 3

0 1
⎥ ⎥ 4 1

0 1
⎥

 ⎥ 1 3

2 2
⎥ ⎥ 4 3

1 2
⎥  ⎥ 4 1

1 2
⎥
)  (

4 1 1

4 4 4

4   11 9
)

Then fi nd |A|:   ⎥
4 1 0

1 2 1

3 2 1
⎥  ⎥

4 1 0

4 4 0

3 2 1
⎥

Subtracting the third row from the second row

   20 

Therefore A 1


1___
20 (

4 1 1

4 4 4

4   11 9
)

Check:  (
4 1 0

1 2 1

3 2 1
) 

1___
20 (

4 1 1

4 4 4

4   11 9
)


1___

20 (
20 20 20

20 20 20

20 20 20
)

 (
1 0 0

0 1 0

0 0 1
)

Note that it is very easy to make mistakes using this process, so take one 
step at a time.

Section 3 Counting, matrices and differential equations
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Example

Show that the matrix A  (
3 1 7

1 2 3

2 1 4
) does not have an inverse.

To fi nd the inverse of any matrix A, we need to evaluate  ⎥A ⎥. Therefore 
it is sensible to start with evaluating this determinant and if it is zero 
we know that the inverse does not exist.

⎥A ⎥  ⎥
3 1 7

1 2 3

2 1 4
⎥

Row 1  row 2 gives  ⎥
2 1 4

1 2 3

2 1 4
⎥

Rows 1 and 3 are the same, so taking one from the other will give a 
row of zeroes. Therefore  ⎥A ⎥  0, hence A does not have an inverse.

Properties of inverse matrices

This is the property we proved for 2  2 matrices and it is true for all 
square matrices:

AA1
 A1A

It follows from this that as A is the inverse of A1, i.e. 

(A1)1
 A

Now postmultiplying AB by B1A1 gives (AB)(B1A1)

Matrix multiplication is associative, therefore

  (AB)(B1A1)  A(BB1)A1
 AIA1

 I

Hence the inverse of AB is B1A1, i.e.

(AB)1
 B1A1

Exercise 3.14b

1 Find, when it exists, the inverse of the matrices  

(a) A  (
1 1 0

1 3 0

2 1 1
) (c) B  (

1 0 4

0 3 2

1 5 0
)

(b) (
5 1 9

3 1 5

2 0 4
) (d)  (

4 1 3

3 5 2

1 2 1
)

2 Verify that, for the matrices A and B in question 1, (AB)1
 B1A1

3 A, B and C are non-singular 3  3 matrices. 
Prove that (ABC)1

 C1B1A1
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3.15 Systems of 2  2 linear equations

Systems of 2  2 equations

A system of linear equations is a set of linear equations containing the 
same variables. 

A set of two linear equations with two variables is called a 2  2 system 
of linear equations,

e.g.  
a1x  a2y  a3

b1x  b2y  b3

Consistency of a system of equations

The equations   
a1x  a2y  a3

b1x  b2y  b3

  can be represented by two lines in the 

xy-plane.

These lines may intersect, in which 
case there is only one set of values
of x and y that satisfi es the equations, 
i.e. there is a unique solution.

The lines may be parallel, in which 
case there is no solution, e.g.

Or they may be the same line, in which
case there is an infi nite number of 
solutions, e.g.

A system of equations that has either a unique solution or 
an infi nite number of solutions is called consistent

A system of equations that does not have either a unique solution or an 
infi nite number of solutions is not consistent.

y

xO

b1x  b2y  b3

a1x  a2y  a3

y

xO

2x  3y  2

2x  3y  1

y

xO

2x  3y  1

4x  6y  2

Learning outcomes

 To investigate the consistency of 

a pair of simultaneous equations 

in two unknowns

 To use matrices to solve a pair of 

simultaneous equations in two 

unknowns

 To defi ne the meaning of 

equivalent systems of equations

You need to know

 How to represent a linear 

equation in two unknowns as a 

line in the xy-plane

 How to multiply matrices

 How to fi nd the inverse of a 

2  2 matrix
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Matrix representation

The equations   
a1x  a2y  a3

b1x  b2y  b3

  can be represented by a single matrix

equation. 

Since  (
a1 a2

b1 b2
)(

x

y )  (
a1x  a2y

b1x  b2y
),

we can express the equations in the form   (
a1 a2

b1 b2
)(

x

y
)  (

a3

b3
)

Using  A  (
a1 a2

b1 b2
), the matrix equation can be written as  A (

x

y
)  (

a3

b3
)

then, provided that A1 exists, premultiplying each side by A1 gives

 A1A (
x

y
)  A1 (

a3

b3
),

i.e. (
x

y
)  A1 (

a3

b3
)

The equations have a unique solution provided that A1 exists, 
i.e. provided that |A|  0

For example, the equations   
2x  3y  5

4x  3y  1
  can be written as

(2 3

4 1)(x

y )  ( 5

1)

Then if  A  (2 3

4 1
),  |A|  14  so the equations have a unique 

solution.

Now A1 
1___

14 ( 1 3

4 2
)

so  1___
14 ( 1 3

4 2) (2 3

4 1) (x

y )  1___
14 ( 1 3

4 2) ( 5

1)
⇒ I (x

y )  1___
14 ( 1 3

4 2) ( 5

1)

⇒ (x

y )  1___
14 ( 22

22)  (
1_
7


11__
7
)

Therefore x  1_
7
  and y  

11__
7

The advantage of using matrices is that the process is mechanistic, 
i.e. requires no thought, so computers can easily be programmed to 
carry it out.

However, to solve a system of 2  2 equations by hand, it is often simpler 
to use the basic method of elimination or substitution.
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Equivalent systems

The equations given above, i.e.   
2x 3y  5  [1]

4x  3y  1  [2]
  can be combined in

several ways to give a different pair of equations.

For example [1]  [2] and [1] gives   
2x 3y  5

6x 2y  4
  and these equations

have the same solution as the fi rst set.

Any algebraic combination of equations [1] and [2] will give another set of 
equations with the same solution.

Two sets of equations with the same solution are called equivalent systems

The aim in producing an equivalent set of equations is to make the 
solution easier.

For the equations [1] and [2],  3[2]  [1]  gives  14x  2,

so the equations   
14x  7
14x  y  1

  have the same solution as the original

pair of equations and are easier to solve.

Comparing the matrix equations of   
2x 3y  5

4x  3y  1
  and   

14x  2
14x  y  1

i.e.  (2 3

4 1
)(x

y
)  ( 5

1
)  and   (14 0

14 1
)(x

y
)  ( 2

1
)

we can see that by replacing the fi rst row by (3  row 2  row 1) of both

(2 3

4 1
)  and the column vector   ( 5

1
)  we can obtain the second matrix

equation.

By placing the column vector in the matrix to get a third column, we get

the augmented matrix  (2 3 5

4 1 1 )
Operating on this augmented matrix ensures that whatever we do with 
the rows of the square matrix, we also do with the rows of the column 
vector, so producing an equivalent system of equations.

Calling the top row of the augmented matrix r1 and the second row r2, 
then 

3r2  r1  on the fi rst row gives (14 0 2

 4 1 1 )
 r1 ÷ 14  gives (1 0  1

7

4 1 1
)

 r2  4r1  gives (1 0  1
7

0 1 11__
7
)

This gives the matrix equation   (1 0

0 1
)(x

y
)  (

1
7

11__
7
) ⇒ (x

y
)  (

1
7

11__
7
)

so y  
11__
7

 and x 
1
7

Section 3 Counting, matrices and differential equations
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This method of solving the equations is called row reduction. The aim is

to get the square matrix in the form ( a 0

0 b
)

This method of solving a pair of 2  2 linear equations is clearly not as 
quick as using simple algebraic elimination. However, it is extended in 
the next topic to solve systems of 3  3 linear equations, when it does 
give an easier solution than purely algebraic methods. Therefore it is 
worth spending time practising the method on simpler 2  2 equations.

Example

Use the row reduction method to solve the equations   
3x  y  2

2x 3y  4

Expressing the equations in matrix form gives   (3 1

2 3
)(x

y
)  (2

4
)

Using the augmented matrix  (3 1 2

2 3 4 )  gives

  3r1  r2 ⇒ (11 0 10

 2 3  4 )
11r2  2r1 ⇒ (11 30 10

 0 33 24 )
∴ (11 30

10 33
)(x

y
)  (10

24
)

⇒ ( 11x

33y)  (10

24
)

So x 
10__
11  and y  

8__
11

Exercise 3.15

1 Determine which of the following systems of equations are 
consistent.

(a)
3x  2y  5

4x  2y  1
(b)

6x  4y  2

3x  2y  1
(c)

x  y  1

x  y  1

2 Express the equations   
5x  3y  8

2x  2y  4
  as a matrix equation. 

 Hence solve the equations using row reduction.

3 Solve the equations   
6x  y  8

2x  y  0
  using row reduction on an

augmented matrix.
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3.16 Systems of 3  3 linear equations

Systems of 3  3 equations

A set of three linear equations with three variables is called a 3  3 
system of linear equations, 

e.g.  

a1x  a2y  a3z  a4

b1x  b2y  b3z  b4

c1x  c2y  c3z  c4

Consistency of a system of equations

The equations   

a1x  a2y  a3z  a4

b1x  b2y  b3z  b4

c1x  c2y  c3z  c4

  can be represented by three planes.

If the planes intersect in only one point, the equations have a unique 
solution.

If the planes intersect in a common line, or are identical (i.e. the 
equations are multiples of each other), there is an infi nite set of solutions.

In both these cases the system of equations is consistent.

Any other confi guration of the three planes will not give any solution and 
the equations they represent are not consistent.

Matrix representation

The equations   

a1x  a2y  a3z  a4

b1x  b2y  b3z  b4

c1x  c2y  c3z  c4

  can be expressed as the single matrix

equation  (
 a1 a2 a3

 b1 b2 b3

c1 c2 c3

)(
x

y

z
)  (

a4

b4

c4

) as each row of the matrix multiplied by

the column vector  (
x

y

z
)  gives the left-hand side of each equation.

If A  (
 a1 a2 a3

 b1 b2 b3

c1 c2 c3

)  then, provided that A 1 exists, premultiplying each

side of the matrix equation by A 1 gives 

Learning outcomes

 To investigate the consistency 

of a 3  3 system of linear 

equations

 To represent a set of three linear 

equations in three unknowns as a 

single matrix equation

 To reduce a matrix to row 

echelon form

 To solve a 3  3 system of linear 

equations using row reduction of 

an augmented matrix

You need to know

 That a linear equation in three 

unknowns can be represented as 

a plane in three dimensions

 How to fi nd the determinant of a 

3  3 matrix
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A 1A (
x

y

z
)  A 1 (

a4

b4

c4

) , i.e. I (
x

y

z
)  A 1 (

a4

b4

c4

) ⇒ (
x

y

z
)  A 1 (

a4

b4

c4

)
(If A 1 does not exist, the system of equations is not consistent.)

For example, the equations  
  4x  2y  3
x  2y  z  2

  3x  2y  z  1
  can be expressed as 

(
4 1 0

1 2 1

3 2 1
)(

x

y

z
)  (

3

2

1
)

Then A  (
4 1 0

1 2 1

3 2 1
)  and  A 1


1___

20 (
4 1 1

4 4 4

4   11 9
)

(This was found in Topic 3.14)

∴ 
1___

20 (
4 1 1

4 4 4

4   11 9
) (

4 1 0

1 2 1

3 2 1
)(

x

y

z
) 

1___
20 (

4 1 1

4 4 4

4   11 9
) (

3

2

1
)

⇒ I (
x

y

z
) 

1___
20 (

4 1 1

4 4 4

4   11 9
) (

3

2

1
)

⇒ (
x

y

z
) 

1___
20 (

11

16

19
)  (

11__
20

4
5

19__
20

)
∴ x 

11__
20,  y 

4
5,  z 

19__
20

Again, as with solving 2  2 linear equations, this method has the 
advantage of being easily programmable. However, using this method 
without the aid of appropriate software means fi nding the inverse of a 
3  3 matrix, which is time-consuming and prone to mistakes.

We know that combining equations to eliminate a variable produces an 
equivalent system of equations. This means we can solve 3  3 linear 
equations using the method of row reduction of an augmented matrix, 
just as we did when solving 2  2 systems.

First we look at the form of an augmented matrix that we need to 
achieve.

Row echelon form of a matrix

The leading elements in a row of a matrix are the elements reading from 
left to right along the row.

A matrix is in row echelon form when each row has more leading zeroes 
than the row above it. (It is the number of leading zeroes in a row that 
matters; other elements can be zero.)

Did you know?

Echelon is the Greek word for ladder.
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These matrices are in row echelon form:   (
1 2 1

0 3 5

0 0 2
),   (

0 4 0 0

0 0 0 1

0 0 0 0
)

These matrices are not:   (
1 2 1

0 0 3

0 0 2
),   (

0 0 0 5

0 0 2 1

0 2 3 0
)

Reduced row echelon form of a matrix

A matrix is in reduced row echelon form when 
each row has more leading zeroes than the row above it

and the fi rst non-zero element in each row is 1.

For example,  (
1 4 0 2

0 1 3 1

0 0 0 1
)  and   (

0 1 3 2

0 0 0 1

0 0 0 0
)  are in reduced row

echelon form.

Using reduced row reduction to solve systems of 3  3 linear 
equations

Using the equations on page 161 again, 

i.e.   (
4 1 0

1 2 1

3 2 1
)(

x

y

z

)  (
3

2

1
),  the augmented matrix is 

(
4 1 0 3

1 2 1 2

3 2 1 1
)

We now use combinations of rows to change this to reduced row echelon 
form. It is important that you use combinations of rows; do not be 
tempted to use columns as this will not give an equivalent system of 
equations.

Using r1, r2 and r3 to denote the rows of a matrix, we want zeroes in the 
leading elements in the second and third rows.

Adding 3r2 to r3 gives (
4 1 0 3

1 2 1 2

3 4 4 7
)

Adding r1 to 4r2 gives (
4 1 0 3

0 9 4 11

0 4 4 7
)

We now want a zero in the second element in the third row:

subtracting 4r2 from 9r3 gives (
4 1 0 3

0 9 4 11

0 0 20 19
)

Section 3 Counting, matrices and differential equations
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Next, divide each row by the value of the fi rst non-zero element in that row:

(
1  14 0  34

0 1  49
11__
9

0 0 1  19__
20

)
This augmented matrix gives the equivalent system  

x 
1
4 y 

3
4 [1]

y 
4
9 z 

11__
9  [2]

z 
19__
20 [3]

which can be easily solved using substitution, i.e. [3] in [2] gives  

y  (4__
9 ) (19___

20 )  11___
9

⇒ y 
220  76_________

180


144____
180


4__
5

then substituting the value of y into [1] gives  x  1__
5


3__
4

⇒ x 
11___
20

Therefore the solution is  x  11___
20

,  y  4__
5

,  z 
19___
20

Example

Use reduced row reduction to solve the equations  
4x 2y  5z  8
5x  7y  3z  42
3x  4y  2z  27

Starting with the augmented matrix:  (
4 1 5 8

5 7 3 42

3 4 1 27
)

3r2  5r3 ⇒ (
4 1 5 8

0 1 14 2

3 4 1 27
) ; 4r3  3r1 ⇒ (

4 1 5 8

0 1 14 9

0 19 11 84
)

r3  19r2 ⇒ (
4 1 5 8

0 1 14 9

0 0 255 255
) ; r1 ÷ 4, r3 ÷ 255 ⇒ (

1 1
4

5
5 2

0 1 14 9

0 0 1 1 
)

This gives the equivalent set of equations (starting with the last row)

 z  1

 y  14z  9 ⇒ y  5

x
1
4 y 

5
4 z 2 ⇒ x  2 

Therefore x  2, y  5, z  1

Exercise 3.16

Use row reduction of an augmented matrix to solve the following systems 
of equations.

1 

2x  y  3z  8
4x  2y  z  13
2x  3y  4z  5

2

x  2y  4z  0
3x  y  2z  7
5x  y  4z  3
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Finding the multiplicative inverse of a matrix using 
row reduction

Consider the system of equations  
3x  2y  x  4
x  3y  2z  2
2x  3y z  2

These can be represented by   (
3 2 1

1 3 2

2 3 1
)(

x

y

z

)  (
4

2

2
)

   (
1 0 0

0 1 0

0 0 1
) (

4

2

2
)  [1]

We know that operating on the rows produces an equivalent system of 
equations.

To fi nd the inverse of the left-hand matrix we want to reduce it to a unit 
matrix. So if 

A  (
3 2 1

1 3 2

2 3 1
), we reduce the system to  I (

x

y

z

)  A 1 (
4

2

2
)

Any row operation either on I or on (
4

2

2
)  gives the same result on the 

right-hand side of [1],

e.g. r1  r2 on I ⇒ (
1 1 0

0 1 0

0 0 1
) (

4

2

2
)  (

6

2

2
)

and  r1  r2 on   (
4

2

2
) ⇒ (

1 0 0

0 1 0

0 0 1
) (

6

2

2
)  (

6

2

2
)

If we just want to calculate A 1, we can operate just on A and I using the 
augmented matrix:

(
3 2 1 1 0 0

1 3 2 0 1 0

2 3 1 0 0 1
)

We now work on the rows to reduce the left-hand side to I

 r1  r3 ⇒ (
5 1 0 1 0 1

1 3 2 0 1 0

2 3 1 0 0 1
) ;   

 r2  2r3 ⇒ (
5 1 0 1 0 1

5 9 0 0 1 2

2 3 1 0 0 1
) ;

Learning outcomes

 To fi nd the multiplicative inverse 

of a matrix using row reduction

You need to know

 How to represent a system of 

linear equations in matrix form

 How to reduce a matrix to 

echelon form

3.17 Using row reduction to fi nd an inverse 
matrix
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 9r1 r2 ⇒ (
40 0 0 9 0 7

5 9 0 0 1 2

2 3 1 0 0 1
) ;

 r2
1
8 r1 ⇒ (

40 0 0 9 1 7

0 9 0 9
8

9
8

9
8

2 3 1 0 0 1
) ;

 r3
1__
20 r1 ⇒ (

40 0 0 9 1 7

0 9 0 9
8

9
8

9
8

0 3 1 9__
20

1__
20

13__
20

) ;
 3r3 r2 ⇒ (

40 0 0 9 1 7

0 9 0 9
8

9
8

9
8

0 0 3 9__
40

39__
40

33__
40

) ;
r1___
40

,   
r2___
9

,   
r3___
3

⇒ (
1 0 0  9__

40 
1__
40

7__
40

0 1 0  1_8 
1_
8 

1_
8

0 0 1  3__
40

13__
40 

11__
40

)
We have now reduced the system in [1] to

(
1 0 0

0 1 0

0 0 1
)(

x

y

z

)  (
9__
40 

1__
40

7__
40

1_
8 

1_
8 

1_
8

3__
40

13__
40 

11__
40

) (
4

2

2
)

∴ A1
 (

9__
40 

1__
40

7__
40

1_
8 

1_
8 

1_
8

3__
40

13__
40 

11__
40

)  1___
40 (

9 1 7

5 5 5

3 13 11

)
This method of fi nding an inverse of a matrix by row reduction has 
advantages over the method using cofactors because it simplifi es the 
arithmetic, and so mistakes are less likely. However, it is sensible to 
check that your calculated inverse multiplied by the original matrix does 
give I.

Using row reduction is also a quicker method for showing that a matrix is 
singular as it will produce a row of zeroes, proving that |A|  0

Exercise 3.17

1 Use row reduction to show that the matrix   (
1 3 1

3 7 2

2 4 1
)  is singular.

2 Find the inverse of each of the following matrices.

(a) (
4 1 1

2 0 2

1 2 1
) (b) (

2 1 0

5 5 1

1 2 1
) (c) (

2 1 4

2 1 5

1 2 4
)
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3.18 Differential equations

Differential equations

A differential equation connects an unknown function and its 
derivatives. 

The order of a differential equation is the highest derivative contained 
in the equation.

For example,   
dy___
dx

 xy  x2  is a fi rst order differential equation and

d2y____
dx2  y  

dy___
dx

xy  0  is a second order differential equation. 

Models

Unlike many topics in mathematics which fi nd real-world applications 
some time after their development, the formulation of differential 
equations comes directly from the need to describe real-world phenomena 
mathematically.

A differential equation is a mathematical description of a real-world 
phenomenon. It is used to predict results and it is called a mathematical 
model

How good the model is depends on how closely the results it predicts are 
to measured results from the real-world phenomenon.

There are many well-known equations that are extremely good models. 
For example, Newton’s laws of motion are a set of equations that describe 
the relationship between the forces acting on a body and the motion of 
the body. These are accurate enough to be used to determine the forces 
needed to place satellites in orbit.

Solution of differential equations

The solution of a differential equation gives an equation connecting the 
variables without any derivatives involved. If the differential equation is 
a fi rst order equation, solving it involves one integration operation so it 
will include one unknown constant. When the differential equation is a 
second order equation, two integration operations are needed to solve it 
so the solution will involve two unknown constants. 

There is an enormous number of different types of differential equation 
and many of them cannot be solved.

In Unit 1 we covered the solution of a fi rst order differential equation 
with separable variables. In the remaining topics in Unit 2 we look at the 
solution of two more types of differential equation. 

First, we look at how a particular type of differential equation can arise.

Learning outcomes

 To explain differential equations 
as mathematical models

 To formulate differential 
equations of the form 
dy___
dx
 ky f(x) where k is a

function of x or a constant

You need to know

 The meaning of a fi rst and 
second derivative

 The basic facts about integration

 The derivatives of standard 
functions

 How to differentiate a product of 
functions

 How to differentiate implicit 
functions

Did you know?

Newton’s name keeps appearing 
in the study of mathematics. Sir 
Isaac Newton (16431727) was a 
prolifi c mathematician. He was also 
arguably the greatest scientist the 
world has known. 
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Formulation of differential  equations of the form
dy___
dx

 ky  f(x) where k  h(x)

We know that, if u and v are functions of x, then  
d___
dx

 (uv)  u  
dv___
dx

 v
du___
dx

We also know that  
d___
dx

 (yg(x))  g(x)  
dy___
dx

 yg(x)

for example,  
d___
dx

 (y sin x)  sin x
dy___
dx

 y cos x

Therefore, given the differential equation sin x
dy___
dx

 y cos x  2x, we can

recognise the left-hand side as the differential of y sin x, and so solve the 
equation by integrating both sides.

Hence sin x
dy___
dx

 y cos x  2x

⇒ y sin x  x2  A where A is an unknown constant.

This type of differential equation is called an exact differential equation

If the equation  sin x
dy___
dx

 y cos x  2x  is divided by sin x (sin x  0) it

becomes
dy___
dx

 y cot x  2x cosec x

so it is of the form  
dy___
dx

ky  f(x)  where k  h(x)  but the left-hand

side is not now the derivative of a product. Before fi nding ways of solving 
differential equations of this form, we solve a few exact differential 
equations that have not been simplifi ed.

The solution of a differential equation containing unknown constants 
of integration is called the general solution. To evaluate constants of 
integration we need to know initial values of x and y. These are called 
boundary conditions. 

Example

Find the general solution of the differential equation x
dy___
dx

 y 
1__
x

The left-hand side is the derivative of xy, 

therefore the general solution is xy  ln |x|  A

Exercise 3.18

Find the general solution of each of the following differential equations.

1 ex
dy___
dx

 yex  2x 2 x2
dy___
dx

 2xy  cos x

3 t
dv___
dt

 v  t2
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3.19 Integrating factors

Integrating factors

We know that if the left-hand side of a differential equation has the form

g(x)  
dy___
dx

 yg(x)  we recognise that this is the derivative of the product

yg(x).  

However, when this is not the case, it is possible to multiply by a 
function of x that will give the derivative of the product yg(x).

This function is called an integrating factor, and we will denote it by I

Consider an equation of the form   
dy___
dx

 Gy  F  where both G and F are

functions of x

Now multiply the equation by I where I is a function of x,

i.e. I
dy___
dx

 (y)(GI)  FI       [1]

We want to fi nd I such that   
d___
dx

 (Iy)  I
dy___
dx

 (y)(GI)

Comparing the left-hand side of [1] with  u
dv___
dx

 v
du___
dx

  gives

u  I,   
dv___
dx


dy___
dx

 and v  y,   
du___
dx

 GI

Using the chain rule, i.e.   
dI___
dx


dI___
du


du___
dx

,  gives   
dI___
dx

 1  GI  GI

Now   
dI___
dx

 GI  is a fi rst order differential equation whose variables are

separable.

Therefore ∫  1__
I
 dI ∫ G dx

⇒ ln I ∫G dx

⇒⇒ I  e 
∫G dx

So  I  e ∫G dx
is an integrating factor for the expression   

dy___
dx

 Gy

Assuming that  ∫G dx  can be found (it cannot always, but can for any

equations you meet in the examination), then

dy___
dx

 Gy  F ⇒ I
dy___
dx

 (y)(GI)  FI

 ⇒ ∫ (I dy___
dx

 (y)(GI) ) dx  ∫ IF dx

 ⇒ Iy ∫ IF dx

Both I and F are functions of x, so the integral on the right-hand side can 
be found for any equations you meet in the examination.

Learning outcomes

 To solve differential equations of

the form   
dy___
dx

 yg(x) f(x)

using an integrating factor

You need to know

 The formula for differentiating a 

product

 The chain rule

 How to solve a differential 

equation with separable variables

 The integrals of standard 

functions
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Example

Find the general solution of the differential equation   
dy___
dx

2y___
x

 x2ex

dy___
dx

2y___
x

 x2ex ⇒
dy___
dx

 y ( 2__
x )  x2ex

∴ the integrating factor I is  e  ∫
2
x

 dx
 e 2 ln x

   e ln(x 2)
 x 2

Multiplying both sides of   
dy___
dx

2y___
x

 x2ex  by  x 2  gives   

1__
x2

dy___
dx

2y___
x3  ex

⇒
y__
x2  ∫ ex dx

   ex  A

⇒ y  x2ex  Ax2

Example

Find the solution of the differential equation  t
dv___
dt

v  t2e t  0

given that v  0 when t  1

First, rearrange the equation so that it is in the form   
dv___
dt

 vg(t)  f(t)

 t
dv___
dt

v  t2e t  0 ⇒
dv___
dt

 v ( 1__
t )  te t

∴ I  e ∫
1
t
 dt

 e ln t 
1__
t

∴
1__
t

dv___
dt

v (1__
t2 )  e t

⇒ v (1__
t )  ∫ e t dt

⇒ v  te t  At

v  0 when t  1 gives 0  e 1  A so A  e 1

∴ v  te t te 1

Exercise 3.19

1 Find the general solution of   

(a)
dy___
dx

 3y  x (b) sin x
dy___
dx

 y cos x  1

2 Find the solution of   
dy___
dx

 xy  x  given y  0 when x  0

3 Solve the equation  
dy___
d

 y  2 cos   given y  0 when  
__
2
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3.20 First order differential equations

Summary of solutions of fi rst order differential 
equations
There are many differential equations involving   

dy___
dx

  that cannot be

solved to give a direct relationship between x and y. The table shows 
methods that can be used for some fi rst order differential equations that can 
be solved. All of these methods rely on recognising the standard integrals, 
so you need to know all of these from Unit 1 as well as from Unit 2. 

Form of equation Method of solution

dy___
dx

 f(x)
Recognise the function of which the differential 
is f(x)

or   use a substitution to simplify f(x)

or   use partial fractions (for a rational function)

or    use integration by parts (for a product of 
functions).

dy___
dx

 g(y)f(x) Separate the variables to give 1____
g(y)

dy___
dx

 f(x)

then ∫ 1____
g(y)

 dy  ∫ f(x) dx

g(x)  
dy___
dx

 yg(x)  f(x)
Recognise the left-hand side as the differential of 
yg(x) giving  

  yg(x)  ∫ f(x) dx

(You may need to rearrange the equation to give 
this form.)
This form is called an exact differential equation.

dy___
dx

 yg(x)  f(x)
When rearrangement does not give an exact 
differential equation, multiply throughout by the 
integrating factor 

I  e ∫
g(x) dx

This then gives an exact differential equation.

Example

Solve the following differential equations.

(a) (1  x2)  
dy___
dx

 2x (b) (1  x2)  
dy___
dx

 2y

(c) (1  x2)  
dy___
dx

 2xy  0 (d) x
dy___
dx

 2x2y  4xe x2

Learning outcomes

 To summarise methods for 
solving fi rst order differential 
equations

You need to know

 The integrals of standard 
functions

 How to differentiate implicit 
functions

 How to use integrating factors

Exam tip

Any equation you are given in an 
examination can be solved.
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(a) (1  x2)  
dy___
dx

 2x

 This equation contains no term involving y, so fi rst rearrange it to

 isolate   
dy___
dx

 .

dy___
dx


2x______

1  x2 ⇒ y  ln |1 x2|  c

(b) (1  x2)  
dy___
dx

 2y

The variables in this equation can be separated to give 

1__
y

dy___
dx


2______

1  x2

⇒ ∫  1__
y

 dy  ∫ 2______
1  x2 dx ⇒ ln |y|  2 tan 1 x  c

(c) (1  x2)  
dy___
dx

 2xy  0 

 2x is the differential of (1  x)2 so this is an exact differential 
equation giving  

y(1  x2)  c

 (The variables in this differential equation can be separated but 
recognition of an exact differential equation gives a quicker and 
neater solution.)

(d) x
dy___
dx

 2x2y  4xe x2

The left-hand side is not exact and the variables cannot be 
separated but we can rearrange the equation to the form

dy___
dx

 yg(x)  f(x) and use an integrating factor:

dy___
dx

 2xy  4 e x2

then I  e ∫2x dx
⇒ I  e x

2

∴ e x
2 dy___

dx
 2xe x

2

y  4 ⇒ e x
2

y  4x  c

Exercise 3.20

Solve each of the following differential equations.

1 sin x
dy___
dx

 y cos x  tan x 2 x
dy___
dx


2x______

1  x2

3 x
dy___
dx

 y  3x3 4
dy___
dx

 y  0
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Formulation of a second order differential equation

When an equation y  f(x) contains two unknown constants, A and B,

differentiating twice gives   
dy___
dx

 f(x)  and   
d2y____
dx2  f (x)  

These two equations, together with the original equation, can be used to 
eliminate A and B, giving a second order differential equation.

We now look at three types of the equation y  f(x) containing unknown 
constants A and B, all of which give rise to an equation of the form  

a
d2y____
dx2  b

dy___
dx

 cy  0  where a, b and c are real constants.  

A differential equation of the form  a
d2y____
dx2  b

dy___
dx

 cy  0  is called a

linear second order differential equation

The equation y  Ae
 x  Be

 x

Consider the equation y  Ae3x  Be4x

dy___
dx

 3Ae3x  4Be4x  3y  Be4x

d2y____
dx2  3  

dy___
dx

 4Be4x  3  
dy___
dx

 4  (dy___
dx

 3y )

⇒
d2y____
dx2  (3  4)  

dy___
dx

 (3)(4) y  0

and the coeffi cients of this equation are the roots of the quadratic 
equation u2  7u  12  0.

Therefore working backwards, by using the coeffi cients of 

d2y____
dx2  7  

dy___
dx

 12y  0  to give the quadratic equation 

u2  7u  12  0 ⇒ (u  3)(u  4)  0 then the roots of this 
equation give the general solution as  y  Ae3x  Be4x

Now consider the general case, i.e.  y  Aex  Be x

dy___
dx

 Aex  Be x

and  
d2y____
dx2  2Aex  2Be x

Eliminating A and B from these two equations gives  

d2y____
dx2  (  )  

dy___
dx

 y  0

Learning outcomes

 To solve equations of the form

a
d2y____
dx2  b

dy___
dx

 cy  0

where a, b, c  

You need to know

 The relationship between the 

roots and the coeffi cients of a 

quadratic equation

 The meaning of conjugate 

complex numbers

3.21 Differential equations of the form

aa
dd22yy________
ddxx22  bb

ddyy______
ddxx

 cycy  0
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Then the coeffi cients of this equation give the quadratic equation 

u2  (  )u    0

whose roots are  and 

In general, the quadratic equation au2  bu  c  0, formed from the

differential equation  a
d2y____
dx2  b

dy___
dx

 cy  0  is called the auxiliary

equation

When the auxiliary equation au2  bu  c  0 has real distinct
roots  and , the general solution of the differential equation  

a
d2y____
dx2  b

dy___
dx

 cy  0  can be quoted as  

y  Aex  Bex

Example

Find the general solution of the differential equation 

2  
d2y____
dx2  3  

dy___
dx

 y  0 

The auxiliary equation is  2u2  3u  1  0

2u2  3u  1  0 ⇒ (2u  1)(u  1)  0 ⇒ u 
1
2 or u  1

Therefore the general solution of  2  
d2y____
dx2  3  

dy___
dx

 y  0  

is  y  Ae 
1
2x

 Bex

The equation y  (A  Bx)e   x

Consider the equation y  (A  Bx)e3x

dy___
dx

 3(A  Bx)e3x  Be3x  3y  Be3x

d2y____
dx2  3  

dy___
dx

 3Be3x  3  
dy___
dx

 3 (dy___
dx

 3y )

⇒ 
d2y____
dx2  (3  3)  

dy___
dx

 (3  3) y  0

This time the auxiliary quadratic equation is u2  (3  3)u  (3  3)  0 
and it has a repeated root of 3.

Now consider the general case,  i.e. y  (A  Bx)e  x

dy___
dx

 y  Be  x

d2y____
dx2  

dy___
dx

 Be  x  
dy___
dx

  (dy___
dx

 y )

⇒
d2y____
dx2  2

dy___
dx

 2y  0

i.e. y  (A  Bx)ex ⇒ 
d2y____
dx2  2

dy___
dx

 2y  0
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When the auxiliary equation au2  bu  c  0 has a repeated 
root , the general solution of the differential equation

a
d2y____
dx2  b

dy___
dx

 cy  0  can be quoted as 

y  (A  Bx)ex

Example

Find the general solution of the differential equation

4  
d2y____
dx2  12  

dy___
dx

 9y  0 

The auxiliary equation is 4u2  12u  9  0 

⇒ (2u  3)2  0

This equation has a repeated root equal to 3
2

so the general solution of  4  
d2y____
dx2  12  

dy___
dx

 9y  0  

is  y  (A  Bx) e 
3
2 x

The equation y ex (A cosx B sinx)
Consider the equation  y  e2x (A cos 3x  B sin 3x)

dy___
dx

 2e2x (A cos 3x  B sin 3x)  e2x ( 3A sin 3x  3B cos 3x)

   2y  e2x ( 3A sin 3x  3B cos 3x)

d2y____
dx2  2  

dy___
dx

 2e2x ( 3A sin 3x  3B cos 3x)  e2x ( 9A cos 3x  9B sin 3x)

   2  
dy___
dx

 2  (dy___
dx

 2y )  9y

i.e.  
d2y____
dx2  4  

dy___
dx

 13y  0

The auxiliary equation is  u2  4u  13  0 and the roots of this

equation are the conjugate complex numbers  
4  √

_____

36  __________
2

 2  3i

Now consider the general case  y  e  x (A cos x  B sin x)

dy___
dx

 e  x (A cos x  B sin x)  e  x (  A sin x   B cos x)

   y  e  x (  A sin x   B cos x)

d2y____
dx2  

dy___
dx

  (dy___
dx

y ) 2y

⇒
d2y____
dx2  2

dy___
dx

 (2  2)y  0

The auxiliary equation is  u2 2  u  (2  2)y  0 and the roots of this

equation are   
2  √

________________

42  4(2  2)  ______________________
2

   i

Section 3 Counting, matrices and differential equations
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When the auxiliary equation au2  bu  c  0 has complex 
roots   i, the general solution of the differential equation

a
d2y____
dx2  b

dy___
dx

 cy  0  can be quoted as 

y  e x (A cos   x  B sin   x)

Note that if the roots of the auxiliary equation are purely imaginary, 
i.e.    0, 

then  y  A cos x  B sin x

Example

Find the general solution of the differential equation  

d2y____
dx2  4   

dy___
dx

 5y  0

The auxiliary equation is 

u2  4u  5  0 ⇒ u 
4  √

________

16  20  _______________
2

   2  i

Therefore the general solution is  y  e 2x (A cos x  B sin x)

Summary

The general solution of the differential equation  

a
d2y____
dx2  b

dy___
dx

 cy  0

depends on the nature of the roots of the auxiliary equation  

au2  bu  c  0

If the roots are  and  then

 when  and  are real and distinct,    y  Ae x  Be x

 when   , y  (A  Bx)e x

 when  and  are complex conjugate
numbers, 

y  e x (A cos  x  B sin  x)

Exercise 3.21

Find the general solution of each differential equation.

1
d2y____
dx2  7  

dy___
dx

 12y  0 2
d2y____
dx2  2  

dy___
dx

 5y  0   

3
d2y____
dx2  4y  0 4

d2y____
dx2  4y  0 

5
d2y____
dx2  7  

dy___
dx

 0 6
d2y____
dx2  6  

dy___
dx

 9y  0
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The particular integral when f(x) is a polynomial or a 
constant
Consider the differential equation   

d2y____
dx2  4  

dy___
dx

 3y  6x2
 x  2

The polynomial on the right-hand side suggests that a polynomial of the 
form  y  ax2

 bx  c  might be a solution of the differential equation. 
We call this a trial solution

We can test this by differentiation, to see if values of a, b and c exist so 
that y  ax2

 bx  c is a solution,

i.e. y  ax2
 bx  c ⇒

dy___
dx

 2ax  b  and   
d2y____
dx2  2a

Substituting into the left-hand side of the differential equation gives 

 2a  4(2ax  b)  3(ax2
 bx  c)  6x2

 x  2

⇒ 3ax2
 (8a  3b)x  (2a  4b  3c)  6x2

 x  2

Comparing coeffi cients gives a  2,  b  5 and c  6

Therefore y  2x2  5x  6 is a solution of the equation

d2y____
dx2  4  

dy___
dx

 3y  6x2
 x  2

However,  y  2x2  5x  6  cannot be the full solution because it does 
not contain any constants of integration. 

The function 2x2  5x  6 is called the particular integral

The general solution of  a
d2y____
d x2  b

dy___
dx

 cy  f(x)

where f(x) is a polynomial
We have found a solution of the equation 

d2y____
dx2  4  

dy___
dx

 3y  6x2
 x  2

and we can fi nd the general solution by fi rst solving the simpler 
differential equation 

d2y____
dx2  4  

dy___
dx

 3y  0

The auxiliary equation is 

u2
 4u  3  0 ⇒ (u  3)(u  1)  0 ⇒ u  3 or 1

∴ y  Ae 3x
 Be x

Adding Ae 3x
 Be x to the particular integral gives 

y  Ae 3x
 Be x

 2x2  5x  6 

and we can show that this is the general solution of 

d2y____
dx2  4  

dy___
dx

 3y  6x2
 x  2:

Learning outcomes

 To solve differential equations of 

the form 

a
d2y____
dx2  b

dy___
dx

 cy  f(x)

where f(x) is a polynomial

You need to know

 How to fi nd the general solution 

of the differential equation 

a
d2y____
dx2  b

dy___
dx

 cy  0 
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 y  Ae 3x
 Be x

 2x2  5x  6

dy___
dx

 3Ae 3x Be x
 4x  5

d2y____
dx2  9Ae 3x

 Be x
 4

} d2y____
dx2  4  

dy___
dx

 3y  6x2
 x  2

Ae 3x
 Be x is called the complementary function, and we have found 

the general solution of the given differential equation by adding the 
complementary function and the particular integral.

For any differential equation of the form  a
d2y____
dx2  b

dy___
dx

 cy  f(x) 

where f(x) is a polynomial, the general solution is given by 
y  (complementary function)  (particular integral) 

where the complementary function is the solution of  a
d2y____
dx2  b

dy___
dx

 cy  0

and the particular integral is a general polynomial of the same order 
as f(x) and whose coeffi cients can be found by differentiation and 

substitution into the given differential equation.

Example

Find the general solution of the equation   
d2y____
dx2  2  

dy___
dx

 5y  7x  1

First fi nd the particular integral:  try  y  ax  b

⇒
dy___
dx

 a  and   
d2y____
dx2  0

Substituting into the given differential equation gives  
2a  5(ax  b)  7x  1

Comparing coeffi cients gives  a  7
5  and  b  

19__
25

Therefore  y  7
5 x

19__
25  is the particular integral.

Next fi nd the complementary function: 
the auxiliary equation is  u2

 2u 5  0

⇒ u 
2  √

_______

4  20  ______________
2

 1  2i 

So the complementary function is  

y  e x (A cos 2x  B sin 2x)

Therefore the general solution is  

y  e x (A cos 2x  B sin 2x)  7
5 x

19__
25

Exercise 3.22

Find the general solution of each differential equation.

1
d2y____
dx2 

dy___
dx

 y  1  x 2
d2y____
dx2  9y  x2

 2
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3.23 The particular integral 2

The particular integral when f(x) is a trigonometric 
function

Consider the differential equation   
d2y____
dx2  4  

dy___
dx

 3y  2 cos x  3 sin x

The function on the right-hand side suggests that a function of the form
y  p cos x  q sin x might be a solution of the differential equation. 
Using this as a trial solution, we can differentiate it to fi nd out if values 
of p and q exist so that y  p cos x  q sin x  is a solution.

 y  p cos x  q sin x

dy___
dx

 p sin x  q cos x

d2y____
dx2  p cos x q sin x

Substituting these expressions into the given differential equation gives

( p cos x q sin x)  4( p sin x  q cos x)  3(p cos x  q sin x)

 2 cos x  3 sin x

⇒ (2p  4q) cos x  ( 4p  2q) sin x  2 cos x  3 sin x

⇒
p  2q  1

4p  2q  3 } ⇒ p  4
5  and  q  1__

10

∴ y  4
5 cos x  1__

10 sin x  is a solution of the given differential equation

and so   45 cos x  1__
10 sin x  is the particular integral.

When f(x) is any combination of cos vx and/or sin vx we use 
y  p cos vx  q sin vx as the trial solution. For example, if f(x)  3 sin 4x, 
we use y  p cos 4x  q sin 4x

The general solution when  

a
d2y____
d x2  b

dy___
dx

 cy  a trigonometric function of x

For the differential equation   
d2y____
dx2  4  

dy___
dx

 3y  2 cos x  3 sin x the 

complementary function is the general solution of   
d2y____
dx2  4  

dy___
dx

 3y  0

The auxiliary equation is 

u2
 4u  3  0 ⇒ (u  3)(u 1)  0 ⇒ u  3 or 1

Therefore the complementary function is  Ae 3x
 Be x

The general solution of the given differential equation is therefore 

y  Ae 3x
 Be x


4
5 cos x  1__

10 sin x

Learning outcomes

 To solve differential equations of 

the form 

a
d2y____
dx2  b

dy___
dx

 cy f(x)

where f(x) is a trigonometric 

function

You need to know

 How to fi nd the general solution 

of the differential equation 

a
d2y____
dx2  b

dy___
dx

 cy 0 
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For any differential equation of the form  a
d2y____
dx2  b

dy___
dx

 cy  f(x)

where f(x) is a combination of sines and cosines of the same angle, 
the general solution is given by  

y  (complementary function)  (particular integral) 
where the complementary function is the solution of  

a
d2y____
dx2  b

dy___
dx

 cy  0  and the particular integral is  p cos ux  q sin ux

and where p and q are constants which can be found by differentiation 
and substitution into the given differential equation.

Example

Find the general solution of the differential equation 

d2y____
dx2  6  

dy___
dx

 9y  4 sin 2x

Using  y  p cos 2x  q sin 2x  as the trial solution gives

dy___
dx

 2p sin 2x  2q cos 2x

d2y____
dx2  4p cos 2x  4q sin 2x

Substituting into the given differential equation gives

( 4p cos 2x  4q sin 2x)  6( 2p sin 2x  2q cos 2x)  9(p cos 2x  q sin 2x) 

 4 sin 2x

⇒ (5p  12q) cos 2x  (12p  5q) sin 2x  4 sin 2x

Equating coeffi cients of cos 2x and sin 2x gives

5p  12q  0
12p  5q  4 } ⇒ p 

48____
169

,  q 
20____

169

∴ the particular integral is   1____
169

 (48 cos 2x  20 sin 2x)

The complementary function comes from the general solution of

d2y____
dx2  6  

dy___
dx

 9y  0

The auxiliary equation is  u2  6u  9  0 ⇒ u  3 (repeated)

so the complementary function is (A  Bx)e3x

Therefore the general solution of the given differential equation is  

y  (A  Bx)e3x 
1____

169
 (48 cos 2x  20 sin 2x)

Exercise 3.23

Find the general solution of each differential equation.

1
d2y____
dx2  3  

dy___
dx

 2y  5 cos x 2
d2x____
d  2

 3x  cos 2  2 sin 2 



180

3.24 The particular integral 3

The particular integral when f(x) is an exponential 
function

Consider the differential equation   
d2y____
dx2  4  

dy___
dx

 3y  ex

The function on the right-hand side suggests that a function of the form 
y  pex might be a solution of the differential equation. Using this as a
trial solution gives

y  pex ⇒
dy___
dx

 pex  and   
d2y____
dx2  pex

Substituting into the given differential equation gives  8pex  ex ⇒ p  1
8

Therefore  y  1
8 ex  is a solution of   

d2y____
dx2  4  

dy___
dx

 3y  ex

and the particular integral is  18 ex

The auxiliary equation is 

u2
 4u  3  0 ⇒ (u  1)(u  3)  0 ⇒ u  1 or 3

Therefore the complementary function is  Ae 3x
 Be x

Hence the general solution of 

d2y____
dx2  4  

dy___
dx

 3y  ex  is  y  Ae 3x
 Be x


1
8 ex

The failure case

Now consider the differential equation   
d2y____
dx2  4  

dy___
dx

 3y  ex

The auxiliary equation is  

u2  4u  3  0 ⇒ (u  1)(u  3)  0 ⇒ u  1  or  u  3

so the complementary function is  Ae3x
 Bex

If we use y  pex as a trial solution we get  
y  Ae3x

 Bex  pex  Ae3x
 Cex  which is only the general solution of 

the left-hand side of the given equation.

This means we cannot use y  pex when the complementary function 
already includes a multiple of ex

Instead we use y  pxex as a trial solution, giving

y  pxex ⇒
dy___
dx

 pxex  pex  and   
d2y____
dx2  pxex  2pex

Substituting into the given differential equation gives 

p(xex  2ex)  4p(xex  ex)  3pxex  ex ⇒ p  
1
2

Therefore y  
1
2 xex is a solution, so the general solution of the given 

differential equation is

y  Ae3x
 Bex 1

2 xex

Learning outcomes

 To solve differential equations of 

the form 

a
d2y____
dx2  b

dy___
dx

 cy f(x)

where f(x) is an exponential 

function

You need to know

 How to fi nd the general solution 

of the differential equation 

a
d2y____
dx2  b

dy___
dx

 cy 0 
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For any differential equation of the form  a
d2y____
dx2  b

dy___
dx

 cy  f(x) 

where f(x)  e x, where  and  are constants, the general solution 
is given by  y  (complementary function)  (particular integral)

where the complementary function is the solution of

a
d2y____
dx2  b

dy___
dx

 cy  0  and the particular integral depends on the

powers of e in the complementary function:

 use pe x when the complementary function does NOT 
contain e x

 use pxe x when the complementary function DOES contain 
e x

 use px2e x when the complementary function contains both 
e x and xe x

and where p can be found by differentiation and 
substitution into the given differential equation.

Example

Find the general solution of the differential equation 

d2y____
dx2  6  

dy___
dx

 9y  e3x

First fi nd the complementary function.

The auxiliary equation is  u2  6u  9  0 ⇒ u  3

Therefore the complementary function is  (A  Bx)e3x

This contains e3x and xe3x so we use  y  px2e3x as a trial solution.

y  px2e3x ⇒
dy___
dx

 3px2e3x
 2pxe3x

  ⇒
d2y____
dx2  9px2e3x

 12pxe3x
 2pe3x

Substitution into the given equation gives

(9px2e3x
 12pxe3x

 2pe3x)  6(3px2e3x
 2pxe3x)  9px2e3x

 e3x

⇒ p 
1
2

Therefore y  1
2 x

2e3x  is a solution of   
d2y____
dx2  6  

dy___
dx

 9y  e3x

So the particular integral is   12 x
2e3x

and the general solution is y  (A  Bx)e3x


1
2 x

2e3x

Exercise 3.24

Find the general solution of each differential equation.

1
d2y____
dx2  2  

dy___
dx

 y  e2x 2
d2y____
dx2  2  

dy___
dx

 5y  4ex
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Summary of general solutions of second order linear 
differential equations

a
d2y____
dx2  b

dy___
dx

 cy 0

Auxiliary equation au2
 bu  c 0 General solution

real and distinct roots,  and  y Aex  Bex

repeated root,  y (ABx)ex

complex conjugate roots,   i y ex (A cosx B sin x)

a
d2y____

dx2  b
dy___

dx
 cy f(x)

General solution: y complementary function  particular integral where

the complementary function is the solution of a
d2y____
dx2  b

dy___
dx

 cy  f(x)

and the particular integral comes from a trial solution that depends on the 

form of f(x)

f(x) Trial solution

polynomial or constant polynomial of same order as f(x), 
e.g. f(x) 3x 2, y px q

trigonometric:

u cosx
v sinx
u cosx v sinx

} y p cosx q sinx

exponential: uex y pex when ex is not part of the 

complementary function

y pxex when ex is part of the complementary 

function

y px2ex when ex and xex are part of the 

complementary function

When f(x) is not one of the forms given in the table, you will be given a 
trial solution.

Boundary conditions

When we are given boundary conditions, i.e. corresponding values of x, y

and possibly   
dy___
dx

, we can use these in the general solution of a differential

equation to fi nd the particular solution.

Learning outcomes

 To summarise the general 

solution of differential equations 

of the form 

a
d2y____
dx2  b

dy___
dx

 cy f(x)

 To fi nd the solution of 

a
d2y____
dx2  b

dy___
dx

 cy f(x)

given boundary conditions

You need to know

 How to differentiate standard 

functions and products of 

functions

 The meaning of the auxiliary 

equation

 How to fi nd a particular integral 

from a trial solution 
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Example

Solve the equation   
d2v____
dt2  4v  8t  given that v  0 when t  0 and when t 

__
4

d2v____
dt2  4v  8t  gives the auxiliary equation u2

 4  0 ⇒ u   2i

Therefore the complementary function is  A cos 2t  B sin 2t

Using v  pt  q as a trial solution gives   
dv___
dt

 p  and   
d2v____
dt2  0 

Substituting into the given equation gives  4pt  4q  8t  so  p  2 and q  0

Therefore the particular integral is 2t 

⇒ v  A cos 2t  B sin 2t  2t

When v  0 and t  0: 0  A

When v  0 and t 
__
4

 : 0  B 
__
2

⇒ B  
__
2

∴ v  2t
__
2

 sin 2t

Example

Solve the equation   
d2y____
dx2  y  5ex sin x  given that y  0  and   

dy___
dx

 2  when x  0

Use  y  pex cos x  qex sin x  as a trial solution.

The auxiliary equation is u2
 1 ⇒ u  i  so the complementary function is  A cos x  B sin x

y  pex cos x  qex sin x ⇒
dy___
dx

 ex (p cos x  q sin x)  ex( p sin x  q cos x) 

   ex(p  q) cos x  ex( p  q) sin x

and  
d2y____
dx2  ex (p  q) cos x  ex( p  q) sin x  ex(p  q) sin x  ex( p  q) cos x

 2qex cos x  2pex sin x

Substituting into the given equation gives ex ((p  2q) cos x  ( 2p  q) sin x )  5ex sin x ⇒ p  2, q  1

so the particular integral is 2ex cos x  ex sin x

∴ y  A cos x  B sin x  2ex cos x  ex sin x

When  x  0, y  0 ⇒ A  2,  so  y  2(1  ex) cos x  (B  ex) sin x

⇒
dy___
dx

 2(1  ex) sin x  2ex cos x  (B  ex) cos x ex sin x

When  x  0,   
dy___
dx

 2 ⇒ B  3, ∴ y  2(1  ex) cos x  (3  ex) sin x

Exercise 3.25

1 Solve the equation   
d2y____
dx2 

dy___
dx

 2y  10 sin x  given y  0 and   
dy___
dx

 1

 when x  0

2 Solve the equation   
d2y____
dx2  5  

dy___
dx

 6y  (4x  3)ex  using 

y  (px  q)ex  as a trial solution and given that y  0 and   
dy___
dx

 0

 when x  0  
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3.26 Using substitution

Substitution

We have seen in Unit 1 that we can sometimes use a substitution to fi nd

y when   
dy___
dx

 f(x)

It is also sometimes possible to use a substitution to reduce a second 
order differential equation to a form that can be solved.

Consider the differential equation  x2
d2y____
dx2  2x

dy___
dx

 12y  6

We know that when the left-hand side is a second order linear equation, 
the solution often involves ex, so we will try the substitution x  eu

When  x  eu,  using the chain rule gives

dy___
dx


dy___
du


du___
dx


dy___
du


1___

dx___
du

  
dy___
du


1__
eu 

1__
x


dy___
du

⇒ x
dy___
dx


dy___
du

 [1]

Differentiating [1] with respect to x gives  

 x
d2y____
dx2 

dy___
dx


d___
dx (dy___

du )
  

d2y____
du2 

du___
dx


d2y____
du2 

1__
x

⇒ x2
d2y____
dx2  x

dy___
dx


d2y____
du2  [2]

Expressing the given equation as  x2
d2y____
dx2  x

dy___
dx

 x
dy___
dx

 12y  6

we can now substitute   
d2y____
du2  for  x2

d2y____
dx2  x

dy___
dx

  and   
dy___
du

  for x
dy___
dx

  giving 

d2y____
du2 

dy___
du

 12y  6

The left-hand side is now linear and second order, so the equation can be 
solved.

Substitution can also be used to transform some second order differential 
equations to fi rst order equations. This usually makes the integration easier.

Consider the equation   
d2y____
dx2  2  

dy___
dx

 4x

There is no term involving y in this equation, so we can reduce it to a

fi rst order equation with the substitution  u 
dy___
dx

  so that   
du___
dx


d2y____
dx2

The given equation then becomes   
du___
dx

 2u  4x  which can be solved

using the integrating factor  I  e ∫2 dx
 e2x

Therefore  e2x du___
dx

 2ue2x
 4xe2x

⇒ ue2x
 ∫4xe2x dx

Learning outcomes

 To use substitution to reduce a 

differential equation to a form in 

which it can be solved

You need to know

 How to fi nd the general solution 

of an equation of the form 

a
d2y____
dx2  b

dy___
dx

 cy  f(x)

 The chain rule

 The relationship    
dy___
dx


1___

dx___
dy

 How to differentiate implicit 

functions

 How to use an integrating factor

 How to integrate by parts
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Section 3 Counting, matrices and differential equations 

Using integration by parts gives

ue2x
 2xe2x ∫2e2x dx

   2xe2x  e2x
 A

⇒ u  2x  1  Ae 2x

Substituting back for u gives another fi rst order differential equation:  

dy___
dx

 2x  1  Ae 2x

Integrating again gives  y  x2 x
1
2 Ae 2x

 B

Example

Use the substitution u 
dy___
dx

  to fi nd the general solution of the

differential equation 

d2y____
dx2  2  (dy___

dx )
2

 0

u 
dy___
dx

⇒
du___
dx


d2y____
dx2

∴   
d2y____
dx2  2  (dy___

dx )
2

 0 

⇒
du___
dx

 2u2
 0

This equation can be integrated by separating the variables,

i.e.  1___
u2

du___
dx

 2 ⇒
1__
u

 2x  A

∴   u 
1_______

2x  A

so     
dy___
dx


1_______

2x  A

⇒ y 
1
2 ln|2x  A|  B

Exercise 3.26

1 Use the substitution  u 
dy___
dx

  to fi nd the general solution of the

equation   
d2y____
dx2  x (dy___

dx )
2

 0

Given that  y  0 and   
dy___
dx

 1 when x  0, fi nd y in terms of x.

2 Use the substitution x  eu to show that the differential equation

x2
d2y____
dx2  x

dy___
dx

 y  0  can be expressed as   
d2y____
du2  y  0. 

Hence fi nd the general solution of  x2
d2y____
dx2  x

dy___
dx

 y  0  
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1 A sim card manufacturer marks each sim with 
a unique registration code. This code consists 
of one digit chosen from 1 to 6, two letters not 
including the letters O and I, two digits chosen
from 0 to 9 inclusive and ending with two letters, 
again not including O and I. All digits and letters 
can be repeated.

 The manufacturer has made 20 000 000 sim cards. 
How many more sim cards can be made before a 
new format for the codes needs to be introduced?

 2 Four-digit numbers are made from the digits 
1, 2, 4, 6, 7 and 9. Each digit is used only once.

(a) How many different even numbers can be 
made?

(b) How many different numbers can be made 
that are greater than 4200?

 3 Three coins are tossed simultaneously. Calculate 
the number of ways they can land so that

(a) at least one coin lands with a head uppermost

(b) at least two coins land with a head uppermost.

 4 Three cubical dice are thrown and the numbers 
on the uppermost faces are added to form
the score.

 Find the number of ways in which they can land 
so that the score is 

(a) less than 6 (b) greater than 10.

 5 One cubical dice is biased so that when it is 
thrown, it is twice as likely to show a six on its 
uppermost face as any other score. A second 
cubical dice is unbiased. 

 One of these dice is chosen at random and then 
thrown. If a six shows on the uppermost face,
what is the probability that the biased dice was 
chosen?

 6 The cards numbered 2 to 9 are withdrawn from 
an ordinary pack of 52 playing cards to form a 
smaller pack. Three cards are drawn from this 
smaller pack.

 Calculate the probability that they all show the 
same number.

 7 Of the 50 members of a cricket club, 

 27 are batsmen,

 27 are bowlers,

 16 are wicket keepers,

 8 are batsmen and bowlers,

 3 are batsmen and wicket keepers,

 5 are bowlers and wicket keepers,

 8 are neither batsmen nor bowlers nor 
wicketkeepers.

(a) Draw a Venn diagram to show this 
information.

(b) One member of the club is chosen at 
random. Calculate the probability that the 
person chosen is not a batsman, nor a bowler, 
nor a wicket keeper.

 8 A bag contains 5 red discs, 8 blue discs and 
6 white discs.

 One disc is removed at random and not replaced, 
then a second disc is removed at random.

 Calculate the probability that the two discs 
removed are the same colour.

 9 A  (
3 5 1

6 0 4

1 4 3
)  and  B  (

1 0 4

2 2 0

3 1 2
)

(a) Find A  2B

(b) Determine x and y if  

A  3B  (
 0 x  y 13

12 xy  4

 8 1  9 
)

 10 A  (2 1 4)  and  B  (
3

0

1
)

Show that |AB|  10  but  |BA|  0

 11 Given that A  (cos  sin 

sin  cos 
)  show that A2  I

 12 Given A  (
1 x 2

1 0 4

2 1 1
)

(a) Find the value of x for which |A|  0

(b) When x  1 fi nd the value of y for which

A (
1

1

y
)  (

 6

13

 4
)

 13 Find the value of a given that

⎥
 1 1 1

a 2a 3a

 a2 a2  1 a2
⎥  4

Section 3 Practice questions
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Section 3 Practice questions 

 14 A (
1 1 4
0 1 1
2 0 1

)  and  B  (
0 1 1
2 0 1
1 2 0

)
(a) Determine ATBT

(b) Show that (AB)T  ATBT

 15 (a) Determine which of the following sets of 
equations are consistent:
(i) 2x  y  4  0

y  2x  4
(ii) 2x  y  4  0

x  y  2  0
(iii) 2x  y  4  0

3y  6x 12

(b) (i) Express the set of equations that has a 
unique solution as a matrix equation.

(ii) Use row reduction to solve the matrix 
equation.

 16 Show that the matrix A  (
1 2 2

2 3 1

4 2 1
)

can be reduced to   (
1 2 2

0 1 3

0 0   11
)

 Hence fi nd |A|. 

 17 Use row reduction to solve the equations

 2x  y  2z  2

 x  2y  z  6

 3x  4y  2z  7

 18 Express the system of equations  

 2x  y  3z  4

 3x  y  2z  2

2x  4y  6z  1

  as a matrix equation.

 Hence show that the system is not consistent.

 19 Given A (
3 2 1

1 1 2

0 1 0
)  and  B  (

4 3 2

2 6 5

1 3 1
)

fi nd the matrix C that satisfi es the equation 
AC  A1B

 20 (a) Find the general solution of the differential

equation  x2
dy___
dx

 2xy  cos x

(b) Find the particular solution given that when

x 
__
2

, y  0

 21 (a) Find the integrating factor for solving the

differential equation   
dy___
dx

 x2y  x2

(b) Find the solution given that y  1 when 
x  0

 22 Find the general solution of each differential 
equation.

(a)
d2y____
dx2  8  

dy___
dx

 12y  0 

(b)
d2y____
dx2  8  

dy___
dx

 16y  0 (c)
d2y____
dx2  9y  0

 23 For the differential equation   
d2y____
dx2  16y  3x  1  

fi nd

(a) the particular integral 

(b)  the complementary function 

(c)  the general solution.

 24 Given that  y  a cos 2x  b sin 2x  is a particular 
integral of the differential equation
d2y____
dx2  2  

dy___
dx

 3y  10 cos 2x, fi nd 

(a) the values of the constants a and b

(b) the general solution of the differential 
equation.

 25 Given that   
d2y____
dx2  4  

dy___
dx

 4y  e2x

(a) fi nd the complementary function  

(b) explain why y  ae2x where a is a constant is 
not a suitable particular integral

(c) fi nd the particular integral and hence give the 
general solution of the differential equation

(d) fi nd the particular solution given that 

y  1 and   
dy___
dx

 0 when x  0

 26 Use the substitution x  eu to show that the

differential equation  x2
d2y____
dx2  2x

dy___
dx

 3y  0

reduces to   
d2y____
du2 

dy___
du

 3y  0

 Hence fi nd the general solution of the differential

equation  x2
d2y____
dx2  2x

dy___
dx

 3y  0

 27 Use the substitution u 
dy___
dx

 to reduce the second

order differential equation x
d2y____
dx2 

dy___
dx

 3x  0

to a fi rst order differential equation.

 Hence fi nd the general solution of the equation

d2y____
dx2  x

dy___
dx

 3x  0
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A

addition of complex numbers 8, 16
addition of matrices 138–9
addition of vectors 16
alternating sequences 68, 69
angle  14–15, 16, 17
approximations, fi nding 85–7
arccos 33
Archimedes 83
arcsin 32
arctan 33
area under a curve 62–3, 83
Argand diagrams 12–17, 22–5
argument of complex numbers 14–15, 17
arithmetic progressions 67, 69, 73
 sum of fi rst n terms 70–1, 73
augmented matrix 158–9, 161–4
auxiliary equations 172–6, 178–83
axes of graphs 12

B

bias, coins 135, 137
bias, dice 131, 136
binomial coeffi cients 89
binomial expansion 92–7
binomial theorem 89, 93, 94–7
 applications 96–7
 derivation of 88–92
binomials 88
bisection, interval 102–3
bisector, perpendicular 23, 24
boundary conditions 167, 182–3
brackets, expanding 93

C

calculators, scientifi c 111
car theft 127
cards 127, 134, 136–7
 playing 116, 121
certainty 126
chain rule 28, 30, 35, 42, 50, 126
circles 22–5
circular arrangements 117
cofactors 146–7, 150, 153–4
coins 115, 122, 126, 135, 137
column vectors 138, 140, 158, 160
combinations 120–1
 difference from permutations 121
common difference 67
common ratio 67
complementary function 177–83
complex coeffi cients of quadratic equations 11
complex conjugate roots 182
complex numbers 6–11, 12
 addition 8
 applications 7
 argument of 14–15, 17

 conjugate 7, 11, 174
 difference of 16
 division of 8
 exponential form 21
 graphical representation 16–17
 and loci 22–5
 modulus of 14, 17, 24
 multiplication 8
 operations on 8–9
 polar-argument form 15, 19
 product of 16
 quotient of 17
 square roots of 10–11
 subtraction of 8
 sum of 16
complex roots 175, 182
composite functions 27, 28, 30
 expanding 82–3
compound interest 92
conditional probability 136–7
conjugate complex numbers 7, 11, 174
conjugate complex roots 182
consistency of equations system 156, 160, 161
constants 67, 176–7, 182
 of integration 59
convergent sequences 68, 69
convergent series 72–3, 79–80, 84–5, 94
converging iteration 110
coordinate geometry, determinants in 148–9
cos x, even, odd powers 52
cos 1 

x 32–3
 derivative of 34, 35
 principle values 33
counting 114–15
cubic equations 7
curves, gradient of 106
curves, tangent to 26, 106

D

De Moivre, Abraham 18
De Moivre’s theorem 18–21
decomposing into partial fractions 44, 46
defi nite integral 51, 59–60
denominator 44, 45, 46
derivation of binomial theorem 88–92
derivatives
 of combinations of functions 36–7
 of trig functions 52
  inverse 34, 35
determinants
 in coordinate geometry 148–9
 expansion 148
 of matrices 146–9
 minor in 146–7
 simplifi cation 150–1
diagrams, Argand 12–17, 22–5
dice 115, 122, 126, 128, 131, 133

Index
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Index

difference of complex numbers 16
differences, method of 74–5
differential equations 166–7
 exact 167, 170, 171
 failure case 180–1
 order of 166
 fi rst order 166, 168, 170–1, 185
 second order 166, 172, 182–4
 solutions 166–85
  approximate 85–7
  general 167, 169, 174–85
  trial 176, 178–83
differentials
 of ef(x) 27 
 of ex 26–7 
 of inverse trigonometric function 34
 second 38–9
 summary 36
differentiation
 of exponential functions 26–7
 of fractions 48
 of implicit functions 30–1, 38
 of logarithmic functions 28
 of parametric equations 28
 partial 40–1
 as reverse of integration 42
 term by term 78–9
displacement vectors 12
divergent sequences 68, 69
divergent series 72–3
division of complex numbers 8
drug trial 122, 129, 132–3

E

ex 81, 82, 180
equally likely 126, 128, 130
equations
 arg (z)   24
 auxiliary 172–6, 178–83
 cubic 7
 differential 166–7
  fi rst order 166, 168, 170–1, 185
  second order 166, 172, 182–4
  trial solutions 176, 178, 179–83
 equivalent systems of 157–8
 linear, systems 156, 160–3
 matrix 157, 158
 matrix representation of 157, 160–1
 of normals 29
 parametric 28
 polynomial 7
 represented by three planes 160
 roots of 6, 7, 9, 107
 simultaneous 10, 47
 solving, numerical methods 102–3
  row reduction 158–9
 of tangents 29, 106

| z |  r 22
| zz1| a 22–3

equivalent operations 50

equivalent systems of equations 157–8
Euler’s formula 21, 82
events 126
 independent 130–1
 mutually exclusive 130
 not happening 128–9
 not independent 134–6
 not mutually exclusive 131–3
 probability with two 130–3
  or more 134–7
exhaustive sample space 127
expanding brackets 93
expanding composite functions 82–3
expansion of (a  b)n 90–1
expansion, standard 81
experiments 126
exponential complex numbers 21
exponential curves 26
exponential function 180–1, 182
 differentiation of 26–7
 integration of 42–3

F

factorial notation 78, 116
factors, integrating 168–9
fair coins and dice 126
Fibonacci sequence 66
fi nite constant 72
fi rst order differential equations 166, 168, 170–1, 185
formulae
 Euler’s 21, 82
 iteration 108–10
 for the fi rst n terms 76–7

nth term of a sequence 76
 recurrence 108
 reduction 58–61
 sum of terms 71
fractions
 differentiation of 48
 improper 45
 negative 94
 partial 44–9, 74–5, 96
 proper 44, 45, 46
 with quadratic factors 46–7
functions
 f(x)  ex 82
 series expansion of 83
 trigonometric, integration of 52–3
 of two or more variables 40
fundamental counting principle 114–15

G

general terms 70, 74
geometric progressions 67, 69, 73, 95
 sum to infi nity 73
 sum of fi rst n terms 71–2
gradient of a curve 106
graphical representation, complex numbers 16–17
graphs 26
 axes, real and imaginary 12
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Index

I

identities 44
identity matrices 144–5
imaginary axes of graphs 12
imaginary numbers 6
implicit functions 30–1
 differentiation 30–1, 38
impossibility 126
independent events 130–1
independent permutations 118
indices, law of 21
infi nite series 81, 94
infi nity, sum to 73
initial conditions 85
‘inside’ function 50
integers, negative 94
integral, particular 176–83
integrating factors 168–9
integration
 constant of 59
 as reverse of differentiation 42
 partial fractions in 48–9
 of exponential functions 42–3
 of logarithmic functions 43
 of trigonometric functions 52–3
  inverse 56–7
 by parts 54–60, 185
 using substitution 50–2
 of reciprocal of x 42–3
intermediate value theorem 98–9
interpolation, linear 104–5
interval bisection 102–3
inverse cosine function 32–3
inverse matrices 152, 153–4
 multiplicative 152–4, 164–5
 using row reduction 164–5
inverse sine function 32
inverse tangent function 33
inverse trigonometric function 32–5
 integration 56–7
irrational numbers 97
iteration 108–111
iteration formula 108–10
 to fi nd a root 103, 108–111

L

law of indices 21
law of logarithms 28
leading diagonals 144, 146, 152–3
line segments 23
linear equations
 second order differential 166, 172, 182–4
 systems of 2 × 2 156
 systems of 3 × 3 160–3
linear interpolation 104–5
loci 22–5
loci intersection 24
logarithmic functions
 differentiation of 28, 36–7
 integration of 43
logarithms, law of 28

M

Maclaurin, Colin 84
Maclaurin series 83, 85
Maclaurin’s theorem 78–81, 84, 89, 94
 applications 82–3
mathematical induction 76
mathematical models 166
mathematicians 18, 84, 106, 166
matrices 138–45
 addition of 138–9
 augmented 158, 159, 161–4
 conformable 139, 141
 determinants of 146–9
 identity 144–5
 inverse 152, 153–4
  using row reduction 164–5
 non-conformable 140, 141
 multiplication by scalars 139
 multiplicative inverse 152–4, 164–5
 product of two 141–2
 product with column vectors 140
 row echelon form 161–3
 singular 150, 152, 153
 square 138, 144–6, 154, 158
 subtraction of 138–9
 unit 144, 145, 164
 zero 144, 145
matrix equations 157, 158
matrix multiplication 140–3, 144
 associative 143, 154
 non commutative 142
 postmultiplying 142, 145, 152, 154
 premultiplying 142, 145, 152, 157, 160
matrix representation of equations 157, 160–1
method of differences 74–5
minor in determinants 146–7
models 166
modulus of complex numbers 14, 17, 24
multiplication of complex numbers 8
multiplicative inverse of matrices 152–4, 164–5
mutually exclusive events 130
mutually exclusive outcome 134–5
mutually exclusive permutations 119

N

n →∞ 68, 72–3
n terms, sum of fi rst 70–2 , 74–5
n! 116
natural numbers 77
nC

r 
notation 89–90

negative fractions 94
negative integers 94
negative numbers 6
Newton, Sir Isaac 106, 166
Newton–Raphson (Newton’s) method 106–7
Newton’s laws of motion 166
normals, equations of 29
nth term 66, 67, 69, 70, 94

of a sequence, formula 76
 approaching zero 73
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Index

number plates 115, 118, 119
number series 70–3
numbers, imaginary 6
numbers, irrational 97
numbers, real 8
numbers, negative 6
numerators 44, 45
numerical methods to solve equations 102–3

O

operations on complex numbers 16–17
orders of differential equations 166, 170–2, 185
oscillating sequences 69
outcome 115, 122, 123, 126, 128, 130
 mutually exclusive 134–5
 overlapping 123–5

P

parametric curves 28–9
parametric equations, differentiation of 28
partial fractions 44–9, 74–5, 96
 applications of 48–9
 decomposing into 44, 46
 in integration 48–9
particular integral 182, 183
 one 176–7
 two 178–9
 three 180–1
Pascal’s triangle 88–9, 91
pensions 92
periodic sequences 69
permutations 116–19, 128
 circular arrangements 117
 difference from combinations 121
 independent 118
 mutually exclusive 119
perpendicular bisector 23
playing cards 116, 121
polar-argument, complex numbers 15, 19
polynomial equations 7
polynomials 44, 176–7, 182
position vectors 12–13
postmultiplying 142, 145, 152, 154
power series 78–81
premultiplying 142, 145, 152, 157, 160
principles, counting 114–15
probability
 basic 126–7
 conditional 136–7
 defi nition 126
 events not happening 128–9
 with two events 130–3
 with two or more events 134–7
 terminology 126
product of complex numbers 16
product rule 30, 37, 38, 41
progressions, arithmetic 67, 69, 73
 sum of fi rst n terms 70–1, 73
progressions, geometric 67, 69, 73, 95
 sum to infi nity 73
 sum of fi rst n terms 71–2

proof by induction 18–20, 76
properties of sequences and series, proving 76–7

Q

quadratic equations 6, 7, 9, 10, 172–3
 with complex coeffi cients 11
quadratic factors 7, 46–7
quadratic formula 7
questions and answers 64–5, 186–7, 112–13
quotient of complex numbers 17
quotient rule 30, 48

R

radians 111
radius 22
random selection 126, 128, 129
Raphson, Joseph 106
rational functions 44
rays 23–4
real axes of graphs 12
real numbers 8
reciprocals 152
recurrence formula 108
recurrence relations 61, 66–7, 76
reduction formulae 58–61
repeated roots 173–4, 182
roots of equations 6, 7, 9
 approximations 106–7, 108–111
 complex 10–11, 175, 182
 locating 98–101, 104–5, 107
 using iteration formula 108–111
 no real 6
 repeated 173–4, 182
row echelon form of matrices 161–3
row reduction 158–9, 161, 164–5
row vectors 138, 140

S

sample spaces 122–5, 127, 130
 exhaustive 127
scale factor 16–17
scientifi c calculators 111
second order differential equations 166, 172, 182–4
second partial derivative 41
sequences 61, 66–74
 alternating 68, 69
 convergent 68, 69
 divergent 68, 69, 110
 Fibonacci 66
 generating 66
 nth term, formula 76
 oscillating 69
 periodic 69
series 70
 convergent 72–3, 79–80, 84–5, 94
 divergent 72–3
 expansion 83, 94, 95
 infi nite 81, 94
 sum to infi nity 72–3
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Index

Taylor’s theorem 84–7
terminating series 81, 94
terms, fi nding 66, 67
terms, general 70, 74
theorem, De Moivre’s 18–21
theorem, intermediate value 98–9
trapezium rule 62–3
tree diagrams 114, 123, 134–6
trial solutions 176, 178–83
triangles, area 148–9
trigonometric function 178–9, 182
 integration of 52–3, 56–7
 inverse 32–5, 56–7
  differentials of 34
turning points 100
two-way table 122

U

u
n

66
unbiased coins and dice 126
unit matrices 144, 145, 164

V

variables, function of 40
vectors 12–17
 addition 16
 column 138, 140, 158, 160
 displacement 12
 position 12–13
 row 138, 140
 subtraction 16
Venn diagrams 123–5, 129–32

X

x
n 94

Z

zero matrices 144, 145

 Maclaurin 83, 85
 sum of fi rst n terms 70–2, 74–5
 number 70–3
 power 78–81
 Taylor’s 84, 85–7
 terminating 81, 94
simultaneous equations 10, 47
sin x, even, odd powers 52
sine function, inverse 32
singular matrices 150, 152, 153
solving equations
 numerical methods 102–3
 row reduction method 158–9
square matrices 138, 144–6, 154, 158
standard expansions 81
substitution, using 184–5
subtraction of
 matrices 138–9
 complex numbers 8
 vectors 16
sum of
 () 70
 to infi nity 72–3, 75
 cubes of the fi rst n natural numbers 77
 squares of the fi rst n natural numbers 77
 fi rst n terms, formula 76–7
 complex numbers 8, 16
summary of differentials 36

T

table, two-way 122
tan1 

x, principle values 33
tangent function, inverse 33
tangents to a curve 26, 106
tangents, equations of 29, 106
tangents, gradients of 26, 31
Taylor, Brook 84
Taylor’s series 84, 85–7
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