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Xii

Introduction

These two volumes provide students with an understanding of pure mathematics
at the CAPE® level taken from both a theoretical and an application aspect and
encourage the learning of mathematics. They provide the medium through

which a student can find problems applied to different disciplines. The concepts
are developed step by step; they start from the basics (for those who did not do
additional mathematics) and move to the more advanced content areas, thereby
satisfying the needs of the syllabus. Examination questions all seem to have answers
that are considered ‘nice’ whole numbers or small fractions that are easy to work
with; not all real-world problems have such answers and these books have avoided
that to some extent. Expect any kind of numbers for your answers; there are no
strange or weird numbers.

The objectives are outlined at the beginning of each chapter, followed by the
keywords and terms that a student should be familiar with for a better understanding
of the subject. Every student should have a section of their work book for the
language of the subject. I have met many students who do not understand terms such
as ‘root’ and ‘factor’ A dictionary developed in class from topic to topic may assist the
students in understanding the terms involved. Each objective is fulfilled throughout
the chapters with examples clearly explained. Mathematical modelling is a concept
that is developed throughout, with each chapter containing the relevant modelling
questions.

The exercises at the end of each section are graded in difficulty and have adequate
problems so that a student can move on once they feel comfortable with the concepts.
Additionally, review exercises give the student a feel for solving problems that are
varied in content. There are three multiple choice papers at the end of each Unit,

and at the end of each module there are tests based on that module. For additional
practice, the student can go to the relevant past papers and solve the problems given.
After going through the questions in each chapter, a student should be able to do past
paper questions from different examining boards for further practice.

A checklist at the end of each chapter enables the student to note easily what is
understood and to what extent. A student can identify areas that need work with
proper use of this checklist. Furthermore, each chapter is summarised as far as
possible as a diagram. Students can use this to revise the content that was covered in
the chapter.

The text provides all the material that is needed for the CAPE® syllabus so that
teachers will not have to search for additional material. Both new and experienced
teachers will benefit from the text since it goes through the syllabus chapter by
chapter and objective to objective. All objectives in the syllabus are dealt with

in detail and both students and teachers can work through the text, comfortably
knowing that the content of the syllabus will be covered.



Mathematical Modelling

A mathematical model is a mathematical description of the behaviour of some real-

life system or some aspect of a real-life system. The mathematical model may be used
to find an optimal solution to a problem, answer a number of questions, date fossils

by analysing the decay of radioactive substance or model the population change of a
community. The mathematical model makes use of identifying variables, setting up
equations or inequalities and stating any assumptions and limitations within the model.

In considering the motion of a ball when thrown at an angle to the horizontal, we may
ignore the weight of the ball, treat the ball as a particle (we ignore the size of the ball)
and assume that there is no resistance to motion. We simplify the problem and create a
mathematical model to find distances travelled, maximum height reached by the ball or
any aspect of the motion that interests us.

Construction of a mathematical model
for a system

Step 1

Identity all variables that are responsible for changing the system.

Step 2

State any assumptions or hypotheses about the system.

Step 3

Formulate the problem in mathematical terms: equations, inequalities etc.

Step 4

Solve the mathematical problem.

Step 5

Test the accuracy of the solution against the real-world behaviour.

Step 6
Refine the model if necessary.

Mathematical modelling is not restricted to any particular topic. The real-world
situation being analysed can be based on topics inclusive of algebra, trigonometry,
calculus and statistics or a combination of these. Throughout the text there are
modelling questions for the relevant chapters.

Xiii
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CHAPTER 1
Reasoning and logic

©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00

At the end of this section you should be able to:
B Identify simple and compound propositions

B Identify connectives (conjunction, disjunction, negation, conditional,
biconditional)

B Draw truth tables and identify the truth value of compound statements
B State the converse of a conditional statement

M State the contrapositive of a conditional statement

B State the inverse of a conditional statement

B Identify the logical equivalence of statements

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o

KEYWORDS/TERMS

proposition e statement « simple statement o
compound statement « connectives « conjunction e
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converse » contrapositive « inverse « logical
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Mathematics has been called the ‘universal language’ All equations and calculations
are interpreted in the same manner in any country of the world. ‘Reasoning and
logic’ is an area that demands your understanding of this ‘language’ It is a branch of
mathematics that tests one’s ability to manipulate words and letters. Indeed, a certain
amount of ‘common sense’ is required.

Consider this statement.

Today is Monday.

. ? . ? . Cs L3 >
pp— Is this a true statement? Is it false? To make any inference, one has to ‘investigate’ the

‘facts’ If this statement is read on Monday, then obviously it is true. If it is read on any

A proposition
prop other day, it becomes false. At no time can it be true and false.

is a statement
that makes a
declaration that is

either true or false, . . Lo .
but not both. can alter the meaning, interpretation and validity of a statement. It will help you to

appreciate the completeness and lack of ambiguity found in mathematical logic and

The following pages are aimed to ensure a comprehensive understanding of this
sometimes confusing and misleading topic. We show how the use of simple grammar

eee0c0c0cc0c0sn

reasoning.

EXAMPLE 1 Are these propositions?
(a) Port-of-Spain is the capital of Trinidad and Tobago.
(b) Rain is falling. (c) 4+5=12 (d) 17 +15=132

SOLUTION All of the statements are propositions. They make a declaration that can be true or
false. (a) and (d) are both true, whereas proposition (c) is false. (b) will be true if rain
is falling and false if it is not falling.

EXAMPLE 2 Are these propositions? Give a reason for each of your answers.
(a) Where are you?
(b) 2x+3=12
(C) x+y+z=4
(d) What is an even number?

(e) V2 is a rational number.

SOLUTION (a) ‘Where are you?’ is not a proposition since it does not declare anything.

(b) 2x+ 3 = 12 is not a proposition. It contains a variable x, so we cannot tell
Note whether it is true or false.

(c) x+ y+ z=4isnota proposition. It contains a variables x, y and z, so we can-

The truth or faIS|ty not tell whether it is true or false.

of a propositional

statement is (d) This is not a proposition since we cannot determine whether it is true or false.
called its truth

value (e) This is a proposition as we can declare it true or false. Since V2 is an irrational

number, the proposition is false.



Notation

Letters are used to denote propositional variables. If the proposition is true, its value
is denoted by T or 1. If the proposition is false, its truth value is denoted by F or 0.

For example, we can denote the statement ‘r is irrational’ by the letter p. Its truth
value is T since this proposition is true.

Simple statement

A simple statement is a statement that cannot be decomposed into separate state-
ments. “The grass is green’ is a simple statement. This statement cannot be separated
into separate statements.

Negation

DEFINITION

Let g be a proposition.

The negation of g is denoted by ~qg (or —q or g) and is the statement ‘it is not the case
that g’

The truth value of ~q (read as‘not q') is the opposite of the truth value of g.

©0000000000000000000000000000000000000000000000000000000000000060

EXAMPLE 3 Find the negation of the proposition “The rain is falling’

SOLUTION The negation is ‘It is not the case that the rain is falling’ We can write this as “The rain
is not falling’

EXAMPLE 4 Find the negation of the proposition ‘6 is an even number..

SOLUTION The negation is ‘6 is not an even number’ or ‘6 is odd..

We can let p be the proposition ‘6 is an even number’ and write ~p is the proposition
‘6 is not an even number.

Truth tables

A convenient way to identify the truth value of propositions is to set up a table
identifying the truth value of each statement. This table is called a truth table. A truth
table for the negation is as follows:

~P
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Further we can substitute Os and 1s to rewrite the truth table as follows.

p ~p
1 0
0 1

In a truth table, the first row identifies the statements we are interested in (in this case
p and ~p). The following rows give the truth value of the statement and its negation.
For example, in the second row we see that when p is true, ~p is false. The third row
shows the reverse scenario.

EXAMPLE 5 Draw a truth table for the negation of ‘the answer is wrong.

SOLUTION Let p be the statement ‘the answer is wrong’ ~p is the statement ‘the answer is not
wrong’ and the truth table is:

~p
T F
.

Try these 1.1 Write the negation of the following statements.
(a) Today is Sunday. (b) The music is loud.

(c) Lorraine teaches Physics.

Compound statements

A compound statement is formed from two or more simple statements. The simple
statements are called parts or components of the compound statements.

The truth value of a compound statement is determined by the truth value of the
simple statements that make up the compound statement as well as the way in which
they are connected. The compound statement 2 + 4 = 6 and 5> = 25’ is a compound
statement formed from the simpler statements 2 + 4 = 6’ and ‘5> = 25’ The truth

of an ‘and’ compound statement is related to the truth of the simple statement as
follows: The compound statement is true if both simple statements are true and is
false if any one of the simple statements is false.

EXAMPLE 6 Are the following compound statements? If so, identify the components of the statement.
(a) The book has 200 pages and the book is yellow.
(b) Trishan ate the cake.
(c) V2 isirrational and 5 is odd.



SOLUTION

(a) The book has 200 pages and the book is yellow is a compound statement which
has components “The book has 200 pages’ and ‘the book is yellow’

(b) “Trishan ate the cake’ is not a compound statement since it cannot be broken
down into simpler parts.

(c) “V2isirrational and 5 is odd’ is a compound statement which has components
V2 is irrational’ and ‘5 is odd’

DEFINITION

The proposition
‘pand q'is called
the conjunction
of pand gandis
denoted by p N\ g.
The statement is
true when both p
and g are true and
is false otherwise.

eeeec0c0c00cccne

Connectives

Connectives are used for making compound propositions. The main connectives are
negation, conjunction, disjunction, implication and biconditional.

Conjunction

Any two statements can be joined by the word ‘and’ to form a compound statement.
This is the coordinating conjunction of the original statements.

The proposition ‘p and ¢’ is called the conjunction of p and q and is denoted by p A gq.

The truth value of the compound statement p and q is true if both p and q are true. It
is false if either p or q is false.

Let us draw a truth table for p A q.

P q PAq
T T T
T F F
F T F
F F F

EXAMPLE 7

SOLUTION

Draw a truth table for the following compound statement: ‘Bridgetown is the capital
of Barbados and Castries is the capital of St Lucia’

Let p be the statement ‘Bridgetown is the capital of Barbados’ and g be the statement
‘Castries is the capital of St Lucia.

P q PAq
T T T
T F F
F T F
F F F

If Bridgetown is the capital of Barbados and Castries is the capital of St. Lucia, then
the statement is true.
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If Bridgetown is the capital of Barbados and Castries is not the capital of St Lucia,
then the statement is false.

Similarly, if Bridgetown is not the capital of Barbados and Castries is the capital of
St Lucia, then the compound statement is false.

Lastly, if both statements are false, then the compound statement is false.

EXAMPLE 8

SOLUTION

Write the following in symbolic form.
(a) The exam is difficult and rain is falling.

(b) The coconut is green and the water is cold.

(a) Let p be ‘the exam is difficult’ and g be ‘rain is falling’
We write p A\ g for “The exam is difficult and rain is falling’

(b) Let ¢ be ‘the coconut is green’ and w be ‘the water is cold’
“The coconut is green and the water is cold’ can be written as ¢ A w.

DEFINITION

The proposition
‘porq'is called
the disjunction
of pand gandis
denoted by p v/ q.
This statement is
true when p is true,
q is true or both p
and g are true. It
is false only when
p and g are both
false.

0000000000000

DEFINITION

Let p and g be two
propositions. The
proposition p P g

is the exclusive
‘or’of p and g. This
proposition is true
when one and
only one of p and
qis true. It is false
otherwise.

0000000000000

Disjunction (‘or’)
The compound proposition 2 + 4 = 6 or 3 + 5 = 10’ is true when either of the

statements are true or when both are true. Since 2 + 4 = 6’ istrueand 3 + 5 = 10’
is false, then the compound proposition is true.

Let p and g be two propositions.
‘p or q is false when both p and g are false and is true otherwise.

When the word ‘or’ is used in the English language, it is used in a similar way. When
both components of a compound statement are true, the disjunction is true; and
when any one of the statements is true, the disjunction is also true. It is inclusive in
this case.

There are times when ‘or’ can be used in an exclusive sense. When the exclusive ‘or’ is
used, the proposition ‘p or q’ is true when either p is true or g is true. The proposition
is false when both p and g are true as well as when both p and q are false.

Assume that the disjunctions below are inclusive, unless stated otherwise.

Truth table for disjunction (pvq)

P q pPVvq
T T T
T F T
F T T
F F F

p \/ q is false when both p and g are false and p \/ g is true for all other cases.



EXAMPLE 9 Draw a truth table to represent the truth values of the proposition: ‘Faheim studied
applied mathematics in sixth form or he lived in Couva’

SOLUTION Let p be the proposition ‘Faheim studied applied mathematics in sixth form’ and g be
the proposition ‘Faheim lived in Couva.

The proposition p \/ q is false when both p and g are false and is true otherwise. If
Faheim studied applied mathematics in sixth form, then the compound statement

is true. If Faheim lived in Couva, the compound statement is also true. If he studied
mathematics in sixth form and lived in Couva, the compound statement is again
true. The statement p \/ q is false only if Faheim did not study applied mathematics in
sixth form and if he did not live in Couva.

This is the truth table.
p q pva
T T T
T F T
F T T
F F F
EXAMPLE 10  Write the following in symbolic form.
(a) Laura scored 6 runs or the sun is shining.
(b) Calculus is easy or the printer is not working.
SOLUTION (a) Letxbe ‘Laura scored 6’ and y be ‘the sun is shining’ The statement ‘Laura

scored 6 runs or the sun is shining, can be written as x \/ y. The two statements
are connected by the disjunction.

(b) Let p be ‘calculus is easy’ and g be ‘the printer is not working’ The whole state-
ment can now be written as p \/ q.

Try these 1.2 (a) Write the following statements in symbolic form.
(i) The measuring cylinder is full or the beaker is empty.
(ii) Breakfast is at the house and the coffee is hot.
(b) Write the negation of the following statements.
(i) The air-condition unit is broken.

(i) December 25th is Christmas.
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De Morgan’s laws
For any two statements p and g:
(a) ~(p~gq)isthesameas ~p\/ ~q.
(b) ~(p\ q)isthesameas ~p /A ~q.
EXAMPLE 11 Let p and g and g be the statements:
p: Nikki is a singer
g: NikKki lives in Trinidad.
Write the following using symbols.
(a) Nikki is a singer and she lives in Trinidad.
(b) Nikki is neither a singer nor does she live in Trinidad.

(c) Either Nikki is a singer or she lives in Trinidad.

SOLUTION (a) This compound statement is joined by the conjunction ‘and’. Hence, we can
write the statement as p A gq.

(b) Nikki is not a singer is the negation of Nikki is a singer and this is represented
by ~p.
‘Nikki does not live in Trinidad’ is the negation of ‘Nikki lives in Trinidad’ and
this is represented by ~g.

The statement is joined by the conjunction ‘and.
We write: ~p N\ ~q.
From De Morgan’s law we can also write this as: ~(p\/ g).

(c) The compound statement is joined by ‘or’ Hence, the disjunction is used and we
write: p v/ q.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 1A

1 Determine whether each of the following sentences is a proposition.
(a) Today is Saturday.
(b) How far do you live from your school?
(c) All CAPE students must take Caribbean Studies.
(d) Drive to the supermarket.
(e) Curry chicken is delicious.
2 Write each of the following statements in symbolic form.
(a) This is May, and CAPE examinations must begin.

(b) Iwill take Spanish or Additional Mathematics.
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(c) The music is loud, but Ryan is speaking.

(d) Iwill not drive to Montego Bay. However, I will go by bus or plane.
Is the following statement a disjunction, conjunction or negation?

The cup is broken and the coffee is cold.

Let p be ‘Alvin is tall’ and g be ‘Sintra is short. Write the following in words.
(@ pv~q

(b) ~(prg)

() pA~q

(&) ~(pvg)

Write the negation of each of the following.

(a) 4 isacomplete square.

(b) The iPod is white.

(¢) Robin does not like to work overtime.

(d) V7 is irrational.

Let s be ‘statistics is difficult’ and p be ‘probability is easy. Write the negation of
each of the following in words.

(@) svp
(b) sA~p
() ~sAp

Let p be Jamaica is beautiful’ and q be “Watson likes jerk chicken’ Write the
negation of each of the following in words.

(@ pvg
(®) pA~q
() ~pA~q

Let x be Jassodra lives in England” and y be ‘Jassodra takes yoga classes’ Write
each statement using symbols.

(a) Jassodra lives in England and takes yoga classes.

(b) Jassodra neither lives in England nor takes yoga classes.

(c) Itisnot the case that Jassodra lives in England and takes yoga classes.
Let p be ‘T will drive to school’ and g be ‘T will arrive late’

Form the disjunction of p and g and discuss its truth values.

Let r be ‘I passed 8 CSEC subjects’ and ¢ be ‘T will be in sixth form.

Form the conjunction of  and ¢ and discuss its truth values.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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DEFINITION

Let pand g be
propositions.

The conditional
statement or
implicationp — g
is the proposition
‘p implies g’ or ‘if p,
then g.

eeeec0c0000c0cne

EXAMPLE 12

SOLUTION

Conditional statements

Many mathematical statements are implications or conditional statements. These are
statements of the form ‘p implies g’ where p and g are propositions. In the statement
‘P — q; p is called the hypothesis (antecedent or premise) and q is called the conclu-
sion (or consequent).

The conditional statement p — g is false only when p is true and q is false. p — g is
true otherwise.

The conditional statement is false only when the antecedent is true and the conse-
quent is false otherwise the statement is true.

Truth table for p—>gq

P q P—q
T T T
T F F
F T T
F F T
Draw the truth table for the following statement.
If it rains, then the grass is green.
- If it rains, then
. The grass is .
It rains the grass is
green
green.
T F F
T T T
F F T
F T T

If the statement ‘it rains’ is true and ‘the grass is not green;, then the statement
becomes false. (The statement implies that once it rains the grass should be green.)

If both statements are true, then the implication is true as well.

Similarly, if it does not rain and the grass is not green, then the implication is again
true.

Finally, if it does not rain, it is possible that the grass could still be green, and the
implied statement is still true.

11
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Interpretation of p — q

There are many ways of interpreting p — q. Some of these are:
‘p implies ¢’

‘if p, then g’

‘q is necessary for p’

‘a sufficient condition for q is p’

‘ponlyifq

‘g when p’

‘q unless not p’

EXAMPLE 13 Let p be the statement ‘Tan learns calculus’ and g be the statement ‘Tan will pass Pure
Mathematics. Express the statement p — g in words.

SOLUTION We can write p — ¢ in any of the following ways.
‘If Ian learns calculus, then he will pass Pure Mathematics.
‘Tan will pass Pure Mathematics, when he learns calculus’

‘Tan will pass pure Mathematics unless he does not learn calculus’

EXAMPLE 14 Give the truth value of each of the following.
(a) IfKingston is in Jamaica, then 2 + 2 = 5. (b) If5> 6, then 52 = 25.
(c) IfV2 is irrational, then London is in England.

SOLUTION These are all conditional statements of the form p — g, where p is the antecedent and
q is the consequent.
Note (a) Since ‘Kingston is in Jamaica is true and 2 + 2 = 5’ is false, the statement ‘If
If you start with a Kingston is in Jamaica, then 2 + 2 = 5’ is false.
;e:)lzecaas::rrr;r\)l':on, (b) Since ‘5 > 6 is false, the statement ‘5 > 6, then 52 = 25’ is true.
'acarr':)ghing @l (c) Since V2 is irrational’ is true and ‘London is in England’ is true, the statement

‘If V2 is irrational, then London is in England’ is true.

The contrapositive

The contrapositive of the implication p — ¢ is the implication (~¢q) — (~p).

EXAMPLE 15 What is the contrapositive of the conditional statement ‘Ryan passes Mathematics
whenever he studies’?

SOLUTION We can write this statement as ‘If Ryan studies, then he will pass Mathematics’ The
contrapositive of this conditional statement is ‘Ryan does not pass Mathematics, then
he did not study’
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The contrapositive has the same truth value as p — gq.

Truth table for the contrapositive

p q ~p ~q (~9)— (~P)

T F F T F

T T F F T

F F T T T

F T T F T
Converse

Let p and g be propositions. The proposition g — p is called the converse of p — g.

EXAMPLE 16 Write the converse of the following statement: ‘If 6 is an integer, then 12 is also an integer’

SOLUTION The converse of this statement is: ‘If 12 is an integer, then 6 is also an integer’

Inverse

The proposition ~p — ~q is the inverse of p — q.

EXAMPLE 17 Let p be ‘T will go to the party’ and let g be ‘the DJ is good’ Write the following in
symbols and words.

(a) Ifgthenp
(b) The converse of g — p
(c) Theinverse of g— p

(d) The contrapositive of g — p

SOLUTION (a) g—p
‘If the DJ is good, then I will go to the party’
(b) The converse of g — pisp — g.
‘If I will go to the party, then the DJ is good’
(c) Theinverse of g — pis ~q— ~p.
‘If the DJ is not good, then I will not go to the party’
(d) The contrapositive of g — p is ~p — ~q.

‘If I do not go to the party, the DJ is not good’

13



EXAMPLE 18

SOLUTION

Equivalent propositions

When two propositions have the same truth value, they are called equivalent.

If p and q are equivalent we write p & q.

We say that a conditional statement and its contrapositive are equivalent. The truth value

of the converse and the inverse are the same, and therefore they are logically equivalent.

Draw a truth table for each of the following.

(a)

(b) ~(pn~q)

~pvq

(c) Are these two propositions logically equivalent?

(a)

(b)

P q ~p ~PVq
T T F T
T F F F
F T T T
F F T T
P q ~q PA~q ~(PA~Q)
T T F F T
T F T T F
F T F F T
F F T F T

(c) For two propositions to be logically equivalent, their truth values must be the
same. From the two tables we have the truth values as follows.

~PVv9 ~(PA~q)
T T
F F
T T
T T

Since the truth values are the same, ~p \/ q is logically equivalent to ~(p A ~¢).
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EXAMPLE 19 Use truth tables to show that the statements p\/ (g A7) and (p\/ q) A (p \/ 1) are

logically equivalent.
SOLUTION Let us draw a truth table for p \/ (g A r) and one for (p\/ q) A (p v/ 1).

P q r qAnNr pVvI(gAr)

T T T T T

T T F F T

T F T F T

T F F F T

F T T T T

F T F F F

F F T F F

F F F F F
p q r pvq pvr PvaA(pvn
T T T T T T
T T F T T T
T F T T T T
T F F T T T
F T T T T T
F T F T F F
F F T F T F
F F F F F F

The last column of the two tables have the same truth values. Hence, the two state-
ments are logically equivalent.

Biconditional statements

The statement ‘If the calculator is working, then I will solve the problem, and if
I solve the problem, then the calculator is working’ uses the conditional state-
ment twice. A statement which uses the conditional statement twice is said to be
biconditional.

p <> q istrue DEFINITION “

when p and g

have the same Let p and g be propositions. The proposition‘p if and only if g’ denoted by p ¢ g or
truth values and (p & q) is called the biconditional statement. The biconditional statement can also be

is false otherwise. writtenasp —>q /A q—p.

©000000000000000000000000000000000000000000000000000000006000000060

Note

15



Let us draw a truth table for p <> gq.

p <> g states that p - gand g — p, thatisp - g /A g — p.

[ q p—q qa—-p (P> N(g—p)
T T T T T
T F F T F
F T T F F
F F T T T

When p — g and g — p is true, p <> g is also true otherwise p <> ¢ is false.

Remember

Statements A and B are logically equivalent if they have identical truth tables. To show that
two statements are logically equivalent we can draw the truth tables for each and look at
the last column. Once the last columns of both are the same, they are logically equivalent.

EXAMPLE 20 Draw a truth table for the following statement.

You ride to school if and only if you have a bicycle.

SOLUTION Let p be the statement ‘you ride to school’ and g be the statement ‘you have a bicycle.
This is the truth table.
p q peq
T T T
T F F
F T F
F F T

EXAMPLE 21 Is the statement (20 + 8 = 28) <> (7 x 8 = 56) true or false?

SOLUTION This is a biconditional statement and the biconditional statement is true when both
statements have the same truth value. Since (20 + 8 = 28) is true and (7 x 8 = 56) is
also true, then the given biconditional statement is true.

EXAMPLE 22 Is the statement ‘All dogs can talk if and only if all donkeys can fly’ true or false?

SOLUTION This statement is of the form ‘p if and only if ¢ where p is ‘all dogs can talk’ is a
false statement and g is ‘all donkeys can fly’ is also a false statement. Since the two
components of this biconditional statement has the same truth value, then the given
biconditional statement is true.

16
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Try these 1.3

EXAMPLE 23

SOLUTION

EXAMPLE 24

SOLUTION

(a) Is the statement “Paris is in France if and only if Rome is in Italy’ true or false?
(b) Is the statement (8 — 4 = 12) <> (30 + 24 = 64) true or false?

(c) What is the truth value of this statement?

Let p be ‘you go to school everyday’ and g be ‘you get an award’ Write the following
using symbols.

(a) You get an award only if you go to school everyday.

(b) Going to school everyday is a sufficient condition to get an award.

(c) To get an award, it is necessary that you go to school everyday.

(d) Going to school everyday is a necessary and sufficient condition to get an award.

(e) You do not get an award unless you go to school everyday.

(a) g—p (b) p—gq
() q—p (d) peg
(e) ~p—>~q

Methods that produce propositions with the same truth value as a given compound
proposition are used extensively in the construction of mathematical arguments.

Tautology and contradiction

A tautology is a compound proposition that is always true. A compound proposition
that is always false is called a contradiction.
A contingency is a compound proposition that is neither a tautology nor a contradiction.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Show that p \/ ~p is a tautology.

We can draw a truth table for p \/ ~p and show that all the possibilities will be true.

[ ~p pPV~pP
T F T
T F T
F T T
F T T

From the last column, p \/ ~p is always true and hence it is a tautology.

17
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EXAMPLE 25

SOLUTION

Show that p A ~p is a contradiction.

~p

PA~P

R T TR ~ |

|~ |m ™

M| M| T T

1  Idempotent laws
(@ pvp=p
(b) pAp=p

The idempotent laws states that ‘p or p is identical to p” and ‘p and p is identical to p.

2 Associative Laws

@ (pvqevr=pviqvr)
(b) prgANr=pA(gANT)

3 Commutative laws

(@) pvg=qvp
(®) prg=qnrp

4  Distributive laws
@ pvignrn=@pEvgnpvr)

(b) pAlgur)=(@Arg v (AT
5  Identity laws

(@ pyF=porpy0=p
(b) pAT=porpNn1=p
(c) pyT=Torpyl1=1
(d pANF=Forpn0=0

Algebra of propositions

From the truth table, p A ~p is always false. By definition, a contradiction is a com-
pound proposition that is always false. Hence, p A ~p is a contradiction.

The following laws of the algebra of propositions allow us to simplify compound
propositions.

(c) and (d) are also known as the domination laws.
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6  Complement laws

(@) ~~p=p
(b) ~T=E~F=T
() pv~p=T
(d) pA~p=F

These are also known as the double negation laws.
7  De Morgan’s laws

@ ~(pvg=~pr~q

(b) ~prg)=~pv~q
8  Absorption laws

@ prpva) =p

b) pverg =p

Some of the laws will remind you of the rules for sets with intersection and union.

In fact if you remember your rules for sets and how they are used, you will be able to
use the laws for the algebra of propositions. Even the symbols are similar. Let us look
at some of them.

Sets Propositional logic
N intersection (and) A logical and
U union (or) v/ logical or
ANB=BNA pANq=qgAp
AUB=BUA pPVqa=qvp

AUBNO=AUBNAUQ

pv@nn=pvanipvn

Let us use these results to simplify some propositions.

EXAMPLE 26

SOLUTION

Simplify the expression (p\/ q) A (p \/ 7).

v npvr)=@rp)vpAr)v@np)vigAr)

=pvpArnvignrp)vignr
=pv@npvignr)
=((pvanpvp)vignhr)
=((pvarp)vignr)
=(@npva)vignr
=pv(gAnr)

(Distributive law)
(Idempotent law)
(Absorption law)
(Distributive law)
(Idempotent law)
(Commutative law)

(Absorption law)

19
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EXAMPLE 27  Simplify y A (x v/ y).

SOLUTION yAxvY)=AX)v(YAY) (Distributive law)
=@y Ax)\v0 (Complement law, y A y" = 0)
=(vO0)A(xAN0) (Distributive law)
=yAX (Identity property, y v 0 = y,x A0 = x)

EXAMPLE 28 Simplify the expression p v/ (~p A q).

SOLUTION pv(~pAgQ =@EA1)v(~pAg) (Identity law)
=@r1vq)v(~prg) (Identity law, 1 = 1/ q)
=peADvpnrngv(~prg) (Distributive law)
=pviprgv(~prg) (Identity law)
=pvign(pv~p) (Distributive law)
=pvignl) (Complement law)
=pvq (Identity law)

ooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 1B

1

N & G s

Write the contrapositive of this statement: ‘If the music is good, then I will
dance’

Let r be T will go running’ Let s be ‘the sun is shining’ Write the following in
words.

(a) The conjunction of r and s

(b) The negation of s

(c) The disjunction of r and s

Determine the contrapositive of each of the following statements.
(a) If the board is clean, then the teacher will write.

(b) Only if Chris studies, will he pass calculus.

Construct a truth table for p — ~(gq \/ p).

Show that ((p v/ (~¢q)) A (~p A q)) is a contradiction.

Simplify the statement (~(x\/ ) v ((~x) A y).

What are the contrapositive, the converse, and the inverse of this conditional
statement?

Trinidad and Tobago cricket team wins whenever the sun is shining.

Construct a truth table for the proposition (p\/ ~q) = (p A q).
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Construct a truth table for each of the following.
@) ~(~pv~q)

(b) ~(~pA~q)

© pvr~prq)

(d) pA(gvr)

Write the following sentence as a logical expression.
You can access the staff room only if you are a member of staff or you are not a
first year student.

Write the following as a logical expression.
You cannot watch the movie if you are under 13 years-old unless you are
accompanied by an adult.

Let p and g be the following propositions.

p: I bought peanut butter this week.

q: I made peanut punch on Saturday.

Express each of the following propositions in words.

(@) ~p

(b) pvq

(© pAg

(d) ~pvprq)

Let p and g be the following propositions.

p: You got over 85% in Mathematics.

q: You get an A in Mathematics.

Write the following propositions using logical connectives.

(a) You did not get over 85% in Mathematics.

(b) You got over 85% in Mathematics but you did not get an A in Mathematics.
(c) Getting over 85% in Mathematics is sufficient for getting an A in Mathematics.
(d) Whenever you get an A in Mathematics, you got over 85% in Mathematics.
Construct a truth table for each of the following propositions.

@ (pv~q9)—gq (b) (pva)—(prg)

Show that p <> g and (p — q) /\ (@ — p) are logically equivalent.

Simplify ~(p v (~p A g).

Let x be ‘the mango is sweet’ and y be ‘the mango is yellow” Write the following
in words.

(a) The disjunction of the two statements
(b) The negation of the statement y

(c) The conjunction of the two statements
21



22

18
19
20

21
22

23

24

25

ooooooooooooooooooooooooooooo

Show by means of a truth table that the statement p <> ~¢ is not a contradiction.
Construct a truth table for (p v ~q) = (~p A q).

By drawing a truth table prove that the statement ~(p \/ q) <> (~p A ~¢q) is
true.

Show by means of a truth table that (p A q) — p is a tautology.

Are any of the following propositions equivalent?

pvon~q QEvar~@prg, ~Ergrpr~q)
Propositions p and g are given by the following.
p: Deepak works out everyday.
q: Deepak has muscles.
(a) Express p <> q in words.
(b) Given the statement p — g, write the following using symbols.
(a) The contrapositive
(b) The inverse
(c) The converse
Propositions p and g are given by the following.
p: The plums are green.
q: I will pick the plums.
Write the following in symbolic form.
(a) The plums are green but I pick the plums.
(b) The plums are green and I pick the plums.

(c) Assume that p is true and q is false. Find the truth values of the statements
in (a) and (b).

Show that ~(p A g) A (pv ~q) = ~(p A q).

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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SUMMARY

-

A proposition is a statement that makes

a declaration that is either true or false,

but not both.

A simple statement is a statement that cannot
be decomposed into separate statements.

A compound statement is formed from two or
more simple statements.

Vv

Algebra of propositions
Idempotent laws
Hpvp=p (iprp=p
Associative laws

(i) (pvgvr=pvigvr)

(i) (pAgQAr=pAa(gAarn)

Commutative laws

(lpvag=qvp (ilprg=qgnp

Distributive laws
(i) pvigan=pvag Alpvr)
(ilpal@gvn=parqg viparn

Identity laws

() pvF=p (i) pAT=p
(ii)pvT=T (ivipAaF=F
Complement laws

(i) ~~p=p (i) ~T=F~F=T
(iiypv~p=T (ivipA~p=F

De Morgan's laws
(i) ~pv@=~pr~q
(i) ~prg=~pv~q

Absorption laws
i) pAalpvg=p
(ilpviprg=p

Reasoning and logic

Tor 1 represents true.
F or 0 represents false.

~@, q, q, negation of g:'It is not the case that g/
A, ‘and’ conjunction: p A g is true only when
both p and q are true.
v, ‘or': disjunction: p v g is false when both p
and g are false and it is true otherwise.

||

v
p— q, pimplies g": p — q is false only when
pis true and q is false, it is true otherwise.
pis called the antecedent or premise and g the
conclusion or consequent.
The contrapositive of p — gis (~q) — (~p).
The converse of p— qis g — p.

The inverse of p — gis ~p — ~q.

A

Equivalent: Two propositions have the same

truth value.

Biconditional: p <> g:'pif and only if ¢’
p <> q istrue when p — gand g — p are true.
p <> qis false otherwise.

A

A tautology is a compound statement that is

always true.

A contradiction is a compound statement that is
always false.

A contingency is a compound statement that is
neither a tautology nor a contradiction.

Checklist

©00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Can you do these?

B Identify simple and compound propositions?

N

Truth tables
In a truth table

(i) the first row consists of the

statements

(i) the following rows give the
truth value of the statements

pla[~plprqlpvalp—qlp—q
Tt T[T 1|1
TIF[Fl F T F[F
Flr[r] Fl T T F
FIF[T] FIFI T T

B Identify connectives (conjunction, disjunction, negation, conditional,
biconditional)?

B Draw truth tables and identify the truth value of compound statements?

B State the converse of a conditional statement?

M State the contrapositive of a conditional statement?

B State the inverse of a conditional statement?

M Identify the logical equivalence of statements?

23
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CHAPTER 2
The Real Number System

©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00

At the end of this section you should be able to:

B Define a binary operation

B Perform binary operations

B Define commutativity, associativity, identity, distributivity, inverse and closure

B Use the concept of identity, closure, inverse, commutativity, associativity and
distributivity and other simple binary operations

B Construct simple proofs: direct proofs, proof by counter example

B Use the axioms of the number system including the non-existence of the
multiplicative inverse of zero

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o

KEYWORDS/TERMS

rational numbers o irrational numbers « natural
numbers « whole numbers « integers « unary o

binary e binary operation « commutativity e
associativity e distributivity « closure « identity «
inverse o self-inverse o direct proof « proof by counter
example
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DEFINITION

The rational
numbers are
numbers which
can be written

in the form of 4
where a and b are
integers and b #0.
The symbol Q is
used for the set of
rational numbers.
Q=xx= %
wherea, be Z,

b # 0} By definition,
all numbers in
fractional form are
rational numbers.
Rational numbers
will include all
terminating
decimals and all

recurring decimals.

eeeec0c0000c0cne

EXAMPLE 1

SOLUTION

The real number system consists of two sets of numbers: the rational numbers
and the irrational numbers. The set of rational numbers consists of the natural
numbers, the integers and all real numbers that can be written in fractional form.
The set of irrational numbers consists of all numbers which cannot be written in
fractional form.

Subsets of rational numbers

The set of natural numbers or counting numbers is denoted by N.

N ={1,2,3,4,5,..}

When 0 is included in the natural numbers, we have another set of numbers called
the set of whole numbers, which is denoted by W.

W:

{0,1,2,3,4,5,...}

The set of integers consists of all the natural numbers, the number zero and the
negative of the natural numbers. The symbol used for the set of integers is Z.

Z=1..,—4,-3-2,-1,0,1,2,3,4,5,...}

The set of positive integers is denoted by Z* and the set of negative integers is
denoted by Z ™.

Write each of the following numbers as a fraction.

(a)
(b)

(a)

(b)

1.6
0.45

1.6 = 1.6666666...

Let x = 1.6666666...

10x = 16.666666...
10x —x=9x =15

0.45 = 0.45454545. . .

x = 0.45454545. ..

100x = 45.454545...

99x = 45
45
*= 99
-5
YT

(1]
(1] X 10 = [2]
(2] — 1]

(1]
[1] X 100 = [2]
(2] — [1]

The irrational numbers are the numbers which cannot be written as fractions. The
symbol Q is used for irrational numbers such as V2, V3, V11, 1.

25
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DEFINITION

A binary
operation *on a
non-empty set A is
a function *:
AXA—>A

eeeec0c0c00cccne

Real numbers

The sets N, W, Z, @ and Q are subsets of a larger set of numbers called the set of real
numbers, which is denoted by R.

Real numbers (R)

v g

Irrational numbers (Q) Rational numbers (Q)

¥

Integers (Z)
||
v
Whole numbers (W)

Natural numbers (N)

The set of real numbers R is such that R = Q U Q.
The sets N, W, and Z are all subsets of ().

These relationships can be shown like this:

NCWCzZCQCR

QCR

Operations

A unary operation is an operation that can be performed on one element of a set or
on one number. Finding the square root, square and reciprocal are all examples of
unary operations. Some operations such as addition, subtraction, multiplication and
division must be applied to two numbers. These operations are examples of binary
operations. A binary operation involves two elements or numbers. A formal defini-
tion of a binary operation follows.

Binary operations

Let us look at this definition using the operation of addition and the set of real num-
bers. If we take any two real numbers and add them together, we get a real number.

For example, 2 + 4 = 6.

IfaeRandbeE R, thena + b ER.

In this case, the binary operation is addition and our set is the set of real numbers.
Closure

The binary operation * is closed with respect to the non-empty set A, ifforalla, b e A,
a*be A . This property is called closure. We say that for any two elements in the
set, if we operate on these two elements and we end up with an element in the set,
then the set is closed with respect to that operation.
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EXAMPLE 2 Is the set of real numbers closed with respect to addition?

SOLUTION Leta, be R and + be the operation. Since a is a real number and b is a real number,
then when we add these two elements, we get a + b which is also a real number.

Note Therefore, for any pair of real numbers the sum is a real number.
V means ‘for all; Hence, the set of real numbers is closed with respect to addition.
‘for any;, ‘for each!
ThatisVae R,be R,a+be R.
EXAMPLE 3 Show that the set of real numbers is closed with respect to multiplication.
SOLUTION Leta, be R and X be the operation. Since a is a real number and b is a real number,
then when we multiply these two elements, we get a X b, which is also a real number.
Therefore, for any pair of real numbers the product is a real number.
Hence, the set of real numbers is closed with respect to multiplication.
ThatisVae R,be R,aXbe R.
EXAMPLE 4 Is the set of integers closed with respect to division?
SOLUTION Leta, be Z and + be the operation. When we divide two integers, our result is not

necessarily an integer. Therefore, the set of integers is not closed with respect to division.

For example 5 + 4 is not an integer, even though both 5 and 4 are integers.

Note

When we are deciding about closure, we need two elements in the set and an opera-
tion. Also, the language is specific in how we state our conclusion. We state ‘the set is
closed with respect to the operation’

Try these 2.1 Which of the following are closed? Justify your answer.
(a) Integers for multiplication
(b) Rational numbers for division
(c) Irrational numbers for addition
Commutativity

Leta, b e A. A binary operation * is said to be commutative on the non-empty set
A ifand only if a * b = b * a. The order in which we perform the operation does not
matter and the outcome is the same.
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EXAMPLE 5 Show that + is commutative with respect to the set of real numbers.

SOLUTION Leta, be R.Now, a + band b + a give the same value. Therefore, the order in
which we add real numbers does not matter. For anya, be R, a + b = b + a. Hence,
+ is commutative.

EXAMPLE 6 Show that X (multiplication) is commutative with respect to the set of real numbers.

SOLUTION Leta, be R.Now, a X band b X a give the same value. Therefore, the order in
which we multiply real numbers does not matter. Foranya,be R,a X b=b X a.
Hence, X is commutative.

EXAMPLE 7 Is subtraction of real numbers a commutative operation?

SOLUTION Since4 — 9 = —-5and 9 —4 = 5, and —5 # 5, subtraction is not commutative.

For an operation to be commutative, it must hold for all pairs of elements in the set.
In general, forany a, be R,a — b # b — a. Hence, subtraction is not commutative.

Associativity

Leta, b, c € A. The operation * is associative if and only ifa * (b * ¢) = (a* b) * c.
The order in which pairs are grouped does not matter when an operation is associa-
tive. We get the same outcome however the elements are paired.

To decide whether an operation is associative we need three elements from the set.

EXAMPLE 8 Is the operation + associative with respect to the set of real numbers?

SOLUTION Leta, b, c € R. When we add three real numbers, we get the same real number no mat-
ter what order we add them in. Therefore,a + (b +¢) =a + b+ ¢ = (a + b) + ¢. The
addition of real numbers is an associative operation.

EXAMPLE 9 Is the operation X associative with respect to the set of real numbers?
SOLUTION Let a, b, c € R. When we multiply three real numbers, we get the same real number
Note no matter what order we multiply them in. Therefore, a(bc) = abc = (ab)c. The
multiplication of real numbers is an associative operation.
axXb=ab

EXAMPLE 10 Is the operation subtraction associative with respect to the set of integers?

SOLUTION Now4—(5—8)=4—(—3)=7and(4—5)—8=—-1-8=—9.

Since 4 — (5 — 8) # (4 — 5) — 8, subtraction is not associative with respect to the set
of integers.
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Remember

If an operation is associative, the order in which we take any pair of elements must
give the same outcome.

EXAMPLE 11 Is division associative over the set of natural numbers?

SOLUTION (12 +4) ~ 6= %while 2+@4+6)=12+ (%) =18
Since (12 = 4) + 6 # 12 + (4 + 6), division over the set of natural numbers is not
associative.
Distributivity

Let a, b, c € A. For any two operations * and A, * distributes over A if and only if
a*(bAc)=(axb)A(a*c)

Try this 2.2 Show that multiplication distributes over addition but addition does not distribute
over multiplication, i.e. a(b + ¢) = ab + acand a +(b X ¢) # (a + b) X (a + ¢) over
the set of real numbers.

EXAMPLE 12 Which of the following operations is distributive over the other for the set of
numbers given?

(a) Multiplication over division for the rational numbers
(b) Two binary operations * and A defined over the integers as follows:
xxy=x+ty+2 xAy=x+y—2xy

Is * distributive over A?

SOLUTION (a) Letx=%,y=13—0andz=%.
We first consider x X (y + z):
XX (y+2) = ¢ X[ + 3
4(3 12
= 2[5 < 2]
4. 18
5725
72
125

Now we consider (x X y) + (x X 2):
(xXy) + (X2 =(2x )+ (2% 2

10 5712
25 3
_ 6
=55 X3
_ 18
25

Since x X (y + z) # (x X y) + (x X z) multiplication does not distribute over

division for the set of rational numbers. 29
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Note

Whenever the
identity element
operates on an
elementin A, the
result is the ele-
mentin A.

(b) Since we are dealing with the set of integers, we canlet x = 1,y = 2 and z = 3.

We first consider x * (yAz).
Whenx =1,y =2andz = 3:
yAz =2+ 3 —2(2)(3)
=5—-12
= -7
x*#(yAz) = (1) + (=7) + 2
=—4

Now we consider (x * y) A (x * z)
xxy=(1)+(2)+2
-5

xxz=(1)+(3) +2
=6
(x* y)A(x # 2) = (5) + (6) — 2(5)(6)
=11 - 60
= —49

Since we have found three integers for which x * (yAz) # (x * y) A (x * z), * does not
distribute over A.

An alternative method is to choose any three integers a, b, c € Z.
We find bAc = b + ¢ — 2bc.
Thena* (bAc) =a*(b+c—2bc)=a+ b+ c—2bc+ 2.

Now we consider (a * b)A(a * c)

(axb)y=a+b+2 (a*xc)=a+c+2

(axb)Aa*c)=(a+b+2)Ala+c+2)
=(@a+b+2)+(a+c+2)20a+b+2)(a+c+2)
=2a+b+c+4— [2a%+ 2ac + 4a + 2ab + 2bc + 4b + 4a + 4c + 8]
= —6a —3b—3c— 4 — 2a® — 2ac — 2ab — 2bc

Since a * (bAc) # (a * b)A(a * ¢), * does not distribute over A.

Identity

Let * be a binary operation on a non-empty set A. If there exists an elemente e A
such thate*a = a*e = a, forall a € A, then e is called the identity element in A.

For any real number a e R, a + 0 = 0 + a = a. Hence, 0 is the identity for addition
of the real numbers.

The identity for multiplication is 1, since foranyae R,1 X a=a X 1 = a.



MODULE 1 e CHAPTER 2

EXAMPLE 13 Let * be a binary operation defined over the real numbers as follows.
a*b=a+b—6,fora be R.

Is there an identity element?

SOLUTION Lete e R foranya e R. If e is the identity then a * e = a.

Note Since a * b = a + b — 6, replacing b by e, we have:

are=a+e—6
If the identity

exists, there will Nowa*e=a.
only be one _
identity element Therefore,a +e—6=a
in a set. The iden- e—6=0
tity is said to be a
unique element e=6
in that set.
Hence, the identity element is 6.
Try these 2.3 (a) Is there an identity element for division of the set of natural numbers? Justify

your answer.
(b) Let * be a binary operation defined over the real numbers as follows.
axb=a+2b+4,fora,be R

Is there an identity element? Show your working clearly.

Inverse

Let * be a binary operation on a non-empty set A. Let a, b, e € A. a is the inverse
of b and b the inverse of a if and only if a * b = b * a = e where e is the identity
element in A.

Note

(i) An element operated on its inverse is equal to the identity.
(i) Since e* e = e* e = e, the identity is its own inverse. Any element which is its own
inverse is called a self-inverse.

EXAMPLE 14 Show that (—a) is the inverse for any a € R for the operation of addition of real
numbers.

SOLUTION Letae R. Sincea + (—a) = (—a) + a = 0 and 0 is the identity for addition, (—a) is
the inverse for any a € R.

For example, (2) + (—2)=2—-2=(—-2)+ (2) =0.
The inverse of 2 is (-2).
Whenever we add an element to its inverse we get the identity, which is 0.
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EXAMPLE 15

SOLUTION

Note

The multiplica-
tive inverse of 0
does not exist.

EXAMPLE 16

SOLUTION

Note

band d are called
self-inverses.

Find the inverse with respect to multiplication of any number a € R. Identify any
exceptions.

Let b € R be the inverse of a € R.
Since an element multiplied by its inverse must give the identity, a(b) = 1.
=b= é ,a#0

Every element a € R has an inverse % € R, except when a = 0.

Can you find any element(s) that has an inverse in the set of integers with respect to
the operation of multiplication?

The binary operation * is defined on the set {a, b, ¢, d} as shown in the table below.

* a b c d
a d a b c
b a b c d
c b c d a
d c d a b

(a) Is this operation commutative?
(b) Name the identity element or explain why none exists.
(c) For each element having an inverse, name the element and its inverse.

(d) Show that (a*b)*c=as*(b=c).

(a) Since the table is symmetric along the leading diagonal, the operation is
commutative.

(b) The identity is b. From the tablea*b =a,b*a=a,c*b=c, b*c=c,
d¥b=bxd=d
(Any element operated on the identity gives back the element itself.)

(c) Any element operated on its inverse gives the identity. The inverse of a is ¢ and
the inverse of b is b, the inverse of ¢ is a and the inverse of d is d.

Element Inverse
a C
b b
C a
d d
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Note

When proving
any of closure,
associativity,
commutativity,
distributivity etc.
we need to prove
that they hold for
all elements and
not just for one
set.

EXAMPLE 17

SOLUTION

(d) We have to show that (a * b) *c = a * (b *c).
We first find (a * b) * c.
From the table,a* b =aand a * ¢ = b.

Therefore, (a *b) *c=b

Now we find a * (b * ).
From the table, b ¢ = cand a * ¢ = b.

Therefore,a * (b*c) = b

Hence, (a * b) *c = a * (b * ¢).

Constructing simple proofs in mathematics

Proof by exhaustion

This method of proof has limited capability. We prove the statement true for every
term. We list all values and show the statement to be true. However, although
listing all values works for small numbers of terms, if the number of terms is
increased, listing may become cumbersome and tedious.

Prove that n + 1 > n for all positive integers less than 10.

n=11+1=2>1
n=22+1=3>2
n=33+1=4>3
n=44+1=5>4
n=55+1=6>5
n=66+1=7>6
n=77+1=8>7
n=88+1=9>8
n=99+1=10>9
Therefore, for all integers less than 10, n + 1 > n.

Direct proof

A direct proof can be thought of as a flow of implications beginning with ‘P’ and end-
ing with ‘Q’ Small steps are taken and justified at each stage until the proof is derived.

Here are two theorems and their proofs. We assume that P is true, and show that Q
must be true.
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PROOF

PROOF

EXAMPLE 18

SOLUTION

Theorem

If a divides b and b divides c, then a divides c.

By definition of divisibility:

adividesb =8 =k e 7
—sa=L

1
bdividescﬁ%Zkze Vi

£
k,

Substitute b =

=b=
b

intoa = -—.

kl

£

k

a= klkz (Since k, € Zand k, € Z, thenkk, € 7)
Hence, a divides c.

We take small steps until the proof has been derived.

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

Theorem

Every odd integer is the difference of two perfect squares.

Let a be an integer.
(a+1)¥2=a’+2a+1
=s@+1)Y’—-a=2a+1
Sincea e Z

= 2a is an even integer.

Therefore, 2a + 1 is an odd integer.

Since (a + 1)> — a? = 2a + 1, every odd integer is the difference of two perfect
squares.

QE.D.

Prove thatifa > bthena +c>b + c.

Sincea > b
=a—b>0
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EXAMPLE 19

SOLUTION

EXAMPLE 20

SOLUTION

Sincec —¢c=0
=a—-b+tc—c>0
Rearrange:

at+c—(b+c)>0
=Sa+c>b+c Q.E.D.

We have a series of logical steps taking us to the solution.

Prove that the product of any two odd integers is odd.

Let m = 2p + 1and n = 2q + 1, where m, n, p and q are integers.
Now
mn=(2p+1)(2q + 1)
=4pq+2p+2q+1
=22pg+p+gq +1
Since p and q are integers, 2pq is also an integer and therefore 2pg + p + g is an
integer.
Hence, 2(2pg + p + q) + 1is an odd integer.

Therefore, the product of two odd integers is an odd integer. QE.D.

Prove that if m is an 0dd integer, then m? is also an odd integer.

Let m = 2p + 1, where p is an integer.
m*=Q2p+1)(2p+1)

=4p’ +4p +1

=2012p* +2p) +1

Since p is an integer, 2p? + 2p is an integer and 2(2p? + 2p) + 1 is an odd
integer.

Therefore, if m is an odd integer, then m? is also an odd integer.

Proof by contradiction

Use proof by contradiction when you wish to prove that something is impossible.
The assumption is made that your statement is possible and then you reach a
contradiction.
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EXAMPLE 21

SOLUTION

Prove that V2 is irrational.

Let us assume that V2 is rational.

= V2 = 2 where a and b have no common factors and a, b € Z

b

_a
b2

a? =2b?
Hence, a? is an even number.

Since a? is an even number, then a is even.

Leta = 2c.

= (20)* = 2b?
o4t =20
= b =2¢?

Hence, b? is an even number.
And hence, b is an even number.

Therefore, both a and b are even numbers, which means they have a common factor
of 2.

This contradicts what we said above: ‘a and b have no common factors.
Therefore, this contradicts the assumption that V2 is rational.

. V2 is irrational. Q.E.D.

Proof by counter example

Consider for all x € R, if P then Q. To prove this statement false find a value of x in
R for which P is true and Q is false. Thus x is a counter example.

Given a universal statement, if we can find a single statement which is not true, then
you will disprove your universal statement. You can disprove something by finding a
single counter example. However, you cannot prove something by finding only one
example.

EXAMPLE 22

SOLUTION

Find a counter example to show that this statement is untrue.

For all real numbers a and b, if b*> > a2 then b > a.

Leta=3,b=—4.
=(—4)2> 342> a?
16 >9

But:

—4 <3

=Sb<a
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Hence, the statement is false.

We have proved this by finding one case for which the statement is false.

EXAMPLE 23 Is the following statement true?

For all real numbers x, y and z, if x > y then xz > yz.

SOLUTION Letx =10,y =8,z = —3.
10 > 8 is true.
xz =10(—3) = —30
yz =8(—3)=—24
Since —30 < —24
=>xz<yz

Therefore, the statement is false.

EXAMPLE 24 Is the following statement true?
If n is divisible by 2 or 3, then n(n + 1) is divisible by 6.

SOLUTION Let n = 4, which is divisible by 2.
Then n(n + 1) = 4(4 + 1) = 20.
20 is not divisible by 6.

Therefore, the statement is false.

EXAMPLE 25 Is the following statement true?

If n is prime, then n + 1 is not square.

SOLUTION Let n = 3, which is a prime number.
Thenn+1=3+1=4.
4 is square.

Therefore, the statement is false, since we have one example for which the statement
will not hold.

Using the properties of closure, associativity, commutativity, distributivity, identity
and inverse we can prove other theorems of real numbers.

Here are some examples of proofs of theorems.

37



38

PROOF

PROOF

PROOF

PROOF

Theorem

Foranya,be R,a X 0=0.

axX1l=a

=aX(1+0)=a
=aX1+aX0=a (Distributive law)
=>at+aX0=a

=aX0=0

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

Theorem

Foranyae R, —a = (—1)a.

We know a X 0 = 0.

Therefore,a X (1 + (—=1)) =0
=aX1+aX(—1)=0 (Distributive law)
=a+aX(—-1)=0

=SaX(—1)= —a

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

Theorem

Foranya,be R, —(a + b) = (—a) + (—b).

—(a+b)=(—1)(a+b)
= —(a+b)=(—1)Xa+ (—1) Xb (Distributive law)
= —(a+b)=(—a)+(-b)

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

Theorem

For a e R and a # 0, then

First, we show that% #0.
We know that 1 = a X %.
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Letd = 0.
=1=aX0.
This is false.
Hence, % #0.

Since the multiplicative inverse of a is L e have

a = da.

N

......................... © o0 0000000c00000000000000000 o

Ordering axioms

DEFINITION

A non-empty subset of R is a set of strictly positive numbers (R) if the following
conditions are satisfied.

(i) fa beR', thena+beR™ .
(i) Ifa,beR", thenaxXbeR™.
(ii) Ifa,beR*,thena+be RTanda—borb—aeRTora—b=0andb—a=0.

©000000000000000000000000000000000000000000000000000000000000000000

Theorem

Ifa>band b > c,thena > cforanya, b, ceR.

PROOF

a>b=a—belR"

b>c=b—-ceR"

=a—-b+b—ceR"

=a—ce R"

=a—c>0

=a>c

Hence,ifa > band b > ¢,thena > cfora, b,ce R.

Theorem

Foralla,b,ce R,ifa > b,thena +c>b + c.
PROOF

a>b=a—-b>0

Sinceca—b=a—b+c—c
a—b=a+c—(b+¢

=a+c—(b+c)>0

Sat+tc>b+c

Hence, foralla, b,ce R,ifa > b,thena + c> b + c.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0
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SUMMARY

The real number system

4 ——

Real numbers (R) Binary operations Mathematical proofs

& -
Rational numbers (Q) Irrational numbers (Q) .' ‘

A binary operation * on a non-empty set A Proof by exhaustion: Prove a
| isafunction*: A X A— A. statement is true for every value.

v

Integers (Z) ’

Closure: * is closed with respect to A if V Direct proof: A flow of implication

Whol bers (W a,be A a*be A Addition and beginning with P and ending with Q.
ole numbers (W) multiplication are closed with respectto  We assume that Pis true and show
B the set of real numbers. that Q must be true.
v
Natural numbers (N) ‘ ’
Commutativity: Le;c abe ;4 *is Proof by contradiction: Assume a
commutativeiffa*b=b*a. statement is possible and reach a
‘v contradiction.
Associativity: Leta, b, ce A. *is !.
associativeiffa*(b*c)=(a*b)*c. Proof by counterexample: Given a
] universal statement, find a single

statement for which the universal
statement is not true and you will
disprove the universal statement.
You can disprove something by
finding a single counter example,
but you cannot prove something
.V by finding one example.

Distributivity: Let g, b, c € A. For any two
binary operations * and A, * distributes
overAiffa* (bAc)=(a*b)A(a*c).
Multiplication distributes over addition
for real numbers.

Identitiy: Let e, a € A. eis the identity
elementin Aife*a = a* e = a. The identity
element is unique to the set.

The identity for addition is 0 and the
identity for multiplication is 1.

Inverse: Let a, b € A. ais the inverse of b

and btheinverse ofaiffa*b=b*a=-e.
For any element a with respect to addition
of real numbers, the inverse of ais -a since
a+(-a)=(—a)+(a)=0.

For multiplication of real numbers, the

. .1
inverse of ais  exceptwhena = 0.

The multiplicative inverse of 0 does
not exist.

Checklist

©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00

Can you do these?
B Define a binary operation.
B Perform binary operations.

M Define closure, commutativity, associativity, distributivity, identity and inverse.
40
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B Use the concepts of closure, commutativity, associativity, distributivity, identity
and inverse, with simple binary operations.

B Construct simple proofs: direct proofs, proofs by counter example.

B Use the axioms of the number system, including the non-existence of the
multiplicative inverse of zero.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0

Review Exercise 2

1 All prime numbers are odd. Prove or disprove this statement.

2 Prove that if x is an integer, divisible by 4, then x is the difference of two perfect
squares.

3 If the product of two numbers is even, then the two numbers must be even.
Prove or disprove this statement.

4 Prove thatif x and y are real numbers, then x* + y* = 2xy.
5  The square root of a real number x is always less than x. Is this statement true?
6  Provethatfora,be R,ab=0&a=0o0rb=0.
1 1 1 .
7 Show by counter example that ——— and = + — are not equivalent.
Y el @+ M T d
8

The binary operation * defined on the set of real numbersisa*b =a + b + 5.
(a) Show that the set of real numbers is closed with respect to *.
(b) Find the identity element.
(c) Given any element a, find its inverse.
9 Two binary operations * and m are defined on the real numbers:
axb=23(a+Db)
amb=2ab
Show that one of these operations is associative.
10 TIs the following statement true?
Every number of the form 2" + 3 is a prime number.

11 The binary operation * on the set A = {a € R, a = 0] is defined as
a*b=1|a— bl fora, be A.

(a) Show that A is closed with respect to *.

(b) There is an identity in A for *.

(c) Every element has an inverse with respect to .
(d) *is not associative in A.

(|x| is the positive value of x.)
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12

13

14

15

16

The binary operation A is defined on R* as aAb = a'"?. Show the following.

(a) The operation A is associative.
(b) There is a unique identity in R™.
(c) Ais distributive over multiplication.

The set X consist of all numbers of the form x + y\3 where x and y are integers.
Show the following.

(a) Xis closed under addition and multiplication of real numbers.
(b) There is an identity in X for addition.

(c) There is an identity in X for multiplication.

(d) Not every element of X has an inverse with respect to multiplication.
The binary operation A is defined by

xAy = +\/m .

Show the following.

(a) The operation A is associative.

(b) There is an identity element with respect to A.

(c) The operation A is not distributive over A.

The binary operation * is defined on the real numbers as follows.
a*b=a+b— abwherea,be R.

(a) Show that there is an identity element with respect to *.

(b) Find the inverse for each element.

(c) Show that * is commutative.

(d) Solvea* (a=*2)=10.

The set S = {a, b, ¢, d} and the operation A is defined by the following table.

A a b 4 d
a a b c d
b b d c
c C a b
d d C a

(a) Is S closed with respect to A?
(b) Find the identity in S.

(c) Find the inverse of each element in S.
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17 'ThesetS = {p, q, r, s} and the operation * is defined by the following table.

P s p q r
p r S
r q r s p
s r s p q
Find the following.

(a) Theidentityin S

(b) The inverse of each element in S
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CHAPTER 3
Principle of Mathematical Induction

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

At the end of this chapter you should be able to:
B Write a series using sigma notation

M List a series by expanding the sigma form

B Use the summation laws

B Use the standard results for Er, Erz, Er”
1 1 1

M Prove by the principle of mathematical induction that a statement is true for a
summation

B Prove by the principle of mathematical induction that a statement is true for
divisibility

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

KEYWORDS/TERMS

sigma notation e series ¢ sequence o principle of
mathematical induction e divisibility
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Sequences and series

A sequence is a set

of termsina )
well-defined order.  1he following are examples of sequences:
ceescccccccccns 2,4,6’8) ]_O’ 12...
3,6,12,24,48 ...
5,10, 15,20,25...
The following are examples of series:
A series is the sum 1+2+3+4+5+...+20
of the terms of a 2+4+6+8+10+12+14+16+ 18+ 20+ 22+ 24

sequence. 24+ 4+8+16+32+64+128+...

eeeec0c0000c0cne

A series can be written as a list or using the sigma notation. To write a series in sigma
notation we need to find the general term of the series. The terms of a series are
separated by an addition or subtraction sign.

Look at this example of a series.
1+2+3+4+5+6+7+...+20

The first term is 1, the second term is 2, and the third term is 3 etc.
The general term of a series is represented by ¢ or u,.

Finding the general term of a series
EXAMPLE 1 Find the general term of the following series.
1+2+3+4+5+6+7+8+9+10

SOLUTION To find the general term of the series, we look for a pattern relating the subscript of
the term with the value of the term of the series. Let us see how this works.

The seriesis1 +2+3+4+5+6+7+ 8+ 9+ 10.
The first term is 1. Therefore, u =1

Notice that the subscript and the value are the same. Let us see if this is true for the
other terms.

u,=2

Again the subscript and the value are the same.

Looking at each term, we see that u, = 3, u, = 4 and so on for the other terms of the series.
We can generalise and state that the general term of the series or the rth term is:

u =r

EXAMPLE 2 Find the general term of the following series.
2+4+6+8+10+12+ 14+ 16+ 18 + 20

SOLUTION The seriesis2 +4+ 6+ 8+ 10+ 12 + 14 + 16 + 18 + 20.
The first term is 2, u; = 2 = 2(1).
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The second term is 4, u, = 4 = 2(2).

The third term is 6, u, = 6 = 2(3).

At this stage, we can see that the subscript of each term is multiplied by 2. The
general term of this series is:

u, =2r

We can check our result by substituting values for  to confirm that u_ = 2r represents
our series.

EXAMPLE 3 Find the general term of the following series.
2+4+8+16+ 32+ 64 + 128 + 256

SOLUTION The seriesis2 + 4 + 8 + 16 + 32 + 64 + 128 + 256.
The first term is u, = 2 = 21,
The second term is u, = 4 = 22,
The third term is u, = 8 = 23,
The general term of the series is u, = 2".

By the third or fourth term you will be able to recognise a pattern and write down a
general term, which you can confirm by substituting other values for r.

EXAMPLE 4 Find the general term of the following series.
3+7+11+15+19+23+27+31

SOLUTION Notice the terms of the series 3 + 7 + 11 + 15 + 19 + 23 + 27 + 31 increases by a
constant value 4.

When the terms of a series increases by a constant term the general term of the series
is of the form

u =mr+c

Where m is the constant difference and ¢ can be found using the first term.
In this series m = 4 and u, =3, substituting m = 4, r = 1 and u, = 3into
u, = mr + ¢,

We get

3=4(1)+¢c

Therefore

c=3—-4=-1

And

ur=4r—1.
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Sigma notation
EXAMPLE 5 Write the following using sigma notation.
IX3+2X7+3X11+4X15+5X19+6X23+7X27+8X31

SOLUTION We find the general term of the series which is u = r(4r — 1).
The first term of the series occurs when r = 1 and the last term when r = 8.

The series can be written as
r=28
D Har—1)=1X3+2X7+3X11+4X15+5X 19

r=1

+6X23+7X27+8X31
This can also be written as E r(4r — 1) or even as Er(4r - 1).

r=1

EXAMPLE 6 Write the following using sigma notation.
1+3+5+7+9+11+...

SOLUTION This series is infinite. Therefore, the upper limit can be left out.

The terms of the series go up by a constant difference 2, the general term is of
the form u, = 2r + c.

Sinceu, = 1,1 =2(1) + ¢

Hence, c = —1.

Andu = 2r — 1.

The series can be written as E(Zr - 1).

r=1

Expansion of a series

5
EXAMPLE 7  Expand the series >, (r + 2).
r=1

SOLUTION Substituting r = 1 into (r + 2) gives1 + 2 =3
r=2into (r + 2) gives2 + 2 = 4
r=3into (r + 2) gives3 +2=5
r=4into (r + 2) gives4 + 2 =16
r = 5into (r5+ 2) gives5+2=7

Therefore, >, (r+2) =3 +4+5+6+7

r=1
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EXAMPLE 8

SOLUTION

EXAMPLE 9

SOLUTION

EXAMPLE 10

SOLUTION

48

n
Given the series E(r2 + 2), identify the nth term of the series and the 12th term of

the series. Tl

The nth term can be found by replacing r = n into (r* + 2).
The nthterm T, = (n? + 2)

Substituting n = 12.

T, = (122 +2) = 146

- twelfth term is 146.

Standard results

ir: n(n2+ 1)

r=1

E”Z _ n(n + 1)6(2n +1)

r=1

. _n?(n+1)?
27T

Note: These results can only be used directly when the lower limit is 1.
Use of the standard results to find the sum of a series

Remember: A series is the sum of a sequence.

n
Using Er = M with n = 15 gives:

r=1

> 15(15 + 1)
D=2 U o 15 x8=120

Evaluate E r.

r=1

n
+1
Using Er = % with n = 36 gives:
r=1
36
E _36(36 +1)  36(37) _
r=—s— =26

66
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EXAMPLE 11

SOLUTION

EXAMPLE 12

SOLUTION

48
Find E r.

r=10

We need to convert the series so that the lower limit is 1.

If we find the sum from 1 to 48 and subtract the sum from 1 to 9, we will get the sum
from 10 to 48.

48 48 9
E,r= E,r— E,r

r=10 r=1 r=1
48
48(48 + 1
D= (2 )=48(249)=1176
r=1
99+1) 90 _
;r— — =045

48
E,rz 1176 — 45 = 1131
r=10

25
Find the value of Erz.

r=28
We can write this sum as:

25 25 7
Erz = Erz - Erz (Our standard results only work when

r=8 r=1 r=1 the lower limit is 1.)

o, n@2n+ D(n+ 1)
We can use ;rz = ¢ .
25
B 25(25 + 1)(2(25) + 1) 25(26)(51) _
When n = 25, ;rz - S = = — 5505
7
_ 77+ 1)@+ 1) 7(8)(15)
When n = 7, ;rz = ; = 6 = 140
25
. D12 = 5525 — 140 = 5385

r=28

12
(a) Evaluate Erz.

r=1 30

(b) Find the value of E .

r=10

Summation results
Result 1

Let ¢ be a constant.
n

Ec=n><c

r=1
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EXAMPLE 13

SOLUTION

EXAMPLE 14

SOLUTION

EXAMPLE 15

SOLUTION

EXAMPLE 16

SOLUTION

r=1

100
D8 =18x 100 = 800

r=1

Result 2

Let u, and v, be two sequences.

D)= Du+ D,

20
Find > (2 + 7).
r=1
20 20 20
Since E(r2 +7) = Erz + Er
r=1 r=1 r=1

(We can separate the sum of two series.)

20
E(rz +r)= 20(20 + 1)(2(20) + 1) | 20(20 + 1)

6
r=1
_ 20211 | 20(21)
N 6 2
= 2870 + 210
= 3080

24
Evaluate E (4r).

r=1

24 24
E(M) =4 Er

r=1 r=1

_4(24)(24 + 1)
=22AeT D)

= 2(24)(25)
= 1200

2
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EXAMPLE 17  Find >, (37).

r=1
n n
SOLUTION Dar=3>7r
r=1 r=1

_3n(n+1)2n + 1)
6

_nn+1)2n+1)

n 2

EXAMPLE 18  Whatis >, 4r(r — 1)?

r=1
SOLUTION 241*(1' —-1)= E(ﬁlr2 — 4r) (We expand the brackets.)
r=1 r=1
=4 P 4D
r=1 r=1
_ onn+1)2n+1) 4n(n+1)
=4 6 )

= %n(n +1)2n+ 1) = 2n(n + 1)
= 2n(n + 1)[%(271 +1)— 1]

= 2n(n + 1)[%(271 +1- 3)]

= 2n(n + 1) (%)(Zn ~2)

_2n(n + D(2)(n — 1)
3

_4n(n*—1)

N 3

Remember

There is no rule for the product of two functions of r. Do not write:

i4r(r— 1) = i(4r) X i(r— 1)
r=1 r=1 r=1

20
Try these 3.2 (a) Evaluate Er(r + 3).

r=1 25
(b) Find the value ofz 2r(r + 1).

r=10

(c) Find in terms of n, Er(r2 + 2r). Simplify your answer.

r=1
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EXERCISE 3A

In questions 1 to 3, find the nth term of each sequence.
;p L1 1 1 1

2 16,13,10,7,4, — — _,

3 1 1 1 1 _
2X53X74X96X10°

In questions 4 to 6, write the series using sigma notation:

4 8+16+ 32+ 64+ 128 + 256 + 512

5 9+12+15+18+21+24+27+30

6 4X5+5X6+6X7+7X8+8X9+9X10+ 10X 11

In questions 7 to 11, find the nth term of each series.

n

7 D(6r—5)

r=1

8 En‘,(zzrz ~3)
r=1
2n

9 Dr+r)

r=1

4n
10 E(6r3 +2)

r=1
n+2

11 2(32r—1)

r=1

In questions 12 to 14, identify the given terms of each series.

50
12 D (7r + 3), the 16th term
r=1
25
13 E(?»rz — 1), the 8th term
r=2
42

14 E(%), the 10th term

oy | r—2

In questions 15 to 19, find the value of each sum.
r=25

15 D (r—2)
r=1
r=30

16 >, (6r+3)
r=1
r=50

17 D r(r+2)
r=1
r=10

18 E r(r + 4)

1

r=
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r=45

19 D 6r(r+1)

r=1
In questions 20 to 23, evaluate each sum.

r=12
20 E,(r+4)
r=>5

r=25

21 D (- 3)

r=10
r=30

22 Er(.’:r— 2)
r=15
r=40

23 D@+ 1)5r +2)
r=9

In questions 24 to 27, find and simplify each sum.

r=n

24 D\(r+4)

r=1

r=n

25 D3r(r + 1)

r=1

r=n

26 E4r(r - 1)

r=1

r=n

27 DR+ 3)

r=1
In questions 28 to 30, find and simplify each sum.

r=2n

28 E 2r(r — 1)

r=n-+1
r=2n

29 D Hr+4)
r=n+1
r=2n

30 D (r+1)(r—1)

r=n+1

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Mathematical induction

The principle of mathematical induction is a method for proving that statements in-
volving N (the set of natural numbers, 1, 2, 3, 4, .. .) or W (the set of whole numbers)
are true for all natural numbers. The procedure for a proof by mathematical induc-
tion is as follows.

Step 1

Verity that when n = 1, the statement is true.

Step 2
Assume that the statement is true for n = k.
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EXAMPLE 19

SOLUTION
PROOF

Step 3

Show that the statement is true for n = k + 1, using the statement in Step 2.

Step 4

When Step 3 has been completed, it is stated that the statement is true for all positive
integers n € N.

Let us see how induction works: when the statement is true for n = 1, then according
to Step 3, it will also be true for n = 2. That implies it will be true for n = 3, which
implies it will be true for n = 4, and so on. It will be true for every natural number.

Prove by the principle of mathematical induction that the following is true.

_ n(n+1)

1+2+3+4+...+n 5

_n(n+1)

Let P(n) be the statement1 +2 +3+4+ ...+ n 3

Step 1

Let us prove that P(1) is true.

When n = 1, substituting into P(n) gives:
left-hand side = 1

Since left-hand side = right-hand side, P(n) is true for n = 1.
Step 2

Let us assume that P(n) is true for n = k, and so, that P(k) is true. Let us write clearly
what our assumption is:
k(k +1)
2
We replace n by k on both sides of P(n). We must use P(k) in our next step.

1+2+3+4+...+k=

Step 3

We need to prove that P(n) is true when n = k + 1, that is, that P(k + 1) is true. Let
us write out clearly what we need to prove.

. . n(n+1)
Usmgn=k+11n1+2+3+4+...+n=f

1+2+3+4+...+k+1=(k+1)(k2+1+1)

, we need to prove:

Starting with the left-hand side:
1+243+4+54+... +(k+1D)=[1+2+34+4+5+...+k+k+1)

The terms in the square brackets represent P(k).
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EXAMPLE 20

SOLUTION
PROOF

Since we assume P(k) is true, we can now substitute 1 + 2 +3 +4 + ... +

k= k(k2+ D and we get:
1424344454+ +*k+1D)=[14+2+3+4+5+...+k+k+1
=KD e
_ktk+1)+2(k+1) _ (k+ 1)(k+2)
B 2 B 2
_(k+D(k+1)+1)
2

Hence, P(k + 1), is true whenever P(k) is true.

Thus, P(n) is true whenever # is a positive integer.

nin+1)2n + 1)
3 .

n
Prove by mathematical induction that E =
1

nn+1)2n + 1)
G :

LET P(n) be the statement Erz =
T
Step 1

Substituting n = 1 into P(1), we get:

left-hand side = 12 =1
1(1 + 1)(2(1) + 1)
6

_1X2X3
6

right-hand side =

NI

Since left-hand side = right-hand side, P(n) is true for n = 1.

Assume that P(n) is true for n = k, that is P(k) is true. We write clearly our assump-
tion, replacing n by k:

k
25#=Mk+nuk+n.

. 6
k+ 1 k
Erz = Erz +(k + 1)th term
r=1 r=1

The terms of the series are obtained by replacing r in the function 7. Therefore, the
(k + 1)th term of this series is (k + 1)2.
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EXAMPLE 21

SOLUTION
PROOF

Step 3

We need to prove that P(n) is true when n = k + 1 that is P(k + 1) is true. Let us

write out clearly what we need to prove. Using n = k + 1 in P(n), we get:
k+1

Erzz(k+1)(k+1+1)(2(k+1)+1)
1

6
k+1 k

D= D+ (k+ 1)
1 1

k
k(k + 1)(2k + 1 klk + 1)(2k + 1
_K )6( )+(k+1)2 FromStepZ,Zfz: ( )6( )
2 2
_ K+ 1)6(2k D, 6(k; D (Factorising@ = (k + 1)?, we can
factor out k J6r 1)
_ (K : Dik(2k + 1) + 6(k + 1)] (Remember to multiply 6 by (k + 1) instead
e of 6 by k)
= 5202k + k + 6k + 6]
_ (K Jg Dok + 7k + 6]
_ (k+ DRk +3)(k +2)
6
_ (k+ Dk + 2)(2k + 3)
6
_(k+D(k+1+ 1)K+ 1) +1)

6
Hence, P(k + 1), is true whenever P(k) is true.

Thus, P(n) is true whenever 7 is a positive integer

Using mathematical induction, show that the following formula is true for all natural

numbers N.
n
n

1 _
E(3r— 2)@Br+1) 3n+1

1

n
1 _ n
Let P(n) be the statement 2(3” G F D) 3t

Substituting n = 1 into P(n) gives:

a1 1

left-hand side = m = Z
. S 1 _1
right-hand side = 3 F1 4

Since left-hand side = right-hand side, P(n) is true for n = 1.
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Assume that P(n) is true when n = k, i.e. P(k) is true.

Replacing n by k we have:

k
k

1 _
2(37’— 2)Br+1) 3k+1

We need to prove that P(n) is true when n = k + 1 that is P(k + 1) is true. Let us

write out clearly what we need to prove. Using n = k + 1 in P(n), we get:
k+1

1 _ __k+1
Z(3r—2)(3r+ 1) 3k+1+1

The (k + 1)th term of the series is obtained by substituting » = k + 1 into

1 ; 1

Gr—2)Gr+ 1) "B+ 1) -2)Bk+1) +1)

k+1 k

D 1 _ 1 N 1

— (3r —2)(3r + 1) ~(3r—2)3r+1) Bk+1)—2)3k+1)+1)
__k 1 . .
= 3T + GEF DGk ) (Induction step, this is where
we replace (k))

_ 1 1 ..
e l(k + T 4) (Factorising)

_ (k(3k+4)+1)
3k +1 3k + 4

_ 1 (3k2+4k+1)
3k+ 1\ 3k+4

_ 1 ((3k+ Dk + 1))
3k+1 3k + 4

_ k+1
3k+4

_ k+1
3(k+1)+1

Hence, P(k + 1), is true whenever P(k) is true.

Thus, P(n) is true whenever 7 is a positive integer.

EXAMPLE 22  Using mathematical induction, show that 9" — 1 is divisible by 8 for all natural
numbers 7.

SOLUTION Let P(n) be the statement 9" — 1 is divisible by 8.
We can rewrite this as P(n) is 9" — 1 = 8A where A is some integer.
Whenn =1,91 — 1 =9 — 1 = 8 = 8(1) which is divisible by 8.

Therefore P(1) is true.
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PROOF

Assume that P(n) is true for some integer n = k that is P(k) is true.

Writing in equation form: 9% — 1 = 8A.

We need to prove that P(n) is true when n = k + 1, that is P(k + 1) is true. Let us
write out clearly what we need to prove. Using n = k + 1 in P(n), we get:

9k+1 — 1 = 8B, where B is some integer

gkl — 1 =09kT1 4 8A — ok (From our assumption, 9 — 1 = 8A.
— gk+1 _ gk 4 gA Therefore —1 = 84 — 9%)
=9k X 9l — 9k + 84
=99 —1) + 84
= 95(8) + 84
= 8(9% + A)
= 8B, where B is some integer B = ok + A
Hence, P(k + 1), is true whenever P(k) is true.

Thus, P(n) is true whenever 7 is a natural number.

EXAMPLE 23

SOLUTION

PROOF

Using mathematical induction, show that 22 + 3% %6 4 17" * 2 js divisible by 16 for
all natural numbers 7.

Let P(n) be the statement 22 + 3%+ 6 4+ 177 * 2 is divisible by 16.

We can write this as P(n) is 22 + 3%+ 6 + 17"+ 2 = 16A, where A is some integer.
Whenn = 1,22 + 340 +6 4 1702 = 23 4 3104 173 = 63984 = 3999(16).
The answer is divisible by 16.

Therefore, P(1) is true.

Assume that P(n) is true for some integer n = k, that is P(k) is true.

We can write this as 22 + 3% +6 4 17k+2 = 16A.

We need to prove that P(n) is true for n = k + 1, that is P(k + 1) is true.

We need to prove that 22 + 3#k*D+6 4 17+ ) +2 = 16B where B is some integer.

22 4 34kt D+6 4 7k +D+2 = 9 4 34+10 4 17k + 3 (Induction step:

= (16A — 3%+ 6 — 17k+2) 4 34k +10 4 7k+3 22 =16A—3%"*6+ 1782
= 16A + 34k+10_ 34k+6+ 17k+3_ 17k+2
=16A + (3% 6 x 3%) — 3%+ 6 4 (17kF2 % 17) — 178 *2
=16A +3%+0x (3= 1) +17°72X (17 — 1)

= 16A + 3% 6 X (80) + 17kt 2 X (16)
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= 16(A + 3% T 6 X (5) + 1751 2)
= 16B, where B = A + 3* ¥ 6 X (5) + 175 2, which is an integer.
Hence, P(k + 1) is true.

Thus, P(n) is true whenever n is a natural number.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 3B

In questions 1 to 10, prove the equalities by mathematical induction.
r=n - R -

1 Z(Sr 2) = 1nGn - 1)

2 2(41' —3)=n2n—-1)
r=1

3 E(Zr —1)2r= %n(n +1)(4n — 1)

r=1

< Cnn+1)Gn+ D(n +2)
4 D+ = -

r=1

r=n

2 2
5 Zp:n(nz-l)

r=n

1 _
6 Er(r+1)_(n-’|1-1)

r=1

r=n

—1)+ —(—1\+ n(n+1)
7 2yt D

r=n

1 _ n(n + 3)
8 E r+ 1) +2) 4n+ 1Dn+2)

r=1

r=n

1 —_ n
? E(3r—1)(3r+2)_6n+4

r=1

10 Prove, using the principle of mathematical induction, that for any integer =1,
34" — 1 is divisible by 16.

11 Prove, using the principle of mathematical induction, that for any integer =1,
n* + 3n? is divisible by 4.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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SUMMARY

Principle of mathematical induction

e

Sequences

¥

Series: sum of the terms of a sequence

n
z r:sum all numbers from 1ton

N

Proof by mathematical induction

x

Prove the statement true forn = 1

Assume the statement true for n = k

3

r=1

-
a

¢=nc Prove the statement true forn=k + 1
r=1
deu,=cr u, Hence, by mathematical induction, the

statement is true for all n

2(u+v)=2u+2v .'

Application of proof by mathematical induction

3 r= Y b N

Series Divisibility tests

Checklist

©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00

Can you do these?

B Write a series using sigma notation.

B List a series by expanding the sigma form.
M Use the summation laws.

B Use the standard results for Er, Erz, EP.
1 1 1

B Prove by the principle of mathematical induction that a statement is true for
a summation.

B Prove by the principle of mathematical induction that a statement is true for
divisibility.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o
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Review Exercise 3

1

10

11

12
13

14

Hereisaseries: 6 X 7+ 8 X 10+ 10 X 13...

(a) Find the nth term of the series.

(b) Find the sum of the first n terms of the series, simplifying your answer as
far as possible.

(a) Find and simplify Er(?ﬂ’ - 2).
r=1
(b) Hence, find:

r=20

i) D r(3r—2)
r=1
r =100

(i) >, r(3r—2)
r=21

2n(n + 1)(n — 7)
3 :

Given thata = 3*" "1+ I,showthata , , —a, = 8(3*" ). Hence, prove by
induction that a  is divisible by 4 for all positive integers .

n
Prove by induction that EZr(r —5) =
1

Find and simplify EZr(r2 — 1). Hence, prove your result by induction.
1

Given thata = 5*"*1 + 1,showthata ,  —a, = 24(5*"*'). Hence, prove by
induction that a  is divisible by 6 for all non-negative integers n.
n

Find the sum of the series 2(6r3’ + 2), simplifying your answer as far as

r=1
possible. Prove by induction that your summation is correct.
Prove by induction that E (r+4)= —n(n +9).
r=1

Use the pr1nc1ple of mathematical induction to prove that

247(7 B 4n(n + ;)(n - 1)
r=1

n
Prove by induction thatZ D) AtT

Prove that >,3(2"~1) = 3(2" — 1).

r=1

Prove that n(n* + 5) is divisible by 6 for all positive integers 7.

Prove by mathematical induction that #n°> — 7 is divisible by 5 for all positive
integers n.

I U B
Prove by induction thatnzi1 CE DR Y
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CHAPTER 4
Polynomials

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

At the end of this chapter you should be able to:
B Identify a polynomial

M Identify the order of a polynomial

B Identify the terms of a polynomial

B Add, subtract, multiply and divide polynomials

B Evaluate polynomials

M Compare polynomials

B Use the remainder theorem

M Factorise polynomials using the factor theorem

B Solve equations involving polynomials

M Factorise x” — y" wheren = 2,3,4,5,6

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

KEYWORDS/TERMS

polynomial « order of a polynomial « terms e evaluate o
remainder theorem e factor theorem e factorise « solve
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DEFINITION Review of polynomials

A polynomial is an

expression of the .
P Degree or order of polynomials

forma x" +
ZZ:/JI ;:;;a:’ (’1'1" + The degree or order of a polynomial is the highest power of x in the polynomial.
a,, ...d,_,,a,are For example, 6x° + 5x2 — 3x + 1 is a polynomial of degree 5.
constants and
ne W.
............... Algebra of polynomials
EXAMPLE 1 Given that P(x) = 4x® — 3x% + 2x + 1 and Q(x) = 6x% — 2x + 2, find the following.
(a) P(x) + Q)
(b) P(x) = Q)
(€) P(x) X Q)
P(x)
d) 222
@ Qx)
SOLUTION (@) Plx) + Qx) =4x® —3x2 +2x+ 1+ 6x2 —2x+ 2

=4x3—3x2+6x2+2x—2x+1+2
=4x3+3x2+ 3
(b) P(x) — Q(x) =4x® — 3x2 +2x+ 1 — (6x2 — 2x + 2)
=4x3 —9x2+4x— 1
(c) Plx) X Q(x) = (4x> — 3x2+ 2x + 1) X (6x2 — 2x + 2)
= (4x3)(6x* — 2x + 2) — (3x3)(6x% — 2x + 2)
+ (2x)(6x% — 2x + 2) + (1)(6x2 — 2x + 2)
=24x> — 8x* + 8x% — 18x* + 6x° — 6x2 + 12x> — 4x? + 4x
+6x2—2x+2
= 24x° — 26x* + 26x° — 4x? + 2x + 2

(d) 6x2—2x+2)4x3 =322 + 2x+ 1

—(4x3 — %xz + éx)

_5.2
3 +

5 g )

gt
1., 14
4 -3@+axt1_2 5, 9779
o —2x+2 3 18  6x2—2x+2



EXAMPLE 2

SOLUTION

EXAMPLE 3

SOLUTION

EXAMPLE 4

Evaluating polynomials

Let f(x) = 3x®> — 2% + x — 4.
Evaluate the following.

(a) f()

(b) f(=2)

(c) fG)

(a) Substituting x = 1 into f(x) gives:
fx)=3x* —2x* + x— 4
f) =301 —2(1*+ (1) — 4
—3-2+1-4
=2
(b) Substituting x = —2 into f(x) gives:
f(=2) =3(=2)> =2(=2)* + (=2) — 4
= —24-8-2-4
= 38
(c) Substituting x = 3 into f(x) gives:
f3)=3(3)°—2(3)* + (3) — 4
=81—-18+3—-4
= 62

Rational expressions
P(x)

Q(x)

A rational expression is an expression of the form f(x) =

are polynomials in x and Q(x) # 0. We can add, subtract, multiply and divide

rational expressions in the same way that we can with numbers.

+1_

LX —
Solve the equation -0
x+1_
x—2 0
Multiplying by x — 2 gives:
_ x+1_
(x—2) X — 0
x+1=0
x=-1
Hence, x = —1
(a) Write the expression e 1 I % _?_ 5 asa single fraction.
(b) Hence, solve the equation 1 __ 4 _

x—1 x+2

where P(x) and Q(x)



MODULE 1 e CHAPTER 4

SOLUTION

EXAMPLE 5

SOLUTION

(a) L. -4 -2 +2- 4k 1) (Lowest common multiple of the
x—1 x+2 (x — 1)(x+2) . .
denominators is (x — 1)(x + 2))
__ —3x+6
(x—1D(x+2)
1 4
(b) x—1 x+2 0
—3x+6 _
We use CERCED) 0
Multiplying by (x — 1)(x + 2) gives:
—3x+6=0
=3x=6
=>x=2

Hence, x = 2.

. x+1 3x+2
(a) Simplify 1 X3
(b) Hence, solve Xt L 43X 2 _ 3 iving the exact values of x.
2x—1 x—3
(a) X*1 y3x+2_ e+ Dx—3)+ Gx+2)2x— 1)
2x—1 x-—3 (2x — 1)(x — 3)
_xX*—2x—3+6x*+x—2
2x — 1)(x—3)
_ 7x*—x—5
2x—1)(x—3)

x+ 1 3x +2 _
(b) =g t5=5=3

IxX*—x—5 _
S ox—Da—3 °

7xt —x—5=32x— 1)(x — 3)
7x> —x—5=6x*—21x+9

x2+20x—14=0

. —20 * /202 — 4(—14)

2

_ —20 +1/456
2

_ =20+ 2V114
2

= —10 + V114

Sox=—10+VI114, x=—10—VI11l4

Comparing polynomials

Two polynomials are equal if and only if their corresponding coeflicients are equal.
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EXAMPLE 6

SOLUTION

EXAMPLE 7

SOLUTION

EXAMPLE 8

SOLUTION

Find aif x>+ 4x + 2=x%+ ax + 2.

Since x? + 4x + 2= x% + ax + 2, the corresponding coefficients on both sides must
be identical. Comparing coeflicients of x gives:

4 =q

Given that 3x*> + ax? + bx + 2= (3x> + 1)(x + 2), where a and b are constants, find
aand b.

Expanding the right-hand side gives:
B2+ 1)(x+2) =33+ 6x2+x+2
L3t ax tbx+2=3+6x2+x +2
Comparing coefficients of x* gives:

a=6

Comparing coeflicients of x gives:

Find the constants A, B, C and D such that (x + 2)(2x + 3)(x — 1) = Ax> + Bx*+ Cx + D.

Expanding the brackets on the left-hand side gives:

x+2)2x+3)(x—1)=0Q2x*+3x+4x+6)(x— 1)
=02+ 7x+6)(x—1)
=23+ 72+ 6x—2x*—7x— 6
=23+5x>—x—6

Since (x + 2)2x + 3)(x — 1)=Ax*+ Bx>+ Cx + D

=23+5x2—x—6=Ax>+Bx*+ Cx+ D

Comparing like terms:

A =2=A=2

Bx*’=5x>=B=5

Cx=—x=C=—1

D=-6

Hence, A=2,B=5C=—1,D = —6.

Alternative solution:

Since (x + 2)(2x + 3)(x — 1) = Ax® + Bx*> + Cx + D, the two sides are equivalent for
all values of x.

Substituting the values of x for which each factor is zero gives:
x+2=0x=—-2
2w+3=0,x=232

x—1=0,x=1
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EXAMPLE 9

SOLUTION

Therefore, whenx = 1,=0=A+B+ C+ D [1]

Whenx=-2=0=—-8A+4B—2C+ D [2]
=_3 =_27 9g-_3

When x = 5=0 g AtTzB—5C+D (3]

When x = 0= (2)(3)(-1) =D

D= -6

Equating coefficients of x>

x X 2x X x = Ax®

2x3 = Ax3

A=2

Substituting A = 2 into [1] and [2] gives:
2+B+C—-6=0=>B+C=4 [4]
—16+4B—-2C—6=0=4B—2C=22

2B—C=11 (5]

= 3B=15 [4] + [5]
15 _

B=3

Substituting B = 5 into [4] gives:
5+C=4

C=-1
~A=2,B=5C=—-1landD = —6

Given that x> + ax> + x + 6 = (x + 1)(x — 2)(bx + ¢) for all values of x, find the
values of a, b and c.

X+at+x+6=(x+ 1)(x—2)(bx +¢)
Substituting x = 2 into the identity gives:
22 +a2)P+2+6=2+1)2—-2)2b+0¢)

8+4a+8=0
4a = —16
a=—4

Expanding the right-hand side:
(x+ D(x—2)(bx +¢c) = (x*—x — 2)(bx + ¢)
= bx® — bx* — 2bx + cx? — cx — 2c
=bx®— x*(b—c) — x(2b+¢) — 2¢
Lt add+x+6=bx—x*(b—¢c)—x(2b+ ) — 2c
Comparing coeflicients of x> gives:

1=1b
67



EXAMPLE 10

SOLUTION

Remember

There are two
ways of solving
problems of this
type: we can ex-
pand and equate

coefficients of ‘like’

terms or we can
substitute values
of x on the two
sides of the iden-
tity, form equa-
tions and solve
the equations
simultaneously.

Comparing the constants gives:

6=—2c
c=-—3

sa=—4b=1landc= —3

Given that 3x?> — 5x + 4= \(x — 2)> 4+ u(x — 2) + ¢, for all values of x, find the
values of A, w and ¢.

3x2—=5x+4=Nx— 2>+ wx—2)+ ¢
Substituting x = 2 gives:

3(2)2—2(5) +4=N2 - 22+ u2 —2) + ¢
12-10+4=¢

b=6
S3x2—=5x+4=Nx—22+ux—2)+6
Expanding the right-hand side gives:
3x—5x+4=Nx?—4x+4)+ ux —2u+6
3x2 = 5x +4=A> —4Ax + AN+ ux — 20 + 6
3x2 = 5x + 4=+ x (—4N + ) + 4N —2u + 6
Equating coefficients of x%

3=A\

Equating coeflicients of x:

—5=—AN+

Substituting A = 3 gives:

—5=—12+p

n=7

SA=3,u=7andp =06

(a) Giventhat (x —2) (x + 1) (x + 3)= Ax®> + Bx* + Cx + D, find A, B, Cand D.
(b) Given that 2x>— 3x + 1=A(x + 1)>+ Bx + C, find A, Band C.

EXERCISE 4A

In questions 1 to 10, find the values of the unknown constants.
1 xX+x+b=(x+bkx—2)+a

2 4x?+6x+l=px+qitr

3 83+ 27x2+49x + 15 = (ax + 3)(x*+ bx + ¢)

4 XBP+pP—7x+6=(x—1)(x—2)(gx+7)
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5 2834+ 7x2—7x—30=(x — 2)(ax* + bx + ¢)
6 XP—-32+4x+2=(x—Dx*—2x+a)+b
7 4x3+3x2+5x+2=(x+2)(ax*+ bx + ¢)

8 2+ Ax*—8x—20=(x*—4)(Bx + ¢)

9 ad+bxl+cx+d=(x+2)(x+3)(x+4)
10 a®+bx*+cx+d=“x+1)2x—1)3x +2)

11 Given that flx) = 4x®> — 3x2 + 2x + 1, find the quotient and remainder when
f(x) is divided by x — 2.

3 .2
12 Given that 2% 6;_+ 22X+ 1 pox2 4 By +C+ xz_—lz, find A, Band C.

2
13 Find the quotient and remainder when x° — 2x* — x> + x? + x + 1 is divided by
X+ 1.
14 Express each of the following in the form {2%
(a) 2 3
x+1 x—2
x+1_ 2241
(®) x+3 2x—4
( ) X x—1

2+oax+1 x+2

3x+4 x x+2
(d) x—1 x+1+2x+1

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXAMPLE 11  Find the remainder when 3x® — 2x? + 4x + 1 is divided by x + 1.

SOLUTION Using long division gives:
2 _ 3
)3 X 5 >% 2+ ) 3% = 3x? which is the first term in the
x+1)3x° —2x"+4x + 1 ;
(3 + 33) s quotient.
—5x2 + 4x xx = —5x is the second term of the quotient.
(—5x% — 5x) 9% _ g
\Tox = 0X) 2% =
9x +1
—(9x+9)
-8

When 3x® — 2x? + 4x + 1 is divided by x + 1 the quotient is 3x*> — 5x + 9 and
the remainder is —8.
We can rewrite this as:

30— 2%+ 4x+1 _ 0 8
PE =3 —ox+9 -y

We can also multiply both sides by (x + 1) and write it as:

33— 2+ 4x +1=0Bx>—5x+9)(x+ 1) — 8
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PROOF

EXAMPLE 12

SOLUTION

The remainder theorem

When a polynomial f(x) is divided by a linear expression (x — \), the remainder is f(\).

When f(x) is divided by x — \, we get a quotient Q(x) and a remainder R.

S R
"x—)\_Q(x)+x—)\

=flx)=(x—N)Qx) +R (Multiplying both sides by (x — X))
Substituting x = \ gives:

fN) = —NQMN)+ R=R=f(\)
The remainder is f(N).

ooooooooooooooooooooooooooooooooooooooooooooooooooo

Let us use the remainder theorem on Example 11, where we wanted to find the
remainder when f(x) = 3x® — 2x? + 4x + 1 is divided by x + 1.

Since we are dividing by x + 1,x = —1 whenx + 1 = 0.
By the remainder theorem, the remainder is f{—1).
Substituting x = —1 into f(x) gives:
f(=1) =3(—1*—2(-1)*+4(—1) + 1
=-3-2-4+1
= -8

This is the same answer as when we used long division.

Find the remainder when f(x) = 4x* — x> + x — 2 is divided by
(a) x—1
(b) x+2
(c) 2x+1

(a) Whenx — 1 =0, x = 1. By the remainder theorem, when f(x) is divided by
x — 1, the remainder is f(1).

S () =417 = 1)+ (1) -2
=4-1+1-2
=2
(b) When x + 2 = 0, x = —2. By the remainder theorem, when f(x) is divided by
x + 2 the remainder is f( —2).
f=2) = 420 = (=22 + (=2) =2
=-32-4-2-2
= —40

(c) When2x+1=0,x= By the remainder theorem, when f(x) is divided by

-1
2
2x + 1, the remainder is f (_Tl

—_—



EXAMPLE 13

SOLUTION

EXAMPLE 14

SOLUTION

MODULE 1 e CHAPTER 4

The remainder when f(x) = 4x® + ax? + 2x + 1 is divided by 3x — 1 is 4. Find the
value of a.

When3x —1=0,x = % By the remainder theorem f (%) =4.

Since f(x) = 4x + ax* + 2x + 1, substituting x = %gives:

I3 )= 3] +d3f 23]+
=t+gatitl

-1 .49
=94t 57

Sincef(%) =4

1 49 _

§a+ﬁ—

_49
27

The expression 6x°> — 4x? + ax + b leaves a remainder of 5 when divided by x — 1
and a remainder of 1 when divided by x + 1. Find the values of a and b.

Let f(x) = 6x> — 4x*> + ax + b.
When dividing by x — 1 the remainder is 5.
=f1) =5
Now f{1) = 6(1)> — 4(1)*+ a(1) + b
=6—4+a+b
=2+a+b
L2+a+b=5
at+b=3 [1]
When dividing by x + 1 the remainder is 1.
=f(-1)=1
f(=1)=6(-1°—4(-1)*+a(-1)+b
=—-10—a+b
L-10—a+b=1

—a+b=11 2] -
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EXAMPLE 15

SOLUTION

Try these 4.2

Solving the equations simultaneously gives:
2b=14 [1] + [2]

b=7

Substituting b = 7 into [1] gives:
at7=3a=—4

Hence,a = —4and b =7.

The expression 4x> — x* + ax + 2 leaves a remainder of b when divided by x + 1 and
when the same expression is divided by x — 2 the remainder is 2b. Find the values of
aand b.

Let f(x) = 4x® — x* + ax + 2.
Whenx = —1,f(—1) = 4(—1)* - (=1)*+ a(—1) + 2
=—4—-1—a+2
=—-a—3

By the remainder theorem, f(—1) = b.

=>-a—3=b

at+b=-3 (1]

When x = 2, f(2) = 4(2)° — (2)* + a(2) + 2
=32—4+2a+2
=2a + 30

By the remainder theorem, f(2) = 2b.

s 2a+30=2b

sLa+15=b

—a+b=15 (2]

at+t+b—a+b=-3+15 [1]+]2]

=2b=12

b=6

Substituting into [1] gives:

at6=-3

a=—9

Hence,a = —9and b = 6.

(a) Find the remainder when 6x* — 3x? 4+ x — 2 is divided by the following.
G x—2
() x+1
(i) 2x —1
(b) When the expression x* + ax> — 2x + 1 is divided by x — 1 the remainder is 4.
Find the value of a.
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(c) When the expression x*> — 4x> + ax + b is divided by 2x — 1 the remainder is 1.
When the same expression is divided by (x — 1) the remainder is 2. Find the
values of a and b.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 4B

1 By using the remainder theorem, find the remainder when:
(a) ax* + 3x* — 2x + lis divided by x — 1
(b) 3x3 + 6x? — 7x + 2 is divided by x + 1
(c) x°+ 6x* — x + lisdivided by 2x + 1
(d) (4x +2)(3x* + x + 2) + 7 is divided by x — 2
(e) x” + 6x* + 2 is divided by x + 2
(f) 4x3 — 3x? + 5is divided by 2x + 3
(g) 3x*—4x* + x? + lis divided by x — 3
When the expression x? — ax + 2 is divided by x — 2, the remainder is a. Find a.

The expression 5x*> — 4x + b leaves a remainder of 2 when divided by 2x + 1.
Find the value of b.

4 'The expression 3x> + ax? + bx + 1 leaves a remainder of 2 when divided by x — 1
and a remainder of 13 when divided by x — 2. Find the values of a and of b.

5  The expression x> + px? + gx + 2 leaves a remainder —3 when divided by
x + 1 and a remainder of 54 when divided by x — 2. Find the numerical value
of the remainder when the expression is divided by 2x + 1.

6  Given that f{x) = 2x*> — 3x? — 4x + 1 has the same remainder when divided by
x + a and by x — g, find the possible values of a.

7 Given that the remainder when f(x) = 2x* — x* — 2x — 1 is divided by x — 2, is
twice the remainder when divided by x — 24, show that 324 — 8a*> — 8a — 9 = 0.

8  The remainder when 2x* — 5x* — 4x + b is divided by x + 2 is twice the
remainder when it is divided by x — 1. Find the value of b.

9 The sum of the remainder when x> + (A + 5)x + \ is divided by x — 1 and by
x + 21is 0. Find the value of \.

10 The remainder when 3x> + kx? + 15 is divided by x — 3 is one-third the
remainder when the same expression is divided by 3x — 1. Find the value of k.

11 When the expression 3x> + px? + gx + 2 is divided by x* + 2x + 3, the remain-
der is x + 5. Find the values of p and q.

12 The expression 8x> + px? + gx + 2 leaves a remainder of 3% when divided by
2x — 1 and a remainder of —1 when divided by x + 1. Find the values of p and
the value of g.

13 When the expression 6x° + 4x> — ax + 2 is divided by x + 1, the remainder
is 15. Find the numerical value of a. Hence, find the remainder when the
expression is divided by x — 2.
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The factor theorem

The factor theorem
Xx — N is a factor of f(x) if and only if f(\) =

PROOF

f(x)
pr T G B Y A

= f(x) = (x— )\)Q(x) + R (Multiplying both sides by (x — A))
Since x — A is a factor of flx) = R = 0.

When x = A:
) =M —M)QKx) +0
=0

EXAMPLE 16 Determine whether or not each of the following is a factor of the expression
x4+ 2+ 2x + 1
(a) x—1
(b) x+1
(c) 3x—2

SOLUTION Let f(x) = x* + 2x% + 2x + 1.
(a) Whenx—1=0,x=1.
If x — 1is a factor of f(x), then f(1) = 0
f)=1+21)2+2(1)+1=1+2+2+1=6
Since f(1) #0, x — 1 is not a factor of f(x)
(b) Whenx+1=0,x=—1
f=1) = (=1 +2(-1+2(-1) + 1
=-1+2-2+1
=-3+3
=0
Since f{(—1) = 0 = x + 1 is a factor of f(x).

(c) When3x—2—0x—§

S5)= (3 + 2[5 +2{3) 1
=%+g+;‘+1
_8+24+36+27

27

=95
27

Sincef(%) #0 = 3x — 2 is not a factor of f(x).
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EXAMPLE 17 For what value of k is f(x) = 2x> — 2x? + kx + 1 exactly divisible by x — 2?

SOLUTION Let f(x) = 2x> — 2x2 + kx + 1.
Since f(x) is divisible by x — 2, by the factor theorem f(2) = 0.
Substituting into f(x) gives;
f2) =22 —2(2)* + k(2) + 1

=16—-8+2k+1

=9+ 2k
f2)=o0
=9+4+2k=0
2k = -9

-2

EXAMPLE 18  The polynomial 2x*> + 9x? + ax + 3 has a factor x + 3.
(a) Finda.

(b) Show that (x + 1) is also a factor and find the third factor.

SOLUTION (a) Letflx) =2x>+ 9x* + ax + 3.

Since x + 3 is a factor of (x), by the factor theorem f(—3) = 0.

S 2(=3P2 +9(=3)?+a(-3)+3=0

= —54+81—-3a+3=0

= 3a =30

=a=10

s flx) =263 + 9x2 + 10x + 3

(b) Ifx + lisafactor then {—1) =0

f(—=1) = 2(—1)3 + 9(—1)2 + 10(—1) + 3
=—-2+9—-10+3
=—12+ 12
=0

- x + lisa factor of f(x).

Now we find the third factor.

Since x + 1 and x + 3 are factors, then (x + 1)(x + 3) is a factor.

s (e + D(x + 3) = x* + 4x + 3 is a factor of f{x).
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EXAMPLE 19

SOLUTION

To find the third factor we can divide:

2x +1
X2+ 4x + 3)2x3 + 9x2 + 10x + 3
—(2x3 + 8x* + 6x)
x>+ 4x+3
—(x*+ 4x+3)
0

- 2x + 1 is the third factor.

Alternative method to find the third factor:

Since flx) = 2x> + 9x2 + 10x + 3 and x + 1 and x + 3 are factors of f(x):
203+ 9x2 +10x+ 3= (x+ 1)(x + 3)(cx + d)

To find c and d we can compare coeflicients

Coeflicients of x:2 =1 X 1 X ¢

Soc=2

Comparing constants:

3=1X3Xd
3d=3
d=1

.. the third factoris 2x + 1

The expression 6x> + px* + gx + 2 is exactly divisible by 2x — 1 and leaves a remain-
der of 2 when divided by x — 1. Find the values of p and q.

Let fix) = 6x> + px* + gx + 2.
Since 2x — 1 is a factor of f(x) :>f(%) =0.
1) =6l +p 3 +aly) +2

1 1

NI

—

1 11
Ty Ry

Sincef(%) =0

11 _

$=0

=p+2q+11=0 (Multiplying by 4)

1 1

p+2g=—11 [1]
Using the remainder theorem, f(1) = 2.
Since there is a remainder of 2 when f(x) is divided by x — 1:
f1) =6(1)° + p(1)* + q(1) + 2
=p+qg+38
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Try these 4.3

Since f(1) = 2

=>p+tq+8=2

ptqg=-—6 (2]

Solving simultaneously, and subtracting [2] from [1] gives:
pt2q—p—g=-11-(-6)

=q= -5

Substituting g = —5 into [2] gives:

p—5=—6
p=—6+5
p=-1

Hence,p = —land g = —5.

(a) Determine whether or not each of the following is a factor of the expression
33 — X — 3x + 1.

i x—1
(i) 2x + 1
(iii) 3x — 1
(b) The expression 4x*> + px?> — gx — 6 is exactly divisible by 4x + 1 and leaves a
remainder of —20 when divided by x — 1. Find the values of p and q.

Factorising polynomials and solving equations

A combination of the factor theorem and long division can be used to factorise
polynomials. Descartes’ rule of signs can assist in determining whether a polyno-
mial has positive or negative roots and can give an idea of how many of each type
of roots.

(a) To find the number of positive roots in a polynomial, we count the number
of times the consecutive terms of the function changes sign and then sub-
tract multiples of 2. For example, if f(x) = 4x* — 3x? + 2x + 1, then f(x)
changes sign two times consecutively. f(x) has either 2 positive roots or 0
positive roots.

(b) To identify the number of negative roots, count the number of sign changes in
f(—x). The number of sign changes or an even number fewer than this repre-
sents the number of negative roots of the function.

If flx) = 4x> — 3x? + 2x + 1, then fl—x) = 4(—x)*> — 3(—x)* + 2(—x) + 1
= fl—x) = —4x* —3x2 — 2x + 1

Since there is 1 sign change, there is 1 negative root to the equation.
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EXAMPLE 20

SOLUTION

When identifying the roots of a polynomial we try to find roots by trial and error
first. The rational root test can give us some values to try first.

Letfix) =2x* + 7x* + 7x + 2 = 0.

All the factors of the coefficient of the leading polynomial x* are =1, +2. All the
factors of the constant are =1, =2. Therefore, possible roots of this equation are:

-+

+1 .1
U2

+2 +], +

T) 2’ —
Since all the coefficients of the terms are positive, we try only the negative values.
A=) =212+ 7(-12 +7(-1) + 2= —2+7-7+2=0

s x = —lisarootof flx) = 0and x + 1 is a factor of f(x).

8

is a root of f(x) = 0, and 2x + 1 is a factor of f(x).

>l
L

Factorise f(x) = 4x> — 15x% + 17x — 6.

By trial and error:

f1) =4(1)° — 15(1)* + 17(1) — 6
=4—-15+17—-6
=21—-21
=0

Since f(1) = 0

= x — lis a factor of f(x)

We can divide to get a quadratic factor:

4x2— 11x+ 6
x—1)4x> — 1552+ 17x — 6
—(4x> — 4x?)
— 112 + 17x
—(—11x%* + 11x)
6x — 6
—(6x — 6)
0
s flx) = (x — 1)(4x? — 11x + 6)
= (x — 1)(x — 2)(4x — 3) (By factorising: 4x*> — 11x + 6

=4x*—8x—3x+6
= 4x(x — 2) — 3(x — 2)
= (4x — 3)(x — 2))
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EXAMPLE 21  Find all the real factors of flx) = x* + x> — x — 1.

SOLUTION By trial and error:
fy=1+1B-1-1
=2-2
=0

- x — lisa factor of f(x)
S = (D44 ()P = (-1~ 1
=1-1+1-1
=0
- x + 1isa factor of flx)
Since (x — 1) and (x + 1) are factors of f{x), a quadratic factor is:
x—Dx+1)=x*—1

By division:

X+ x+1
2=1)xt+x3—x — 1
- )
X+ —x
~(F— %)
x*—1
~@ -1

0
L) =k - D+ D+ x+1)

EXAMPLE 22  Solve the equation x> + 3x? — 10x — 24 = 0.

SOLUTION Let f(x) = x® + 3x* — 10x — 24.
By trial and error:
f(—2) = (=2)3 + 3(—2)? — 10(—2) — 24
=—-8+12+20—24
= —32+32
=0
Since f{—2) = 0 = x + 2 is a factor of f(x)

By division:

X+ x— 12
x+2)x3 + 3x2 — 10x — 24
—(x3 + 2x?)
x2 — 10x
—(x*+ 2x)
—12x — 24
—(—12x — 24)

0
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s flx) = (x + 2)( + x — 12)
=(x+2)(x + 4)(x —3)

Hence, (x + 2)(x + 4)(x —3) =0

x+2=0x=—-2

x+4=0x=—4

x—3=0,x=3

. the roots are x = —2, —4, 3.

EXAMPLE 23 Factorise the expression 10x* + x?> — 8x — 3. Hence, find the roots of the equation
10x* + x> —8x — 3 =0.
SOLUTION Let fix) = 10x> + x> — 8x — 3.

By trial and error:

f) =10(1)° + (1)> — 8(1) = 3

=10+1—-8—-3
=11—-11
=0

- x — lisa factor of f(x)
By division:
10x2 + 11x + 3
x—1)10x>+ x*— 8x—3
—(10x> — 10x?)

11x*> — 8x
—(11x%* — 11x)
3x —3
—(3x — 3)

0
s flx) = (x — 1)(10x2 + 11x + 3)
=(x—1)2x+ 1)(5x + 3)
Sinceflx) =0=(x — 1)2x + 1)(5x + 3) =0
=2x—1=0,x=1

2x+1=0,x= —%
5x+3=0,x= —%
The rootsare x = 1, x = —% and x = —%

EXAMPLE 24  Find the exact roots of the equation x> — x> — 4x — 2 = 0.

SOLUTION Let fix) = x® — x? — 4x — 2.
By trial and error:
fi-)=-1-1+4-2

=—4+4
=0
- x + lisa factor of flx).
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By long division:

X2 —2x—2
x+1)x3— 2—4x—2
—(x*+ x?)
—2x> — 4x
—(—2x%— 2x)
—2x—2
—(—2x—-2)

0
S flx) = (x+ D) —2x —2)
fX)=0=>(x+1)x2—2x—2)=0
=>x+t1=0x=-—1
=>x>—2x—2=0

_ —(=2) 2 V(=22 — 4(1)(-2)
2(1)

X (Using the quadratic formula)

=1=+V3
Lx=—-1,1+V3,1—V3

Try these 4.4 (a) Show thatx — 1isa factor of 2x> + 5x* — 4x — 3. Hence, solve the equation
263 +5x2—4x —3=0

(b) Factorise flx) = x> — 2x> — 5x + 6. Hence, solve f(x) = 0.

EXERCISE 4C

1 Factorise each of the following.
(@) B+2x*?—x—2
(b) B+6x*+11lx+6
(c) ¥*—7x+6
d x¥*—4x*+x+6
(e) ¥*—7x—6
(f) 6x>+31x* + 3x — 10

2 Solve the following equations.
(@) 3x>+x*2—20x+12=0
(b) 2x3 +13x2+17x — 12=0
() 22— 11x2+3x+36=0

(d) 383+ 10x2+9x+2=0
81
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10

11

12

13

14

ooooooooooooooooooooooooooooo

Decide whether each of these statements is true.

(a) x+ lisafactorofx® + 2x%> + 2x + 1
(b) x — 1isafactor of 2x* + 3x> — x + 2

(¢) x—2isafactorofx’® —4x*+3x3 —2x2 + 4
(d) 2x + 1isafactor of 2x*> + 9x> + 10x + 3
Find the value of k for which x — 1 is a factor of x> — 3x2 + kx + 2.

Show that x — 2 is a factor of f(x) = x> — 12x + 16. Hence, factorise f(x)
completely.

Given that f(x) = 4x> — 3x? + 5x + k is exactly divisible by x + 1, find the
value of k.

Solve the equation x* + 3x> — 6x — 8 = 0.

Given that f{x) = 3x> — kx? + 5x + 2 is exactly divisible by 2x — 1, find the
value of k.

Find the exact solutions of x> + 5x> + 3x — 1 = 0.

The expression 4x> + ax? + bx + 3 is exactly divisible by x + 3 but leaves a
remainder of 165 when divided by x — 2.

(a) Find the values of a and b.
(b) Factorise 4x> + ax? + bx + 3.

Given that x> — 3x + 2 is a factor of f(x), where f(x) = x* + x> + ax? +
bx + 10, find the following.

(a) The value of a and of b
(b) The other quadratic factor of f(x).

Given that 6x + 1 and 3x — 2 are factors of (x) = 36x> + ax? + bx — 2, find the
values of a and b. Hence, find the third factor of f(x).

The expression 4x*> + ax? + bx + 3 is divisible by x + 3 but leaves a remainder
of —12 when divided by x — 1. Calculate the value of a and of b.

Given that x — 3 and x + 1 are both factors of g(x) = 4x* + px* — 21x? + gx + 27,
find the values of p and g. Given also that g(x) = (x — 3)(x + 1)(ax* — b), find a
and b, and hence, factorise g(x) completely.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXAMPLE 25  Factorise x> — y~

SOLUTION x% —

y* = (x — y)(x + y) by the difference of two squares.
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EXAMPLE 26  Factorise x*> — y°.

SOLUTION Let flx) = x> — y3.
Whenx=y,fly) =y  —»*=0
By the factor theorem, x — y is a factor of x> — y°.
By division:
P+ oxy+ )
x — y)x* + 0x2y + 0xp2 — 3°

S0P - xy)
x%y + 0xy?
—y— D)
X —
—(2 — %)
0

L=y = — )+ xy + )P

Using y = —yin (x — y)(x* + xy + ?), we get:
= (=y)P == (=) + x(=p) + (=9)%)
=33+ = (x+y)*—xy+y?)

Hence, x> — y* = (x — y)(x* + xy + )?)

and x> + y° = (x + y)(x* — xy + %)

EXAMPLE 27 Factorise 8m?® — 27.

SOLUTION We can write 8m> — 27 as (2m)> — 33, using x> — y° = (x — y)(x* + xy + ).
With x = 2m and y = 3, we have:
(2m)® — 3> = 2m — 3)((2m)* + 2m)(3) + (3)?)
Hence, 8m® — 27 = 2m — 3)(4m? + 6m + 9)

EXAMPLE 28  Factorise x* — y*.

SOLUTION xt =yt = (2 — »)(x* +»?) (Difference of two squares)
=(x =+ e +y7)

EXAMPLE 29 Find all the real factors of x* — 16.

SOLUTION xt—16 = x* —2¢
= (x2 — 23)(x% + 2%)
= (x — 2)(x + 2)(x* + 4)
. the real factors of x* — 16 are x — 2, x + 2 and x* + 4.



EXAMPLE 30

SOLUTION

EXAMPLE 31

SOLUTION

Try these 4.5

Factorise x> — y°.

Let flx) = x° — y°.
When x =y, f(y) = y°> — y°
=0
= x — yisafactor of x> — y°
By division:
X+ By+ P+ P+
x—y)x> + 0x*y + 0x*y2 + 0x?y3 + Oxy* — y°

S
xty + 0x°y?
—(xly — )
X3y + 0x?y3
— (P = x)
x%y3 + Oxyt
—(y — )
X — 8
—(yt — )
0

X =P =0 Py 2+ (- y)

Using our solution to Example 30, we can replace y = —y and obtain:
X = (=y) = (6 + (=y) + (=) + x(=p) F (=)D = ()
X4y =+t =Py + B -+ Y

Y=y ==yt + Py + a2+ 0+

X4y =+t =By + B - x + Y

Notice the pattern in the factors. As the powers of x decrease the powers of y
increases in each term.

Find the factors of x> — 32.

x> —32=x>—-2°

Using x° — y° = (x — y)(x* + K¥y + x%?2 + x° + y*) with x=x, y = 2 gives:
X —20=(x—2)(x* + xX32) + x2(2)* + x(2)* + (2)%)

X —32=(x—2)(x* + 2x> + 4x% + 8x + 16)

Factorise these.

(a) 27x° — 64
(b) 81x*—16
(c) 0=y
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SUMMARY

Polynomials

o o

Degree of a polynomial XR—yr=x—yx+y
Remainder theorem B —yd ==+ xy+y?)

When a polynomial f(x) is
divided by x — A, the

remainder is f(A). B+ y3 =+ )2 - xy+y?)
Factor theorem x4 = yh = (x— y)x + Y+ y?)
If x — Ais a factor of f(x), then
f(A) = 0.
X2 —y? = (x — yYx* + X3y + x4+ xy3 + y4)
||
v
X2+ y° = (x + y)x* — X3y + x%y?2 — xy3 + y4

X8 —y8 = (x — y)x + X2+ xy + yAx2 — xy + y?)

Checklist

©00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Can you do these?

M Identify a polynomial.

B Identify the order of a polynomial.

M Identify the terms of a polynomial.

B Add, subtract, multiply and divide polynomials.
M Evaluate polynomials.

B Compare polynomials.

B Use the remainder theorem.

B Factorise polynomials using the factor theorem.
B Solve equations involving polynomials.

M Factorise x" — y" wheren = 2,3,4,5, 6.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0
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Review Exercise 4

10

11

12

13

Find all the real factors of x® — 64.
Factorise in full 32x° — 243,
Factorise the following.

(@) 6x>+x*—5x—2

(b) 3x3 —2x2—7x—2

(c) 4x>+ 9x* — 10x — 3

Solve the following equations.

@ xX*—2x*—4x+8=0

(b) 2x* —7x* —10x+24=0

Find the remainder when

(a) 7x* — 5x* + 2x + 1is divided by 3x — 2
(b) 6x*+ 7x + lisdividedbyx + 3
(c) x*+ 2isdivided by 2x + 5

It is given that f(x) = x> — ax? + 2ax — 8, where a is a constant. Use the factor
theorem to find a linear factor of f(x), and find the set of values of a for which
all the roots of the equation f(x) = 0 are real.

It is given that f{x) = (3x + 2)(x — 1)(x — 2).

(a) Express f(x) in the form Ax® + Bx*> + Cx + D, giving the values of A, B, C
and D.

(b) Hence, find the value of the constant b such that x + 2 is a factor of f(x) + bx.

(a) Show that (x — V2) and (x + V2) are factors of x* + 5x> + 4x2 — 10x — 12.
Hence, write down one quadratic factor of x* + 5x° + 4x? — 10x — 12 and
find a second quadratic factor of this polynomial.

(b) Solve x* + 5x3 + 4x* — 10x — 12 = 0.

The polynomial g(x), where g(x) = x* — ax® + bx*> + x + 6, has factors (x — 2)
and (x — 3). Show thata = 4and b = 2.

Given that Ax®> + Bx> + Cx + D = (2x + 1)(x — 2)(3x + 4), find the values of
A, B,CandD.

The polynomial P(x) = 3x* + Bx® + Cx? + Dx + 2 can be written as P(x) =
(3x% + 2x + 1)(x* — 4x + 2). Find the values of A, B, C and D.

The expression ax® — bx? + 8x + 2 leaves a remainder of —110 when divided
by x + 2 and a remainder of 13 when divided by x — 1. Find the remainder
when the same expression is divided by 3x + 2.

Show that (x + 1) is a factor of f(x) = 2x> — x> — 5x — 2. Hence, write f{x) as
the product of three linear factors.
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Solve the equation 6x* — 5x> — 13x — 2 = 0.

Show that x + 3 is a factor of f(x) = x* + x> — 11x? — 27x — 36. Factorise f(x)
completely. Hence, solve the equation f(x) = 0.

In 2006, a hurricane struck a country causing over $100 million dollars in dam-
age. The following data represents the number of major hurricanes striking the
country for each decade from 1921 to 2000.

Decade (t) 1 2 3 4 5 6 7 8
Major hurricanes 5 8 10 8 6 4 5 5
striking the

country (h)

(a) Plot this data on graph paper.

(b) The cubic function that best fits this data is 4(¢) = 0.162 — 2.3 +
9.3t — 2.2. Use this function to predict the number of major hurricanes that
struck the country between 1971 and 1980.

(c) Plot the graph of h(t) by using a table of values. Draw the graph on the
same graph paper as in (a).

(d) Ish(t)a good function to investigate the given data?

(e) After 2000, for the next five years, five major hurricanes struck this country,
does this support the model in (b)?

An open, rectangular box is made from a piece of cardboard 24 cm by 16 cm, by
cutting a square of side x cm from each corner and folding up the sides.

(a) Show that the resulting volume is given by V = 4x> — 80x* + 384x.
(b) Find the height, x, of the box when the volume is 512 cm®.

Let flx) = 2x* — 7x*> — 10x + 24.

(a) Factorise f(x).

(b) Solve the equation f{x) = 0.
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CHAPTER 5
Indices, Surds and Logarithms

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

At the end of this chapter you should be able to:

B Simplify a surd

M Use the rules of surds

B Rationalise a surd

B Define an exponential function y = a*for x € R

B Sketch the graph of exponential functions

B Identify the properties of the exponential functions from the graph
B Define a logarithmic function

B Investigate the properties of the logarithmic function

B Define the function y = €*

B Define the inverse of the exponential function as the logarithmic function
B Use the fact that y = e* <> x = log, y

B Use the laws of logs to solve equations

B Solve equations of the form a* = b

B Change of base of logarithms

B Solve problems based on the applications of exponentials and logarithms

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

KEYWORDS/TERMS

exponential functions « base « index « logarithm
« naperian logarithm e« inverse « domain « range
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Indices

In an expression such as a’, the base is a and b is called the power or index. The

®
properties of indices which we recall here were developed in Mathematics for CSEC
Examinations (CSEC Mathematics).

Laws of indices

Law 1

axa® = g™ +n

EXAMPLE 1 Simplify the expressions, expressing all answers with positive exponents.
13

(a) x5 x5
1

(b) asa3

() y_3y2
le
(d) (274 6)3

13 1
SOLUTION (a) x5x5 = x5

(b) aga_% = a%_% = a2

—2
19
(c) _3y2 y5”(3) y10
le

1 gl ol
(d) 7x%5)3 = 273x" 35573 = 3xy2
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EXAMPLE 2

SOLUTION

Simplify the following expressions.

1 -1
(a) (x> +4)2 — x*(x* +4)2
x*+4

x+4
1 22
L - (x* + 4)2 — —
(a) (P +4)2 - +4)2 _ (x? + 4)2
x>+ 4 x2+4
1 1
(> + 4)2 (x* + 4)2 — x?
1
(x? + 4)2
x>+ 4
x>+ 4 — 52
1
(2 +4)2
X2+ 4
1 3
(x2 + 4)2 (x2 + 4)2
X2+ 4
1
1 IO p—
(b) (x+4)2—2x(x+4)2 _ (x +4)2
x+4 x+4

_ (x+4) — 2x
(x + 4)(x + 4)2
__4—-x
3
(x +4)2

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 5A (Revision)

1 Find the values of the following.
(a) 1253 (b) 81i
() 164 (d) (49
() 83 0 (1)
(g) (121)2 (h) 817

2 Simplify the following.
31

(a) a4a4
-2 3
(b) a3 a4

—1 5
(c) yT - yZ

2,4
(d)yy—i
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3 Find the values of the following.

1 1
3 X 3
(a) 64 8216

4 Simplify these.
(a) 82% X 25% = 46%
(b) 273* X 93* =+ 815
(c) (10%" X 20%‘) P
(d) (16%‘ = 8%") X 45t 1

5  Simplify these.

3
(a) =22
(1—x)2
N )3+ - i
1+ x)3

1310+ 3°
6 Evaluate w .

In questions 7 to 9, write each expression as a single quotient. Simplify as far as possible.

X 1
7 ———+2(1+x)2
1+ x)2
1
8 (x+1p+—5—
3(x+1)3

2Vx—5 5V4x+3

In questions 10 to 12, factorise and simplify each of the expressions.
3 1
10 (x+1)2+ %x(x +1)2
4 1
11 30 + 4)3 + 8x*(x + 4)3

4 1
12 2x(3x + 4)3 + 4x*(3x + 4)3

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

The symbol Vx is called a radical. The integer # is called the index, and x is called
the radicand. vx represents the square root of x. Recall that an irrational number is
a number that cannot be expressed as a fraction of two integers.

An irrational number involving a root is called a surd. Examples of surds are V2,

\/3, \3/7 etc.

91



EXAMPLE 3

SOLUTION

EXAMPLE 4

SOLUTION

EXAMPLE 5

SOLUTION

EXAMPLE 6

SOLUTION

92

Rules of surds

Rule 1
VXY = VXY

The root of a product is equal to the product of the roots.

Simplify V12.

VI2 =V4 X 3 =V4V3

=2V3
Simplify V75.
V75 = V25 X3
=V25V3
=53
Rule 2
& = _x
Yooy
The root of a quotient is the quotient of the separate roots
vy
Simplify 55

\/sz/%xz _ V36 XV2 _6,5
25

\V 25 5 5
Simplify %
\/g _ V9%
5 V5

_ V16 X6 _ V16V6 _ 4V6
V5 V5 V5

VKT Y VK + Y

One of the most common errors in surds is to separate the sum or difference of a surd
by writing yx + y = VX + 4/y. Remember that this is incorrect.



MODULE 1 e CHAPTER 5

Simplifying surds

EXAMPLE 7 Simplify this as far as possible.
V80 + 3V180 — V320

SOLUTION We rewrite all terms, using V/5.
V80 = V16 X 5
=V16V5
=45
3V180 = 3V36 X 5
=3V36\5
=3X6\5
=18V5
V320 = V64 X 5
=164\5
=8V5
- V80 + 3V180 — V320 = 4V5 + 18V5 — 8V5
=22V5 - 8V5
= 14V5

EXAMPLE 8 Simplify V320x> + V125x°.

SOLUTION V32023 = V320 X Va® = V64 X 5 X Va2 X x
=64V5 X Vx2vx
=8V5 X xvx
= 8x\5x
V125x3 = VI25Vx®

=125 X5V X x

=125V5 X Vx2vE

=5V5 X xvx

= 5x\5Vx

= 5x\/5x

~V320x3 + V125x° = 8xV5x + 5xV5x
= 13x\5x

Try these 5.1 Simplify the following surds.

(a) V75 4+ V48 —2V675
(b) 4v288 — 3882

(c) 5V80 +3V20 — V125 .



EXAMPLE 9

SOLUTION

EXAMPLE 10

SOLUTION

EXAMPLE 11

SOLUTION

EXAMPLE 12

SOLUTION

EXAMPLE 13

SOLUTION

94

Conjugate surds

VX +4/y and vx — 4/y are called conjugate surds. When a surd and its conjugate are
multiplied together the product is a rational number.

Find (V& + 7)) (VX — 7).

(VX + ) (VX —\§) = VEVX — 2Ry + 23207 — 7Y
—x—y

Find the value of (V5 + 2)(V5 — 2).

Expanding the brackets gives:

(V5 +2)(V5—-2)=V5V5 —2¢/5 + 245 — 2 X 2
5—4

Simplify (Vx + 2)(vx — 2).

Expanding the brackets gives:
(VE + 2)(VE — 2) = VE X VK — 2v% +2¢% — 4

=x—4

Show that (4 + Vx +2)4 —Vx +2) = 14 — x.

We start with the left-hand side.

Expanding the brackets gives:

4+Ve+2)4—Vx+2)=16—4Vx+2 +4Vx+2 — (Vx + 2)(Vx + 2)
=16 —(x +2)
=14 —x

Rationalise %
4 _ 4 V5
V5 V5 V5
_ 45
5
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EXAMPLE 14  Rationalise 2.

VE

2 _ 2 VX

SOLUTION L= 2
2Vx

EXAMPLE 15  Rationalise the denominator of —1

V2 +3
SOLUTION We multiply the numerator and denominator by the conjugate of the denominator.
The conjugate of V2 + 3is V2 - 3.
1 __ 1 V2-3
V243 V2+3 V2-3
_ V23
V2V2 —3V2 +3V2 -9 (Expanding the denominator)
V23 (V2 X V2 =2)
2—-9
_V2-3
-7
_3—-V2
7

EXAMPLE 16 Rationalise the denominator of 1 _4 NG

SOLUTION We multiply the numerator and denominator by the conjugate of the denominator.

The conjugate of 1 =V5 is 1 + V5.

4 _ 4 L 1+V5
1-V5 1-V5 1+V5
4(1 +V5)
1+V5—-V5-5
4(1 + V5)

-
= —(1+V5)

EXAMPLE 17  Rationalise the denominator of g - g

SOLUTION The conjugate of 3 — V2 is 3 + V2.
Multiplying the numerator and denominator by 3 + V2, we get:

2+V2 _2+V2 ., 3+V2
3-V2 3-V2 3+\V2

_6+2V2+3V2+2
9+3V2—-3V2 -2




Try these 5.2

EXAMPLE 18

SOLUTION

EXAMPLE 19

SOLUTION

EXAMPLE 20

SOLUTION

96

Rationalise the denominator of these.
2

a
(a) 2

4
®) 57

1

<‘

3

. . . 1
Rationalise the denominator of 5

The conjugate of 1 + vxis 1 — V.

Multiplying the numerator and denominator by 1 — vx gives:

1 _ 1 Xl—\/a?
1+vx 1+vx 1—+Vx
__ 1-vE
1—-vx+vx —x
_1—-—vx
1—x

Rationalise the denominator of

1—Vx+1

The conjugateof 1 —Vx + 1is1 + Vx + 1.
Multiplying the numerator and denominator by 1 + vx + 1 gives:

2 _ 2 W L+ V1
1—Vx+1 1—-Vx+1 1+Vx+l1
_ 2(1 +vx + 1)
Q+Vx+1)(Q—-Vx+1)
B 21 +Vx + 1)
Sl Ve TV T-Vx F1Vx 1
21 +Vx + 1)
C1-(x+1)

_ 21+ Vx+ 1)
- X

2 —Vx

(a) Rationalise the denominator of 3T 3vE

2—Vx

(b) Hence, show that (m

)(4—9x)=4—8\/f+3x.

(a) The conjugate of the denominator is 2 — 3Vx.

Multiplying the numerator and denominator by 2 — 3vx gives:
2-VE _ 2-VE 2= 3V
2+3vx 2+4+3vxT 2—3Vx

_ 4— 6V — 2VK + 3x
4— 6Vx + 6VX — 9x

_4—8/x+3x
4 — 9x
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(b) Since — VX 4 — 8vx + 3x

2 +3vx 4 —9x
2 0wy _ 4= 8VK + 3x
(FE | (4 - o9 = 1= PE I3 (aom)
=4 —8Vx + 3x
Try these 5.3 Rationalise the denominator of these.
1
@) 757%
b) —3
(b) 4—-Vx+1
(c) 2+vVx+1
—Vx
EXERCISE 5B
1 Simplify each of the following surds.
(a) V1083 (b) V1445

(c) V1058

2 Simplify each of the following surds.
(a) V147 — 5V192 + V108
(b) 2V847 + 4V/576 — 411008

3 Rationalise the denominators of the following.

2-V5 1
@ 3305 ®) 5
4 12
© 3= @ T
—1 1
n —1
(© 2\F 343 0 2 +s
4 Simplify the following.
1 1
+
T R AR e
V5+2 V5-2
1 1
+
© G- T aT vy
1L _ -2
5 Showthat2+\/7—1 5
6  Rationalise the denominators of the following.
X 1
@ = ®) 7 77%
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DEFINITION

An exponential
functionis a
function of the
form f(x) = a*
whereais a
positive real
number, a # 1.

oooooooooooooooo

EXAMPLE 21

SOLUTION

X 1
© 5=qx RRT

(e) _x+1 (f) 6

Vx+1—4 V2x—3 +4
Show that —X =13 _ —\x¥3 —4

v Vx+3+4
Prove that VZx + 6 — 3 = ——2X—3

V2x+6 +3
2x — 17
Show that —==—+"—=V2x — 1 — 4.
V2x — 1 +4
Express 1 @030 5, the form a + b3 where a and b are integers.
1 — tan30
° 1

tan30° = —
[tan30" = 5]

Exponential functions

Graphs of exponential functions

N
~
O[—
wl—

From the graph we can see:

3* > 0 for all x, therefore the range of the function is (0, ). The graph has no

x-intercept and lies above the x-axis.

As
As

x — —%, 3* > 0 (as x gets more negative the function approaches 0).

X — %, 3* — o (as x gets larger the function also gets larger).
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EXAMPLE 22

SOLUTION

Note

y=2*+1
approaches the
liney=1.

The function is an increasing function and therefore one-one. We can generalise for
the exponential graph as follows:

Propertiesof y = a*,a>1

© The domain of a* is x € R and the range is y > 0.

@ The graph does not cut the x-axis.

@ Theline y = 0 is a horizontal asymptote as x — —.
@ a*is an increasing function and is one-one.

@ The graph of y is smooth and continuous.

y=a

Sketch the graph of (a) y =2* (b) y=2"+1.

(a) (b)

1 T ;

The graph of y = 2* + 1 is a shift in the graph of y = 2* upwards by 1 unit.
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EXAMPLE 23

SOLUTION

DEFINITION

The number e is
defined as the

oooooooooooooooo

Sketch the graph of y = 27,

ENENEN]
oo|—=| w

1
1
y 4 2 1 2

Propertiesof y =a*,0<a<1

@ The domain of a* is x € R and the range is y > 0.
@ The graph does not cut the x-axis.

@ Theline y = 0 is a horizontal asymptote as x — .
© a*is a decreasing function and is one-one.
[ ]

The graph of y is smooth and continuous.

Ay
y=a

« \

The number e

We can investigate the number e by looking at a table of values as follows:

n f(n) = (1 + %)n
1 2

2 2.25

8 2.565784514

64 2.697344953
100 2.704813829
1000 2.716923932
10000 2.718145927
100000 2.718268237

1000000 2.718280469

n
As n gets larger f(n) = (1 + %) approaches 2.718 (to 3 decimal places). This
number is given the symbol e.
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EXAMPLE 24  Sketch the graphof (a) y=¢* (b) y=e¢™

SOLUTION (a) (b)

EXAMPLE 25  Using the graph of f(x) = e*, sketch the graph of g(x) = 2e* + 3. State the
transformations which map f(x) onto g(x).

SOLUTION
The graph of g(x) can be obtained from f(x) by a stretch along the y-axis by factor 2,
followed by a translation of 3 units upwards.
1
EXAMPLE 26 Sketch the graph of 6 = 20 + 10e 2 fort= 0. 0
30 1 1
Identify clearly the value of  when t = 0 w
and the valueof fast —»», ~ —-------- 20 -
1
SOLUTION When t =0, § = 20 + 10e” 2 t

6 =20 + 10¢°
Sincee’ = 1, 6 = 30.
As t — oo, e_%t% 0
.. 0 —20+ 10(0)
Hence 6 — 20.
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Try these 5.4

oooooooooooooooooooooo

oooooooooooooooooooooo

Sketch the graph of
(a) y=e-3
(b) x= 4000

1+ 3999¢ 02t

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 5C

1 Sketch the graph of y = e*. Using the graph of y = ¢*, sketch
(@) y=e* (b) y=e"+2, (c) y=2e+3.

2 Given that x = 3 + 4e 2, write down the value of x when t = 0 and the value of
x as t — . Hence sketch the graph of x = 3 + 4¢72.,

3 Describe the transformations which map the graph of 6 = ¢’ onto 6 = 2¢™ + 5.
Hence sketch the graph of 6 = 2¢™* + 5.

4 Sketch the graphs of y = 9¢* and y = 2x + 1. How many solutions are there to
the equation 9 — 2xe*—e* = 0?
5  Given thatx = ﬁ, find the value of x when (a) t = 0, (b) t — co.
Sketch the graph of x against ¢ for t = 0.
6 A colony of bacteria grows according to the law
x = 400¢%0%*
where t is the time in years and x is the amount of bacteria present in time .
(a) What is the value of x when t = 0?
(b) What happens to the population of the bacteria as ¢ increases?
(c) Sketch the graph of x against £.

7 Aliquid cools from its original temperature of 70 °C to a temperature 6 °C
in f minutes.

Given that 8 = 70¢7%92 find the value of
(a) Owhen t = 4 minutes,
(b) @when t = 6 minutes.
(c) Sketch the graph of 6 against t.
8  Given that M = M ™, where M, and \ are constants, sketch the graph of
M against ¢.
9  Sketch the graphs of y = 2* and y = 27*. Hence sketch the graphs of
y=27*+3andy = 3(2%) + 4.
10 The charge Q on a capacitor is given by Q = 10(1 — ™) where, x is a constant
and ¢ is the time. Sketch the graph of Q against t.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Exponential equations

We can solve exponential equations having the same base by equating the
indices on either side of the equation as follows:

If a* = @ then x = y.

Let us use this to solve equations involving equal indices.
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EXAMPLE 27  Solve the equation 4> * ! = 16.

SOLUTION We can write both sides of the equation with base 4 (since 16 = 42):
g2x+1 = g2
Equating the indices
2x+1=2
Solving
2x=1
-3

. 2 1
EXAMPLE 28 Solve the equation e* = P
1 _1 = y 1 1 — p3x—2
SOLUTION Using i " we can write ) el

X = g 3x—2

Equating the indices we get the quadratic equation
x?=-3x-2

X +3x+2=0

Solving

x+Dx+2)=0

x+1=0o0rx+2=0

Sx=-lorx=-2

12
EXAMPLE 29  Solve the equation e** = e—xz
e

12
SOLUTION e =
e~

Using the rules of indices to write the right-hand side, as one index, we get
o = pl2- %

Equating the indices on both sides since the base on each side of the
equation are the same:

4x =12-x*

Solving the quadratic

x*+4x-12=0

(x=2)(x+6)=0

x=2=0o0rx+6=0

Hence x = 2 or x = —6.
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EXAMPLE 30

SOLUTION

EXAMPLE 31

SOLUTION

1
125°

Solve the equation 5* =

= L
125

The right-hand side can be written as an index to base 5 as follows

Sx

5% =57

Equating indices

(a) Solve the equation 3% = 243" 1,

(b) Find the values of x satisfying the equation e**2? = —L

Logarithmic functions

the number

_ v
X log, v
index bate
the number

)i = axeindex

f

base

A logarithm of a number is defined as the power to which a base has to be raised to
be equal to the number.

y=a'<x=log,y
(This can be read as the logarithm of y to base a is equal to the index x.)
We can convert an exponent to a logarithm and a logarithm to an exponent using the

definition.

Converting exponential expressions to logarithmic expressions

Change each of the following to a logarithmic expression.

(a) x=1.5° (b) y=2* (c) a®=

(a) x=1.5°
Using
y=a*<x=log y
we get
x=155—6=log .x

(The base remains the base in both forms and the index is equal to the log.)
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Try these 5.6

EXAMPLE 32

SOLUTION

(b) y=2¢
Using
y=a*<x=log y
we get
y=2*>4=log,y
(The base remains the base in both forms and the index is equal to the log.)
(c) a>=38
Using
y=a"<x=log y
we get
a*=8—3=log 8

(The base remains the base in both forms and the index is equal to the log.)

Convert the following to logarithmic expressions.

(a) x=a2
(b) 16 =42
(c) 10=2a"

Convert the following to exponents.

(a) log,6 =3 (b) log,4 =x (c) log, 7=y

(a) log,6=3
Using
y=a'<x=logy
Replacing y = 6,a = a, x = 3 we get
log. 6=3—>6=a
(b) log,4 = x
Using
y=a*<x=log y
Replacing y = 4,a = 2, x = x we get

log,4 =x—4=2*
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Try these 5.7

(c) log4 7=y

Using

y=a*<x=log y

Replacing y = 7,a = 4, x = y we get
log,7=y—>7=4

Convert the following to exponential form.
(a) log,y=6

(b) x=log,10

(c) log 6=4

Graph of the logarithmic function

The inverse of y = a*is x = log, y therefore the graph of the logarithmic function can
be obtained by reflecting the graph of the exponential function along the line y = x.

y y

y = logyx y = logx
X X
ol /i 0 1\

a>1 O<ax<1

Properties of the logarithmic function
© The domain is x € R*, the range is y € R.
@ The y-axis is a vertical asymptote.

@ The graph is smooth and continuous.

© A logarithmic function is decreasing if 0 < a < 1 and increasing if a > 1.

Naperian logarithms

Recall that common logarithm is the term used for logarithm to base 10 and is
written as log, , x or Igx. Logarithms having a base of e can be written as Inx or
log, x and are called naperian or natural logarithms.

The Naperian logarithm and the exponential function with base e are inverses of
each other. If y = Inx then x = e.
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To sketch the graph of y = Inx we reflect the graph of y = e* along the line y = x
since these functions are inverses of each other.

(4

y=Inx
~ X

1

Properties of logarithms

© loga=1

@ log,1=0

© logx=logy=x=y

@ log,(xy) = log, x + log, y and in particular when a = ¢, In(xy) = Inx + Iny
® loga(g) = log, x — log, y and in particular when a = e, ln(%) =Ilnx —Iny
@ log, x" = nlog, x and in particular when a = ¢, In(x") = n (Inx)

© log, a/® = f(x) log, a = f(x), sincelog a =1

© Inef/® = f(x)

o nf) = f(x)

EXAMPLE 33 Simplify (a) Ine* (b) lne**2 (c) lnecosx

SOLUTION (a) Usingln(x") = n (Inx)
we get
Ine” = x*Ine = x%since Ine = 1
Note (b) Ine®*2 = (4x + 2)Ine =4x + 2 sincelne =1

(c) Inews* = (cosx)Ine = cosx sincelne =1
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Solving logarithmic equations

EXAMPLE 34  Solve the equation log, (4x + 2) = 6.

SOLUTION log, (4x +2) = 6

Converting to an exponent using y = a* <> x = log_y, where a = 2,
y=4x+2andx =6

we get

4x +2 =2°
Therefore
4x+2 =64
4x = 62

N|‘;ﬁ 4;|S

X

=
Il

EXAMPLE 35 Solve the equation In(3x + 2) — In2 = 1, giving your answer to 3 decimal places.

SOLUTION Usinglnx — Ilny = ln(§)
we get
3x+2) _
In[25-2) =1

Recall thatlog, x = y = x = @'.

We can use the definition and convert to an exponent

3x + 2 =2e!
3x + 2 =5.437
3x = 3.437

x =287 = 1146 3 dp)

EXAMPLE 36 Solve log, (x — 7) + log,(x — 8) = 1.

SOLUTION log,(x — 7) + log,(x — 8) =1
Sinceloga + logb = logab, we get
log,(x = 7)(x —8) =1

Recall thatlog, x = y = x = @.
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Converting to an exponent
(x-7)(x-8)=2!

we get

x* — 15x + 56 = 2
x*—15x+54=0
Factorising
x—6)(x—9) =0
x—6=00rx—9=0

Hence,x = 60orx=29

EXAMPLE 37 Solve the equation
log, (x* — 9) — log, (x + 3) = 3.

SOLUTION Combining the left-hand side under one log

x> =9\ _
10g3(x+3)_3

Converting to an exponent, we get

x2—9_ 3
x+3 =3

(x—3)(x+3) _
(x +3) B

x—3=27

27

Sox =30

EXAMPLE 38 Find the exact value of x satistying the equationIn (x + 1) — Inx = 2.

SOLUTION Converting to a single log

NEESURS

Removing In

x+1_ 2
X = €

Making x the subject of the formula
x+1=xe?

x—xe? = —1

x(1—¢e)=-1

Dividing by 1 — €2
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EXAMPLE 39

SOLUTION

EXAMPLE 40

SOLUTION

EXAMPLE 41

SOLUTION

Find the value(s) of x satisfying the equation 2 log, x — log, (x + 1) = 1.

2log,x —log,(x + 1) =1
The left-hand side of the equation can be converted to one log.

log,x* —log,(x + 1) =1

¥ =2x—2=0
Using the quadratic formula

Lo () V(27 — 4()(-2)

2(1)
_2*+V12
x_
2
(=2%2V3
2
x=1*+V3

x must be positive for log, x to exist.

Therefore,x =1 + V3

Solve the equation 2*~1 = 9,

Taking logs to base e, we get
In2*"' =1n9
Using In(x") = n(Inx) gives

(x—1)In2=1n9

—1=9
x—1 In2
In9

x=1 n2 4.170

Solve the equation e***1 = 3.

Taking logs to base e on both sides (recalling that In e/ = f(x))

lne¥**t! =1n3
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4x+1=1n3
Note
4x=In3—1
We could also _In3-1
take logs to YT g
base 10. x = 0.025

EXAMPLE 42  Find the value of x satisfying the equation 4**2 = 5.

SOLUTION 42 =5
Taking logs to base 10
lg4¥*2 =1g5
(x+2)1g4 =1g5 (using log, x" = nlog, x)

_lgs
x+2—lg—4

Note

We can also take logs to base e:
In(4**2) = In5

(x + 2) In4 = In5

—In5
X+ 2 Ind

__In5

*=na
= -0.839

EXAMPLE 43  Solve the equation 2! = 5172%,

SOLUTION 28l = 517
Taking logs to base 10
lg 21 = g5~
Since Ig x" = nlg*
lg 2" = (x + 1)lg2 and Ig5' "% = (1 - 2x)Ig5
(x+1)Ig2=(1—2x)Ig5
(x +1)0.3010 = (1 — 2x) 0.6990
0.3010x + 0.3010 = 0.6990 — 1.398x
1.699x = 0.398
x =0.234
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EXAMPLE 44

SOLUTION

EXAMPLE 45

SOLUTION

Find the value(s) of x satisfying the equation e** + ¢* = 12.

We cannot take logs in this case, let us see what happens if we do.
In(e** + e*) =1n12
What do we do next? Did you do this

Ine* + Ine* = In 12? This is incorrect since there is no rule of logs that works
across the addition sign.

e+ e =12

We can write this equation as (e*)? + e* = 12
This equation is a quadratic in e*.
Lety = e*

We have

y2+y—12=0

Factorising

+4py—3)=0
y+4=00ry—3=0
y=—4ory=3

Now replacing y = &*
ef=—4ore*=3

Since e* cannot be negative

=3
Taking logs to base e
x=1In3

Find the value(s) of x satisfying the equation 12¢** — 13¢* + 3 = 0.

122 — 13¢*+ 3 =0
We can write this equation as 12(e¥)> — 13¢* + 3 =0

This equation is a quadratic in e*. (Remember that taking logs in an equation like this
will not work.)

Lety = ¢*

We have

12> =13y +3=0
Factorising

BGy—Dy—-3)=0
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3y—1=0o0r4y—3=0

Now replacing y = e*

X:l X:;
4 301'6 4

Taking logs to base e

x—ln3orx ln4

EXAMPLE 46 Solve the equation 6e* = 7 — 2¢7*.

SOLUTION 6e*=7—2e~
2

Multiplying throughout by e*
6(e)? =7e* —2

6(e¥)? —7e*+2=0

Lety = ¢*

We have

62— 7y +2=0

Factorising
By—2)2y—1)=0
3y—2=0o0r2y—1=0

_2 1
Y=300 73
Now replacing y = e*

=2 =1
eX = 3 or e 5
Taking logs to base e

2o = Il
x—ln3orx ln2

Change of base formula (change to base b from base a)
If y = log_ x, then by definition x = a”.

Taking logs to base b

log, x = log, @

Using the properties of logs

log, x = ylog, a

Since y = log, x, we have

log, x = log, xlog, a
113



Therefore

log, x = ——

which is our change of base formula.

Whenx =b
log, b

log b = Tog, @
which is

1
log, a

log, b = since log, b = 1.

EXAMPLE 47  Convert log, 2 to the logof a number to base 2.

1
log, a

SOLUTION Using log, b = we get

__1
log, 2 = log, 4

EXAMPLE 48 Solve the equation log, x = 4 log_ 2.

SOLUTION log,x = 4log 2

Since the bases are different we can use the change of base formula to convert from
base x to base 2 as follows.

. __ 4 -
Since 4log 2 = Tog, * = log, x Tog, %

Multiplying by log, x gives
(log,x)* =

Taking square roots

log,x = *2

Using the definition
x=2%orx =27

Hence
x=4orx=

EXAMPLE 49 Given that log, x = 2 + log, x, find the value of x satisfying this equation.

SOLUTION log,x =2 + log, x
We can change log, x to base 2 as follows.

log, x
L , we get

log, a

Using log, x =
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log, x
log,8

log, x =

log,8 = log,2* = 3log,2 = 3
Therefore

log,x

log, x = 3

Hence
log,x =2+ %logzx
log,x — %logzx =2

%logzx =2
log,x =3
By definition

x =23

EXAMPLE 50 Solve the equation log, x = 9log 5.

SOLUTION Changing base

1
log, x

log 5=

Therefore

_9
log. x

log x =
Multiplying by log, x
(log, x)2 =9

Taking square roots
log x = *3

log.x = 3 orlog,x = —3
Using the definition

= 3: = _3:L
x=5 1250rx =5 125

EXAMPLE 51 Solve these simultaneous equations.
log,(x —10y) = 2
log,x—log,(y + 1) = 2
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SOLUTION

EXAMPLE 52

SOLUTION

We can remove the logs from both equations and then solve.

log,(x—10y) =2 (1]

= log,(x — 10y) = 2log,2 (since log,2 = 1)

= log,(x — 10y) = log,2?

Therefore, x — 10y = 22 (we can remove the logs)
Hence, x— 10y = 4 [2]

log,x—log,(y + 1) =2 [3]

= logs(y _’f_ 1) =2 since log a —log b = logc(%))

= log3(y X ) = log,3?
Therefore, (y_ =

Hence,x =9y + 9 (4]
Subtracting [4] from [2] gives:

x—10y—x=4—-9—9

—10y = =9y =5
—y=-5
y=5
Wheny=5,x=9(5) +9 (Substituting y = 5 into [4])
x =54

Hence,x =54,y =5

Solve these simultaneous equations.
2% = 4(8)
log,7 = 1 + log,(11y — 2x)

Write the equations without the indices and logarithms.
Since, 2* = 4(8)

2% = 22(23Y (4=228=23%
=2r=22X2¥

s ox = 92+

Equating indices gives:

x=2+3y

x=3y=2 [1]



MODULE 1 e CHAPTER 5

EXAMPLE 53

SOLUTION

Also, log,7 = 1 + log,(11y — 2x)

log,7 = log,2 + log,(11y — 2x) (1 =log,2)
log,7 —log,2 = log,(11y — 2x)

= log, (%) = log,(11y — 2x)

=

[NSIRN]

=1ly—2x [2]

Multiply [1] by 2 gives:
2(x—3y)=2X2

2x —6y=4 (3]
Adding [2] and [3] gives:
%+4=Hy—%+2x—®

15 _
2=
_3
i}/—i
_3 . _4(3\_ e 3.
Wheny—i,x 3(7)—2 (Substltutmgy—zlnto [1])
- 9
=2+7
13
2
Hence,x=§,y=%

The length of a bar, x, at a temperature of T°C is given by the equation x = x "

where X, and o are constants. Evaluate T when x = 2.62, X, = 2.47 and o = 0.002.

eaT

Substituting into x = x,
We have

2.62 = 2.47¢0:002T

0

£0.002T — 2.62
247

Taking logs to base e

00027‘=1n(%§%)=:005896

T =29.478°C
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EXAMPLE 54

SOLUTION

EXAMPLE 55

SOLUTION

A liquid cools from its original temperature of 70 °C to a temperature of °C in
t minutes. Given that 8 = 70e~%%% find the value of (i) # when ¢ = 12 minutes,
(ii) t when 6 = 40°C.

(i) Whent =12, § = 70e~ %0202 = 55 06°C

(ii) When 0 = 40°C, 40 = 70e 002

- 002t — 4

Taking logs to base e
_ —In(4
0.02t = In(2]

t = 27.98 minutes

1
The number of bacteria in a culture at time ¢ was given by x = ae5'. Find (i) the
number of bacteria present at time ¢ = 0, and (ii) the value of t when the colony was
double its initial size.

(i) Whent=0,x=ae’=a

(i) When the colony doubles its initial size, x = 2«

. 2a= aes
1

e =

1,

5t In2

Compound interest

The amount of money A after t years when a principal P is invested at an annual

interest rate r compounded # times per year is given by A = P ( 1+ %)”t. Let us see
how this formula was derived:

We are investing $P at an interest rate of r compounded # times per year, therefore
I=PXrXt
I[=PXrxi

The amount after one period will be (the principal plus the interest in that period)

A=P+E=p(1+1)

For the second period
New principal is P (1 + %)
Therefore the interest in the second period

1-p(1+§) ]
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The amount after the second period interest is
A=+ 5+ p(1+5)(3)

Factoring

A=+ 51+

Therefore

A=P(1+L)

For the third period

Principal is P (1 + %)2

Interest is

I=P(1+LPxL

The amount after the third interest period is

A=P(1+LP+P(1+ L) xT

Factoring

A=P(1+LP(1+%)

Therefore

A=P(1+ L)

From the pattern we can see that for ¢ years there will be nt periods and

A=P(1+ 2"

EXAMPLE 56 What rate of interest compounded annually should you seek if you want to double
your investment in 10 years?

SOLUTION SinceA = P (1 + L)"
we need rwhen A = 2P, n =1, t = 10.
Therefore
2P =P(1+ )"
2=(1+n
Taking the tenth root on both sides
21_10 =1+r
r=10.0718 = 7.18%
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EXAMPLE 57

SOLUTION

EXAMPLE 58

SOLUTION

oooooooooooooooooooooo

What is the amount of money that results from investing $800.00 at 4% compounded
quarterly after a period of 2 years?

Using A = P(l + %)"t
where P = $800.00, r = 0.04, n = 4 and t = 2 we get

A =800(1+ 0041

Therefore

A =800 X 1.01% = $866.29

Continuous compound interest

If the year is divided into n equal intervals, as n tends to infinity the capital for one
year is

A=Plim (1+ )

Since lim, (1 + %)n =e
A = Pe’

For t years

A = P(e")

and the present value P is

Suppose that $5000.00 is invested in an account where interest is compounded
continuously at a constant annual equivalent rate of 6%. How much money is in the
account after (a) 5 years, (b) 7.5 years?

(a) Using
A = P(e")
where P = $5000.00, r = 0.06 and t = 5 years,
we get A = 5000¢*%00®) = $6749.29

(b) Using
A = P(e")
where P = $5000.00, r = 0.06 and t = 7.5 years,
we get A = 5000e0075) = $7841.56

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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EXERCISE 5D

1

Express the following in logarithm form.

(a) 10%> =100 (b) x°= (c) 5°=1

(d) a'l=a (e) ¥*=8 (f) 42=16
(g) 5° =125 (h) =9 (i) x2=4
Find the value of x in each of the following.

(a) log 4 =2 (b) log 625 =4 (c) log,64 = x
(d) log,x =2 (e) logyx=10 (f) log 8 =3
(g) log 9 =2 (h) log 216 =3 (i) logyx =2
Find the value of the following.

(a) logyx (b) log,729 (©) log, 64

(d) log,32 () logsys () log x"

(8) log, 315 (h) log, V4096 (i) log, 1296

Evaluate the following by changing to base 10.

(a) log,4 (b) log,7 (c) log. 2

(d) log,6 (e) log 18 (f) log,17

(g) log, 4 (h) log. 6 (i) log,29

Evaluate the following by converting to logs to base e.

(a) log. 12 (b) log,22 (c) log. 18 (d) log, 17
(e) log3 32 (f) log5 41 (g) log, 62 (h) log,28

Solve the following equations.

(a) 2*=8 (b) 3* =81 (c) 4r=3+1
(d) 252 =473 (¢) 3% =4r+]

Find the values of x satistying the following equations.
(@) 2% —52%+4=0

(b) 32 —4(3**1)+27=0

(c) e —6ef+6=0

Solve the following equations.

(a) 8 =64 (b) 9* =27
(c) 4 =128 (d) 2721 =1
() 42— 502 1) +1=0 (f) % (3%%) — g (G +1=0

(g) 162—32**)+8=0
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11

12

13

14

15

16

Solve the following equations.

@ (1+)°=095 (b) (1 + i)*=(1.01)°
Express the following in terms of Inx and In y.

(a) Inx*y? (b) Inyxy

3
() In[X (d) 1n(%)
y X
Express the following as a single logarithm, simplifying as far as possible.
(a) In14 —In21 + In8 (b) 4ln2+%ln8
(© 2In(§] —n(L) (d) 3ln4 +41In2 — 41In6

(e) 4In5—1n25+ 2In2
If y = log, x, find in terms of y:
(a) log, x* (b) log, x* (c) log b*

(@ log, 0% (o) log, (%]
Solve for x:

(@) log, x +log 16 =3

(b) 3log,x+2log 6 =75

(c) log,x =4log 2

(d) log, (2x) +log, (x + 1) =1
(e) log,x = log,(3x)

(f) log,x +log 2 =2

Find the value of x in the following.

(a) 0.6*=9.7 (b) (1.5)*"2=9.6

© 0.9 () (ﬁ)2 T 1450t

1 _
0.8*2
(e) 2.79"1=3377*

By using an appropriate substitution solve the following equations.
(@) 2% +2*72-32=0 (b) 2% =9(2* ) +2=0
(c) 9*=3""2-38 (d) 257 —=7(57) =38

The population of a colony of bacteria is given by P = P e" where P is the
population after time ¢ hours and P, is the initial population.

(a) Given that the population doubles in 7 hours, find k.

(b) Find the time it takes for the population to triple.
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17

18

19

20

21

ooooooooooooooooooooooooooooo

The model P = % represents the proportion of new and
7e

foreign used cars with a CNG kit installed in Trinidad and Tobago.
Let t = 0 represent 1998.

(a) What proportion of new and foreign used cars had a CNG kit in 1998?

(b) Determine the maximum proportion of new and foreign used cars that
have a CNG Kkit.

(c) Draw agraph of Pvs t.
(d) When will 40% of new and foreign used cars have a CNG kit?

The value M of a bank account in which $80 is invested at 4% interest,
compounded annually, is given by M = 800(1.04)".

(a) Find the value of the account when t = 6.
(b) Find tin terms of M.

The current i (in amperes) in a certain electric circuit is given by
i =15(1 — e 2°%%) where t is the time.

(a) Sketch the graph of i vs t.
(b) Find tin terms of i.
(c) Find the time when the current i = 2 amps.

Some of the inhabitants of a small village in Trinidad are known to have a
highly infectious disease. The number of individuals, x, who have contracted the
disease f days after the outbreak is modelled by the equation

_ 4000
1 + 3999¢0-2

At what time has 40% of the population been infected?

A cup of hot chocolate, initially at boiling point, cools so that after t minutes,
the temperature §°C is given by 6 = 10 + 90e ¥,

(a) Sketch the graph of 0 against ¢.
(b) Find the value of t when the temperature reaches 50 °C.

If2* X 42 = 1 and 5 X 25/ = 2—15 , calculate the values of x and y.

9 _

Given that 3

3 and that Ig(2x + 2y) = 1, calculate the values of x and y.

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Checklist

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Can you do these?

B Identify and use the laws of indices.
M Identify and use the laws of surds.
M Simplify surds.

B Identify the conjugate of a surd.

B Rationalise surds.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Review Exercise 5

1 Solve the following equations.
(a) 5*F3=1
(b) 2%~ 1=4x+2
(c) 3*3*~1=27
2 Solve the following equations.
(a) 100 (1 +i)"2>=35
(b) 800 (1 —d)' =500
3 Prove thatif a, b and c are positive real numbers then (log, b) (log, ¢) = log, c.
Express the following as a single logarithm, simplifying as for as possible.
(@) In(3x) —2Ilny + 31Inx?
(b) %ln (9x%) + 2Inx — 31In2x
(c) In(x—1) —In(x*— 1) + In(x*> + 3x +2)
Find the value(s) of x satisfying the equation log, x = log, (x + 6).
Given that log, x = log, (8x — 16), find x.
By using an appropriate substitution, solve the following equations.
(@) 3% 1 +9=28(3 (b) 64*=8*"1—16

8 A colony of bacteria grows according to the law
x = 400¢%05¢

where ¢ is the time in years and x is the number of bacteria present.

(a) Find the initial number of bacteria.

(b) Find the population after 5 years.

(c) How long it will take for the population of the bacteria to reach 4502
(d) How long will it take for the population to double its size?
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A colony of bacteria increases according to the law

— .k
x = x,e"
where x is the number of bacteria at time t and k > 0.

(a) If the number of bacteria triples after 4 days, find the value of k.

(b) How long will it take for the number of bacteria to double?

The size N of an insect population at time ¢ days is given by N = 450¢%0%,

(a) What is the population after 10 days?
(b) When will the population double?

(c) When will the insect population reach 1000?

The proportion (P) of Blue Ray Disc owners in Trinidad and Tobago at time ¢ is
given by the model

0.6
p=—"29
1 + 60e 0>

Let t = 0 represent 2008, t = 1 represent 2009, and so on.

(a) Determine the proportion of households owning a Blue Ray Disc player in
the year 2008.

(b) Determine the maximum proportion of Blue Ray Disc players owned by
Trinidadians.

(c) Determine the year in which the proportion of Blue Ray Disc Players will
half its maximum.

The number of bacteria in a culture at time ¢ was given by n = A e>".
(a) Find the number of bacteria present at time t = 0.
(b) Find the value of t when the colony was double its initial size.

In 2010, Partap deposited $7000 in a fixed deposit account which promises
interest of 6% compounded yearly. The amount $x at the end of # years is
x = 7000(1.06)"

(a) Find the amount of money Partap will have at the end of 2017.
(b) Find the year in which the amount of money first reached $18 000.00.

A liquid cools from its original temperature of 70 °C to a temperature §°C in ¢
minutes. Given that § = 70e~%%%,

(a) Find the value of 6 when t = 12 minutes.
(b) Find the value of t when 6 = 40°C.

The charge Q on a capacitor is given by Q = Q,(1 — e™*) where Q, is the initial
charge, x is a constant and ¢ is the time.

(a) Find an equation for ¢.
(b) Sketch the graph of Q.
(c) FindtwhenQ = % Q.
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Given that 37 X 99 = 2187 and that In(4p — g) = In2 + In5, calculate the values
of pand q.

Given that log,(2x — 3y) = 2 and that log,x —log,(2y + 1) = 1, calculate the
values of x and y.

Show that ; t g = — V7. Hence, ﬁnd L+ y + \/\/z
(1—x)2%Q2+x)
Slmphfy—vy
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CHAPTER 6
Functions

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

At the end of this chapter you should be able to:

B Decide whether a relation is a function

M Identify the domain of a function

M Identify the range of a function

B Show that a function is one-to-one (injective)

I Show that a function is onto (surjective)

B Show that a function is bijective (both one-to-one and onto)

B Find the inverse of a function

B Understand the relationship between a function and its inverse

M Find a composite function

B Define functions as a set of ordered pairs

M Define functions as a formula

M Plot and sketch functions and their inverses (if they exist)

B State the geometrical relationship between a function and its inverse
B Perform calculations using functions

B Identify increasing and decreasing functions, using the sign of %

wherea # b

B Understand the relationship between the graph of: y = f(x) and y = af(x);
y=f(x)andy =f(x) +a;y = f(x)andy = f(x + a);y =f(x) and
y =flax);y =f(x)andy = af(x + b);y = f(x)and y = | f(x)|

B Sketch the graph of a rational function

B Manipulate piecewise defined functions

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

KEYWORDS/TERMS

relation « function « domain « range « codomain «
one-to-one e injective o onto « surjective
bijective « inverse « composite function « ordered
pairs « formula « increasing function « decreasing
function e translation e stretch « transformation



Let Aand B be
non-empty sets.

A mapping from
AtoBisarule
which associates a
unique member of
B to each member
of A. Ais called
the domain of
the mapping and
Bis called the
codomain of the

mapping.

DEFINITION

A function ffrom
asetAtoasetB
assigns to each
elementain set A

a single element
fla) inset B.The
elementinset Bis
called the image of
aunderf.The setA
is the domain of the
function and the set
Bis the codomain
of the function.

The range of the
function is the set
of elements that are
images ofa € A.
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Relations and functions

A relation is a set of ordered pairs. There is no special connection between the pairs
of numbers in a relation and any pairs of numbers identify a relation.

Let X = {(1, 2), (4, 5), (4, 7), (8, 10), (9, 10)}. X is a relation since it is a set of
ordered pairs.

Let X =1{2,3,7}and Y = {4, 6, 21, 42}. Consider the relation ‘is a
factor of’. This relation can be represented using the diagram at right.

Nw N X

The set X is the domain of the mapping and Y is the codomain of the

21
mapping. We can represent the mapping as a set of ordered pairs:

42

{(2,4),(2,6),(2,42),(3,6), (3, 21), (3, 42), (7, 21), (7, 42)}

When writing the mapping as a set of ordered pairs, the first element in the ordered
pair must be an element in the domain and the second element in the ordered pair an
element in the codomain.

A function is a mapping in which every element in the domain has a A B
unique image in the codomain. The mapping at the right represents a———>u

a function. b v
. C
Notice that one arrow comes out of each element of A. Thus every g ;

element is mapped onto a unique element of B.
The domain of this functionis A = {a, b, ¢, d}.
The codomain of the function is B = {u, v, w, x, y}.

The range of the function is the set = {u, v, x}. These are the images of the
elements of A.

Note

The codomain is the set of elements that are possible and the range is the actual set of
values that are assigned to an element in the domain.

EXAMPLE 1

SOLUTION

Determine whether the mapping at the right is a function. A B

1 a

. . . 2 b

Notice that there are two arrows coming out of the number 1. In this

. . . S 3 C

case the image of 1 is both a and b. For this reason, the mapping is . g
not a function. s

e

EXAMPLE 2

Given A = {10, 20, 35, 70} and B = {2, 3, 4, 5, 7, 9}, consider the mapping ‘is a
multiple of’, and determine

(a) the domain of the mapping
(b) the codomain of the mapping

(c) whether the mapping is a function.
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SOLUTION

EXAMPLE 3

SOLUTION

Try these 6.1

(a) The domain of the mapping is {10, 20, 35, 70}
(b) The codomain of the mapping is {2, 3, 4, 5, 7, 9}

(c) This mapping is not a function since elements of A map on to

more than one element of B, for example:
10 > 2
10 =5

Describing a function

There are many ways to describe a function. Here are some examples.

10
20
37
70

(i)  Functions can be given by a formula, for example f(x) = x + lor f:x = x + 1,

x e R.

(ii) A function can be given as a graph.

(iii) A function can be given by listing its values: f(1) = 3, f(2) = 5, f(4) = 7.
(iv) A function can be given as a set of ordered pairs.

(V) A function can be represented by an arrow diagram.

Is f(x) = vx a function?

If the codomain of Vx is the set of real numbers, then v is not a function since one
value of x maps onto two different values of y. A function must be single valued. We

cannot get two or more values for the same input.

If the codomain is the set of non-negative real numbers, then f(x) = v is a function.

(a) (b) a -

\J/
2 n T
.

The vertical line test

This method of testing whether a mapping is a

function or not involves looking at the graph of the
function. If you can draw a vertical line that crosses
the graph in more than one place, then the relation
is not a function. This is called the vertical line test.

(i) The graph of y = vx with codomain all real
numbers is shown at right.

A line drawn parallel to the y-axis cuts the graph
twice. This means that for one value of x there will be
two values of y. Therefore, y = Vx is not a function.

y=x
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(ii) The graph of y = +vx, which has codomain y

the set of non-negative real numbers, is

shown at right. y=+x
A line drawn parallel to the y-axis cutsthe [
graph at most once. This means that for every X

Hence, f(x) = +Vx is a function.

1
1
1
1
1
1
1
1
1
1
x-value there will be at most one y-value. 0 i
1
1
1
1
1
1
1
1
1

EXAMPLE 4 It is given that f(x) = x%, where x is any real number (x € R).

(a) Show that f(x) is a function.
(b) Determine the codomain of f(x).
(c) Find the range of f(x).

SOLUTION This is the graph of f(x) = x2.

(a) Any line drawn parallel to the y-axis will cut
the graph at most once. Therefore, f(x) = x? is

a function.
(b) The codomain of f(x) is all real numbers.

(c) The range of f(x) is all non-negative numbers:
f(x) = 0. The range is the set of values of f(x)
that are the images of x.

R NG

EXAMPLE 5 Identify the domain and range of y = 4x — 5.

SOLUTION Domain: since y is a linear function, x can assume any real value.
Therefore, the domain is x € R.
Range: for every x, we can find a corresponding y.
Hence, the range of yis y € R.

EXAMPLE 6 Find the domain and range of y = x> — 3x + 2. y

SOLUTION Domain: since y is a polynomial, the domain

isx e R.

Range: y is a quadratic function with a minimum \ i
~oZ

turning point.

(=]

\)Lowest
A 32 1 3= | valueofy
Complete the square: y = (x — 5) -3

The minimum value of y is —i.

. _1
Therefore, the range is y = 7
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EXAMPLE 7

SOLUTION

Identify the domain and range of y = In (x — 2).

Since we are dealing with a log function, x — 2
must be greater than 0.

x—2>0

Therefore, x > 2.
Hence, the domainis x: x € R, x > 2.

The value of y can be negative or positive ranging
from —o to .

Therefore, the range of yis y € R.

EXAMPLE 8

SOLUTION

Identify the domain and range of y = e + 2. y

The domain is x € R. & y=ex+2

Range:asx > 2, e > 0=y —>2 1+

asx —> -0, e¥ > 0=y

The range is y > 2.

Try these 6.2

Identify the domain and range of each of these.

(a) y=Vx—4
(b) y=In(x+ 1)
(c) y=2e+1

Note

When identifying the domain, start with the assumption that x can take any real value.
Look at the function and decide if there are any restrictions. For the range, use the
domain to identify all values that y can attain.

One-to-one function (injective function)

A function f: X — Y is called a one-to-one function if and only if every element of
Y is mapped onto one and only one element of X. This means that no two elements
of X can have the same image in Y. A one-to-one function is also called an injective
function. We can prove that functions are one-to-one in either of the following ways.

(i)  Show that f(x) is a one-to-one function if f(a) = f(b) = a = b.

(ii) Sketch the graph of y = f(x) and draw a line parallel to the x-axis. f(x) is
one-to-one if this line cuts the graph at most once.
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EXAMPLE 9

SOLUTION

Show that f(x) = 2x + 1 is one-to-one.

Method 1

Since f(x) = 2x + 1

fla)=2a+1

f(b)y=2b+1

For f(x) to be one-to-one, f(a) = f(b)
=2a+1=2b+1

=2a=2b

=a=b

Since f(a) = f(b) = a = b, f(x) is one-to-one.
Method 2

Sketch the graph of f(x) = 2x + 1.

Any line drawn parallel to the x-axis will cut the graph of f(x) = 2x + 1 at most once.

Hence, f(x) is one-to-one.

EXAMPLE 10

SOLUTION

2x + 1
3x—2

Show that f(x) = is one-to-one.

If f(x) is one-to-one, then f(a) = f(b) > a = b.

Since f(x) = 2x + 1

T 3x—2

_2a+1
flw =3+

_2b+1
ﬂw—3b—2
f(a) = f(b)

2a+1_2b+1

3a—2 3b-—-2
Cross-multiplying gives:
(2a+1)(3b—2)=(2b+ 1)(3a —2)

Expanding gives:

=

6ab —4a +3b—2=6ab—4b + 3a—2
.. 6ab—6ab+3b+4b—2+2=3a+ 4a
=7b=7a

=a=b

Since f(b) = f(a) = a = b, f(x) is one-to-one.

Note

_2x+1
3x — 2

We could also sketch the graph of f(x)

and use the graph to show that f(x) is

one-to-one. In this case, drawing the graph would take longer than using algebra.
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EXAMPLE 11

SOLUTION

Is f(x) = x? + 2x + 3 one-to-one?

Method 1
If f(x) is one-to-one, then f(a) = f(b) = a = b.
Since f(x) = x> + 2x + 3
fla)=a*>+2a+3
fby=p*+2b+3
fla)=f(b)=>a*+2a+3=0>+2b+3
Lat—b+2a—-2b=0
Factorising gives:
(a—b)a+b)+2a—b)=0
=@—batb+2)=0
La—b=0a+tb+2=0
=a=ba=-2—-b
Since f(a) = f(b) >a=b or a= —2— b, f(x)is not a one-to-one function.
Method 2
The graph of f(x) = x? + 2x + 3 is shown.
When x = 0, f(0) = 3.

Since the coefficient of x? is positive, the curve
has a minimum point. The minimum point

exists at x = —% = —1,whenx = —1,

A1) =(-12+2(-1) +3=2.

The minimum point is at (—1, 2).

A line drawn parallel to the x-axis cuts the graph twice. Hence, there are two values
of y for one value of x. The function is not one-to-one.

Onto function (surjective function)

A function f: X — Yis called an onto function or surjective function if and only if
every element of Y is mapped onto by at least one element of X.

For a surjective function the range and codomain are the same.

To determine whether a function f(x) is onto, we can use a graphical method as
follows. Sketch the graph of y = f(x), draw a line parallel to the x-axis and if this line
cuts the graph at least once, then the function f(x) is onto.
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EXAMPLE 12

SOLUTION

Which of the following functions are onto?

(a) py (b) x v (o)

| .

T 9 ©

n

< c
AW N - >

I
o

-~ o o N

(a) This function is not onto. Any line drawn y
parallel to the x-axis must cut the graph at ] y=x
least once. The line drawn below the x-axis
does not cut the graph. Note that we can
restrict the codomain to non-negative real .
numbers and the function will be onto.

(b) This function is onto since all values in the codomain have a value in the
domain mapped onto it.

(c) This function is not onto since the elements d and e in the codomain have no
values in the domain mapped onto them.

Showing that a function is onto

To show that a function is onto, we must show that for every element in the codo-
main there exists an element in the domain which maps to it. We can prove that a
function is onto either algebraically or graphically.

Algebraic proof

Let y be any element in the codomain and x an element of the domain. We solve the
equation y = f(x) for x.

EXAMPLE 13

SOLUTION

Prove that the function f defined by f: R — R for f(x) = 7x — 2 is onto.

Let y be an element of the codomain.
y=7x—2

Making x the subject of the formula gives:
y+2="7x

Lrt2
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EXAMPLE 14

SOLUTION

+ +
2 is a real number andf(y 5 2) = 7()/ 2) - 2=

+
Since y is a real number, then Y =
y+2—-2=y.

Hence, for every x in the domain there is a corresponding y in the codomain. There-
fore, f(x) is an onto function.

Graphical proof

y=7x-2

Any line drawn parallel to the x-axis cuts the graph at least once (in this case once).

Hence, the graph shows that f(x) = 7x + 2 is an onto function.

Is the function f: R — R defined by f(x) = x? + 4x onto?

Lety = x* + 4x.
We rearrange the equation:
¥ +4x—y=0

—4+/16 + 4y

2

 —4axnfAty
=

x = (Using the quadratic formula:a = 1,b=4,c = —y)

x —2X\4+y

Hence,x=—-2+1\4+yorx=—-2—1\4+y.

We can easily show that f(—2 +1/4 + y) = y. o
Lety = —5x= -2+ V4 —5. 7

4 [y=x2+ax
Hence, x is not a real number when y = —5 and 5]
therefore f(x) is not onto. i .
We can also show this graphically. 6 4 -2 2 4 6
flx) = x* + 4x 7
Whenf(x) =0, x> +4x=0. e g (<
=x(x+4)=0 6]

=2x=0x=—4

Since the coefficient of x? is positive, the curve has a minimum point. The minimum
point exists at x = —% =-2f(-2)=4-8=—4
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The minimum point is at (—2, —4)
The graph shows that there are values of y that do not correspond to values of x.
Bijective functions

A bijective function is a function that is both surjective and injective.

Note

The inverse of a function exists if and only if the function is bijective.

EXAMPLE 15 Given that f(x) = 7x + 2, show that f(x) is bijective.

SOLUTION To show that f(x) is bijective, we need to show
that f(x) is both one-to-one and onto.

We draw the graph of f(x) = 3x + 2.

Any line drawn parallel to the x-axis cuts the
graph exactly once. Hence, the function f(x) is
one-to-one. Since any line drawn parallel to the
x-axis cuts the graph once, for every y-value there
is a corresponding x-value. Therefore, the func-

tion is onto.

Since f(x) = 3x + 2 is both one-to-one and onto,
f(x) is bijective.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 6A
1 Which of the following relations in the set of ordered pairs are functions? State
the rule of each function. Illustrate your answers using arrow diagrams.
(@) {(5.6),(6,7),(7,8),(7,9), (8,10)}
(b) {(=1,2),(1,2),(=3,8),(3,8)}
(c) {(a,b), (c,b), (¢, d), (e )}
(d) {(1,2),(2,4), (3,6), (4, 8)}

2 Which of the following diagrams below represent a function or a mapping
from A to B? For those that are functions, write the functions as set(s) of
ordered pairs.

(a) a71 (b) x—4 (c) 2——a
b y———>5 4 ——> Db
c——>2 223 6 C
d——>3 t 7 8 d

10
12
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10

11

12

The function g is defined by g(x) = 4x — 5 and the domain of gis {0, 1, 2, 3, 4}.

(a) Find the range of g.
(b) List the set of ordered pairs of the function g
The function f: R — R is defined by the following, where R is the set of real
numbers.
x+2 ifx <2
fo={x—1 ifx>8
(x+1)? if2=x=8

Find the following.
() f(—4) (b) f(9)
(© f(2) (d) f(8)

Given that f(x) = 5x — 2, x € R, show that the following are true.
(a) f(x)is a one-to-one function
(b) f(x) is an onto function

Show that the function f(x) =

1_ ,x €R, x # 4 is injective.
x—4
Let g: R — R be the mapping defined by

g(x) = x+2 forx=0
X when x < 0

(a) Isg(x) injective?

(b) Is g(x) surjective? Show all working clearly.

Show that the function g(x) = (x — 2)%, x € R is surjective.

(a) Show that the function defined by the following is a bijective function.

flx) = x>+2 forx=0
x +2 forx<O0

(b) Find the inverse of the function.

The function g (x) is defined by g(x) = x> + 1, x e R*.
Decide whether each of these is true.

(a) g(x)isinjective

(b) g(x) is surjective

Is the function f(x) bijective?

Flx) = 2x+1 whenx=0
x—1 whenx<0

The mapping f: R — R* is defined by f(x) = x> + 4

(a) Sketch the graph and state the range of the function.

(b) Show that fis neither injective nor surjective.

(c) Find a restriction g of f which is bijective and has the same image as f.

(d) Find the inverse of g.
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>

13 A mathematics teacher is training six students «, 3, 6, &, 0, u
for a mathematics competition. The teacher makes assign-
ments, g, of students to different areas of mathematics:
geometry (1), calculus (2), algebra (3) and statistics (4). This is
shown in the diagram at right in which X = {«, 3, 6, &, 6, u}
and Y = {1, 2, 3, 4} and the areas of mathematics and students
are expressed as ordered pairs.

T o0 o ™K
AW N = <

(a) State two reasons why g is not a function.

(b) Hence, with a minimum change to g, construct a function f: a — b as a set
of ordered pairs.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0

Inverse functions

A function fhas an inverse f ! if and only if f is bijective. Since a function can be
represented as a mapping, a set of ordered pairs, a graph, and a formula, you must be
able to find the inverse of a function given in any form.

Suppose that fis a one-to-one function. The correspondence from the range of f back
to the domain of fis called the inverse of f. The relationship between a function and
its inverse are as follows:

(i)  The domain of fis the range of f1.
(ii) The range of fis the domain of f .
(iii) The graph of f~! can be derived from the graph of by reflecting fin the

line y = x.

EXAMPLE 16  Find the inverse of the function shown in the diagram.
X Y

a—>1

b 2
c><3

d—4 Inverse function

X Y

SOLUTION Reversing the domain and range, the inverse of the function is as shown. @
2 b

The domain of the inverse is {1, 2, 3, 4} and the range of the inverse is 3 >< c

{a, b, ¢, d}.

4—— > d

EXAMPLE 17 Find the inverse of the function {(1, 5), (2, 10), (3, 15), (4, 20), (5, 25)}.

SOLUTION Reversing the values in each pair gives the inverse as {(5, 1), (10, 2), (15, 3), (20, 4),
(25, 5)}.

139



EXAMPLE 18

SOLUTION

EXAMPLE 19

SOLUTION

To find the inverse
of a function f(x):

(i) Lety=flx).
(i) Interchange
xandy.

(iii) Makey the
subject of
the formula,
y is now the

inverse of f(x).

EXAMPLE 20

SOLUTION

140

A function fis defined by f: x — 4x + 2, x € R. Find in a similar form f ..

Lety = 4x + 2.

First, we interchange x and y. By exchanging x and y, we are exchanging the domain

and range so that y = f~!(x) and f{y) = x.

x =4y + 2

Make y the subject of the formula.
4y =x—2
y= X Z 2
s f i x) =
Hence, f 11 x > %= 2, x e R.

A function fis defined by f: x — 2

Find in similar form f~!, and state the value of x for which f~! is not defined.

2x+1
x—3"

Interchange xand y:
2y +1
=53
Make y the subject of the formula:

Lety =

x(y—3)=2y+1
xy—3x=2y+1
xy—2y=1+3x
yx—2)=1+3x

_1+4+3x
x—2

=i e a2,

3 >

Hence, f71: x—>1+3xxeRx#2

2 b

A function g is defined by g(x) =
Find:

(a) ')
(b) g'(-3).

x— 1
x+2

Interchange x and y:
_y -1
oy +2

(a) Lety =

x 7 3.
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=x(y+2)=3y—1 (We make y the subject of the formula.)
xy+2x=3y—1
xy—3y=—-1-2x
yx—3)=—-1—2x
——1-2x
YT Tx=3
_—@2x+1)
—(3—x)
_2x+1
3—x

Therefore, f~': x — 2;6%)(1’ xeR x+#3

(b) Substitute x = —3 into:

fle=2+1
o 2(=3)+1
BCA e )

=5

6

Graphs of inverse functions

Given the graph of y = f(x), we can sketch the
graph of f~1(x) by reflecting y = f(x) in the
line y = x. y=x

EXAMPLE 21 Sketch the graph of f(x) = 2x + 1, and hence, sketch f~1(x).

SOLUTION

fix) =2x+1
y
6,
4 y=x
2] 100
/ X
PRDREY SERNR
_27
—4
_6*
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EXAMPLE 22

SOLUTION

EXAMPLE 23

If y = 2x* + 3x — 1, identify the domain and range of y. Does the inverse of y exist?

Since y is a polynomial, the domain of yis x € R.
To find the range of y we need to identify the minimum point.

y=2x*+3x—1
The minimum point is at x = ;—f wherea =2,b = 3.

3 3

XS5y T T
When x = —%,yzZ(—é)z—l- 3(—3)—1

4 4
—H(9)_9_
- 2( 6l — 1!
-9_9_
=g 3 1
- _17
8
We can also complete the square:
_ 32 17
y=2x+3f-¥
. .. . 3 17
The coordinates of the minimum points are (_Z’ —3

Since the lowest point on the curve is ( —%, —18—7), the range of the function is:

_17
y= 8

_17
Hence,x e R,y = 3

To decide whether y has an inverse, we decide whether y is bijective.

Whenx =0,y = —1

=3 o3P s( 23 = =
When x = 2,)/—2( 2)+3( 2) 1=-1
Since y = -1 whenx = 0and x = —%, y is not one-to-one.

Hence, y is not bijective.

Therefore, the inverse does not exist.

A function fis defined by f: x > x> —2x + 3, x e R,x = 1.
Write f(x) in the form a(x + b)* + c.

Hence, find:

(a) the range of f(x)

(b) the inverse of f(x)

(c) the domain and range of f~!(x).
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SOLUTION Complete the square of f(x):
K —2x+3=x—2x+ (—1)*+3—(—1)?
=x—17%+2
Lf) = —-1)2+2

(a) Since f(x) is a quadratic with the coefficient of x? positive, f(x) has a minimum
point at (1, 2).

. minimum value of f(x) = 2
= range of f(x) is y = 2.

(b) Lety =x*—2x+ 3.
Sincex? —2x+3=(x—1)>+2
y=(x—-12+2
Interchange x and y:
x=(@—1>%*+2
Make y the subject of the formula:
y—1)r=x-2

y—1==*vVx—2
y=1*Vx—2
Since the domain of f(x) = range of f~!(x), the range of f~!(x) is y = 1.
i Hence, f~1(x) =1 + Vx — 2.
To find the (c) The domain of f(x) is x = 1.
inverse of a
quadratic, we The range of f(x) is y = 2.
complete the . . .
e i Interchanging the domain and range gives these.
use this form of The domain of f~1(x) is x = 2.

the function.
The range of f~1(x) is y = 1.

EXAMPLE 24  The function fis defined by

3 fix) = 4x2=12x +13
fix—>4?—12x+13,xe R x=3 o1
sketch the graph of f(x) and hence, i
y=x
sketch f71(x). 6
4,
—(il 4) 3 -1
SOLUTION Since f(x) = 4x* — 12x + 13 L1 (“j)/f(f)
Completing the square of f(x): | X
4x2 — 12x + 13 = 4(x2 — 3x) + 13 8 _Z_Zj 2ot 68
— 42 — _3 2) _ 4 Z3) 1
= 4(x 3x+( 2) + 13 4( 2) —4:
—alr 3P 9 6
—ax 3] + 13- (4 x3) ]
_8,
— a3V
=4(x—3] +4

143



EXAMPLE 25

SOLUTION

EXAMPLE 26

SOLUTION

144

The turning point is at (%, 4).

f71(x) is a reflection of f(x) in the line y = x.

0dd and even functions

Odd functions

DEFINITION

A function f(x) is said to be an odd function if and only if f{—x) = —f(x).

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Prove that f(x) = x° is an odd function.

Since f(x) = x*
fl=x) = (—x)° = —=(x*) = —f(x)

Since f(—x) = —f(x) = f(x) = % is an odd function.

Note

The graph of an odd function has rotational symmetry about the origin. This means
that if the graph of f(x) is rotated through 180° about the origin, then the graph
remains unchanged.

Even functions

DEFINITION

A function f(x) is an even function if and only if fix) = f(—x).

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Prove that f(x) = x? is an even function.

flx) =«*
fl=x) = (—x)?=x*=f(x)

Since f(x) = f(—x) = f(x) = x? is an even function.

Note

The graph of an even function is symmetric with respect to the line x = 0. The graph
of f(x) remains unchanged after reflection in the line x = 0.

Periodic functions

A periodic function is a function that repeats its values in regular intervals.
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DEFINITION

A function f(x) is said to be periodic with period k if and only if f(x) = f(x + k). The period
k is the x-distance between any point and the next point at which the same pattern of y
values repeats itself.

©00000000000000000000000000000000000000000000000000000000000000060

The modulus function

The absolute value of x or modulus of x denoted by | x| is defined as:

x ifx>0
IX|={0 ifx=0
—x ifx<O0

By definition, the absolute value function or modulus function is a positive function. This
means that it returns positive values only.

©00000000000000000000000000000000000000000000000000000000000000060

Graph of the modulus function

The graph of the function |f(x)| can be drawn from the graph of y = f(x) by reflect-
ing the section of y = f(x) that is below the x-axis to above the x-axis, with the x-axis
being the line of reflection.

The part of the curve y = f(x) that is above the x-axis remains unchanged.

EXAMPLE 27

SOLUTION

Sketch the graph of y = x. Hence, sketch y = |x].

= A
Y y=x Y ooy=N

o

¥

EXAMPLE 28

SOLUTION

Sketch the graph of y = x + 2. Hence, sketch y = [x + 2I.

=x+2
g /y=|x+2|
2

¥
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EXAMPLE 29

SOLUTION

EXAMPLE 30

SOLUTION

Sketch the graph of y = x? 4+ 3x + 2. Hence, sketch y = [x? + 3x + 2|.

Y
1y=x*+3x+2 i
y=x>+3x+2|
X X
T T T T T T
3 25 0 1 2 3 3 02 4 9 1 2 3
=17 =17
2 -2
-3 -3

Composite functions

Let fbe a function of X into Y and let g be a function of Yinto Z. Let x € X. Then its
image f(x) is the domain of g and we can find the image of f(x) under g, which is gf(x).
There exists a rule which assigns each element x € X a corresponding element gf(x) € Z.

The range of f is the domain of g.
The function gf(x) is called a composite function of g and fand is denoted by gf or go f.

Let f(x) = 4x + 2 and g(x) = 3x — 4. Find
(a) f&
(b) &f
(a) felx) = flg(x))
We now substitute g (x) = 3x — 4 into f.
flg(x)) = f(3x — 4)
We can now find f(3x — 4) by replacing x by 3x — 4 into f(x).
fe(x) =4(3x —4) +2

=12x— 16 +2
=12x— 14
(b) gf = gf(x)

Substituting f(x) = 4x + 2 into g, we have:
gf(x) = g(4x + 2)
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Replacing x by 4x + 2 into g(x) we have:
gf=3(4x+2)—4

=12x+6—4

=12x+2

The composite functions fg and gf are two different functions.

EXAMPLE 31 Functions fand g are defined by f: x > 2x + land g: x — i T T3

2
3x +
Express in a similar form the functions fg and gf. Hence, find fg(2) and gf(3).

SOLUTION flx)=2x+1

80 =555

Jg=fg(x)
Substituting g(x) =

fe =M%

2 . 2 .
= 2(_3x i 2) +1 (Replacing x by Er) inf)
- _ 4
3x + 2

_4+3x+2
3x+2

_ 6+ 3x
BT LA

gf=gf(x)
=g(2x+1) (Using f(x) = 2x + 1l into g)
_ 2
T32x+1)+2
_ 2
6x+3+2

=_2 ]
i3 7%

Since fg(x) = g + +3926, substituting x = 2, we have:

3 into f:

+1

(Replacing x by 2x + 1in g)

6+ 3(2)

fg(2) = m

DN ools

Since gf(x) = &x + 5

Substituting x = 3 we have:

— 2
IO =55 73
2
23



EXAMPLE 32

SOLUTION

Note

Remember that
g2 does not mean
‘the square of g.

148

A function g is defined by g: x —

2x +1’“é__

(a) Obtain expressions for g7 and g°.

(b) State the values of x for which the functions g? and g* are not defined.
. - _ X
(a) Sinceg(x) = T
g =g

=gg(x)
=8 r1) (Replacing g (x) = 7 in gg (x))

X
+1
)+1

_ 2x
X

(Substituting x by Zx%l into g(x))
2( 2x + 1
X

_ 2x+1
2x
TES IR
X

_ 2x+1 T .
B R ey (Finding the LCM of the denominator)

2x + 1

. _1
CE DY TRt S

(b) & = gg*(x)
- g(4x)f|- ) (Usmggz(x) - ﬁ)

_ X

X

4x + 1
X

__ 4x+1
2x +4x + 1
4x + 1

x
_4x+1
6x + 1
4x + 1

— X A tT
dx—+T 6x+1

6x+1””& 6

.'.g3—6x+1,x¢ —g,xaﬁ 4,x¢ —=
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g*is not defined at x = —% and x = —

i

& is not defined at x = —%,x = —% and x = —%.
EXAMPLE 33  Functions fand g are defined by f: x 3 — 2xand g: x —> x> + 2x + 1.

Find the solutions of the equations.

(a) gy =0  (b) gfx)=0

SOLUTION (a) First we find fg(x) by replacing g (x) by x> + 2x + 1:
fe(x) =f(x* +2x + 1)
Replacing x by x> + 2x + 1 into f(x), we have
fo(x) =3 —2(x* +2x + 1)
=3-2x*—4x—2
=-—2x* —4x +1
fe(x) =0
=-2x*—4x+1=0
=2 +4x—-1=0
_ —4xy16 — (4)2)(-1)
2(2)

_ —4*2V6
= 4

=X

=—1i%\/€
(b) gf(x) =g(3 — 2x)

Replacing x by 3 — 2x into g, we have

gf(x) = (3 — 2x)2+2(3 — 2x) + 1
=9 —12x+4x*+6—4x+1
=4x? — 16x + 16

gf(x) =0

=4x* —16x + 16 =0

X—4x+4=0

=x—-2?=0

=x—2=0x=2

Relationship between inverse functions

We can show that if g is the inverse function of f(x), then fg(x) = x. Similarly, if fis
the inverse of g, gf(x) = x.
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EXAMPLE 34

SOLUTION

EXAMPLE 35

SOLUTION

Let f(x) = 2x + 1. Find f"!(x) and hence show that f~!(x) = x.

Lety =2x + 1.

Interchange x and y:

x=2y+1

Make y the subject:
—1

y ="

Therefore, f!(x) = x%l

Now ff(x) = f{ £5-1]

_H(x—1
—2[254) 1
=x—1+1
=x

Hence, ff "1(x) = x.

X+
x—2

Find the inverse of f(x) =
inverse of x.

x+1
x—2

Interchange x and y:
_y+1

Lety =

y—2

Make y the subject of the formula:

x(y—2)=y+1
xy—2x=y+1
xy—y=2x+1
yx—1)=2x+1

Hence, y = 2;%11

Hence, f1(x) = %

Now, 7109 = 137

2x+1+1
_x—1

2x-|-1_2

x—1

1 Hence, show that ff~!(x) = x, where f~!(x) is the
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2x+1+x—1
Note =55 T ch — %x > (Simplifying the numerator and denominator)
If f~1(x) is the x—1
inverse of any 3x
—1
function f(x), =X 3
then ff~1(x) = x x—1
and f~'f(x) = x.
=_3x wx—1
x—1 3
=3
3
=x

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 6B

In questions 1 to 4, obtain expressions in the same form for gfand fg.

1 fix—>4x—2

gix—>6x+1

2 fix—>3x+5 gix—>2x+x+1
3 fixoxt4 g:x%%,x#O
4 fix—1+5x g:x%iii,xil

In questions 5 to 8, obtain expressions in the same form for g and g°.

5 gix—o2x—1

) x _1L
6 g.x—>2x_|_1,x7é >
. 2x + 1
7 g.x—)x+1,x¢1
. 3 1
8 XD 5 X F 5

9  Functions gand h are defined by g: x > x> + 2x + 3, h:x > x — 2.
Obtain expressions for gh and hg. Find the value of x satisfying the equation

gh = hg.

10 Two functions are defined by f: x = 3x — 4and g: x — x+2’ x # 2. Find the
value(s) of x for which fg = gf.

11 Find f! in similar form for each of the following functions.

(@) frx—>4x—3

. 5
(b) f.x—>x_2,x¢2

. 3x—1 _
(c) f.x—>x+2,x¢ 2

12 Express 4x* + 12x + 3 in the form a(x + b)?> + ¢ where g, b and ¢ are integers.
The function fis defined by f: x — 4x? + 12x + 3 forx € R.

(a) Find the range of f.

(b) Explain why f does not have an inverse.
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oooooooooooooooooooooo

EXAMPLE 36

SOLUTION

13 A function fis deﬁnedbyf:x—>4x_1 x# -2

3x + 2’ 3
(a) Findf~1(1) and f~1(—1).
(b) Show that there are no values of x for which f ~!(x) = x.

14 Functions fand g are defined by f: x—)%,x #kandg:x —>x + 4.

(a) State the value of k.
(b) Express fg in similar form and state the value of x for which fg is not defined.
(c) Find f(x).

(d) Find the value of a for which f(a) = g(—1).

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Increasing and decreasing functions

Increasing functions

A function is increasing if its graph moves upwards as x moves to the right.

As x incrieases y increases. x
0

Let x = a and x = b be two points on the graph where b > a. The function f(x) is
& ~f@ _,
b—a

increasing in the interval [a, b] if and only if

Show that f(x) = 4x + 5 is an increasing function.

Letx = g, then f(a) = 4a + 5
Let x = b, where b > a, then f(b) = 4b + 5.

f(b)—f(a)=4b+5—(4a—5)=4b—4a=4(b—a)=4
b_

Substituting these into
8 a b—a b—a b—a

f(b) = f(a)
b—a

Since > 0, the function f(x) = 4x + 5 is an increasing function.

Decreasing functions

A function is decreasing if its graph moves downwards as x moves to the right.



EXAMPLE 37

SOLUTION

EXAMPLE 38

SOLUTION
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—> As x increases y decreases.
X

Let x = a and x = b be two points on the graph where b > a. The function f(x) is

f(f
—a

increasing in the interval [a, b] if and only if ———— < 0.

Show that the function f(x) = —2x + 3 is a decreasing function.

f (b) f (@) _

We need to show that for b > g,——————
Let x = a, then f(a) = —2a + 3,

Let x = b, where b > a, then f(b) = —2b + 3.

f) —fa) _ —2b+3—(-2a+3) _20—2p_—2(b—a) _ _
b—a b—a b—a b—a

f(b) — f(a)
b—a

Since <0, f(x) = —2x + 3, is a decreasing function.

Transformations of graphs

Vertical translation

Transform the graph of f(x) = x? to graph the function g(x) = x* + 2.

The graph of g(x) can be obtained by adding
2 to the graph of f(x). All points on the graph

are shifted up by 2 units. fx) = x?

= 2. The graph of f(x) has
Forf(x) " | moved up 2 units.
when x = 0, f(0) = 02 =0 ) X
when x = 2, f(2) = 2> =4 6 4 2 o T4 "6

For g(x) = x> + 2: ,
whenx=0,g(0)=0>+2=2 -4+
whenx=2,g2)=22+2=6

.. the point (0, 0) on f(x) maps onto (0, 2) on g(x)
The point (2, 4) on f(x) maps onto (2, 6) on g(x).
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EXAMPLE 39

SOLUTION

If gis a function and h = g(x) + a, then any point (p, q) on g maps onto (p, g + a)
onto h. h is the graph of g(x) translated a units upwards (if a > 0) and a units
downwards if a < 0.

K=

Sketch the graph of y = % and hence, sketch the graph of y =

The graph of % is as shown.

The graph of 1 — 2 is shifted downwards by 2 units.
grap x Y

Note

The original graph has an asymptote that is the x-axis (y = 0). The new graph has an
asymptote that is the liney = —2.

Horizontal translation

The graph of f(x + a) can be obtained from the graph of f(x) by shifting f(x) to the left by
a units if a > 0 and shifting f(x) to the right by a units if a < 0.

When shifting to the right, a is added to all x-values. When shifting to the left, a is
subtracted from all x-values.
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EXAMPLE 40

SOLUTION

EXAMPLE 41

SOLUTION

The graph of f(x) is shown below. Sketch the graph of f(x — 2), showing each point
on the new graph.

Ay y
6 6
44 4
/\ ) ] )
_\6 T _4\. T 2 T Q T 2 T A T é _\6 T _A T 2 T )| T 2 T 4 T é
_2 — .
E - fix—2)

—4 4 -
67 fx) 67 fx)

f(x — 2) is the graph of f(x) shifted to the right by 2 units.

Points on f(x) | Corresponding points on g(x)
(=2,0) (0,0)
0,2) (2,2)
(2,0) 4,0)
(3,-3) (5,-3)

We add 2 units to each x-value and the y-values remain the same.

Horizontal stretch

If g is a function and h(x) = g(ax) where a # 0, the graph of h is that of g stretched
parallel to the x-axis by factor é. Any point (p, g) on h(x) maps onto a point ( é P q)
on g(x).

Sketch the graph of f(x) = x> + 2x — 3. Hence, sketch the graph of f(2x).

flx)=x*+2x—3

When x = 0, f(0) = 0> + 2(0) — 3 = —3

Since the coeflicient of x? is positive, the graph has a minimum point.
- _b__ 2 _

Whenx = —5 - = 2D

Whenx = —1,f(=1) = (=1)* + 2(-1) — 3= —4

-1

Minimum point is at (—1, —4).
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When f(x) = 0,x>+2x—3=0
=Skx+3)(x—1)=0

=x=—3,1
f(x) f(2x)
=30 =30
(1,0) (2:9]
0,-3) 0,-3)
oo | hed

EXAMPLE 42  The curve shown in the diagram has equation y = f(x). There is a minimum point
at P(4, —4), a maximum point at Q(1, 2) and the curve cuts the x-axis at R(—2, 0),
S(3, 0) and T(6, 0). Sketch the graph of f(3x), showing the coordinates of the points
corresponding to P, Q, R, Sand T.

-2
1S
y =fd ] P(4,-4)
_6 1
SOLUTION f(3x) is a sketch along the x-axis by factor % The points corresponding to P, Q, R, S

and T are shown in the table. Remember that (g, b)) — (%a, b).

f(x) f(3x)
P(4, —4) (3 -4]
ws | (1
R(—2,0) (-20] oo
5(3,0) (1,0)
T(6,0) 2,0)
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EXAMPLE 43

SOLUTION

EXAMPLE 44

Vertical stretch

If g is a function and h(x) = ag(x), where a # 0, the graph of / is that of g stretched
parallel to the y-axis by factor a. A point (p, g) on g maps onto (p, aq) on h.

Sketch the graph of f(x) = x* and hence, sketch 2f(x).

f(x) = x? is a quadratic curve with a minimum point at (0, 0).
Whenx =1,f(1) =12 =1

Whenx = —1,f(-1) = (-1)*=1

Whenx = 2,f(2) =22=4

Whenx = —2,f(=2) = (—2)* =14

= (0,0),(—1,1),(1, 1), (—2,4) and (2, 4) are on f(x).

y = 2f(x)
fx) 2f(x) o | [=r
(0,0) (0,0) 1
(-2,8) 8+ (2,8)
(=11 (=1,2) i
6,
(11 (1,2) 1
(-2,4) ¢\ 4 (2,4)
(=2,4) (=2,8) 1
1,2)\@ - (1,2)
(214) (218) (171) N (171) X
AR S D
_2*'

The curve shown in the diagram has equation y = f(x). There is a maximum point at
P(—2,0), a minimum point at Q(1, —4) and the curve cuts the x-axis at R(3, 0) and
the y-axis at S(0, —3). Sketch the graph of 3f(x) showing the coordinates of the points
corresponding to P, Q, R and S.

y = 3fx)
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SOLUTION 3f(x) is a sketch of f(x) parallel to the y-axis by factor 3. The y-coordinates of
corresponding points on f(x) are multiplied by 3.

f(x) 3f(x)
(—=2,0) (—=2,0)
0,-3) (0, —9)
(1,—4) (1,-12)

3,0 (3,0

Reflection in the x-axis

The graph of y = —f(x) can be obtained from the graph of y = f(x) by reflecting the
graph of f(x) in the x-axis.

EXAMPLE 45  The curve shown in the diagram has equation y = f(x). Sketch the graph of

g(x) = —f(x).
o y=fn
i X
Q T
SOLUTION g(x) = —f(x) can be obtained by reflecting f(x) along the x-axis.
,ky
] X

Reflection in the y-axis

The graph of y = f(—x) can be obtained from the graph of y = f(x) by reflecting the
graph of f(x) in the y-axis.
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EXAMPLE 46 The curve shown in the diagram has equation y = f(x). Sketch the graph of
y =f(=x).

Yo fy=fxn

] X
SOLUTION Reflecting the graph along the y-axis we get this

Ay

y=ftx)\ |
| X
T 07 T

EXAMPLE 47  The equation of a curve is given by g(x) = 2(x + 1)? — 3. Starting with the graph
of f(x) = x2, describe clearly the transformations that will give the graph of
g(x). Hence, sketch the graph of g(x), showing all the movements of the graph
of f(x) = x2.

SOLUTION flx) = %
flx+1)=(x+1)? This shifts the graph of

f(x) by 1 unit to the left. y=(x+1)72
2f(x + 1) = 2(x + 1)* This stretches the graph -,

of f(x + 1) along the yex

y-axis by factor 2. X
gx) =2f(x+1)—3 2 4 6

= 2(x + 1)> — 3 'This moves the graph

of 2f(x + 1) 4]
downwards 7
by 3 units. 6]
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EXAMPLE 48

SOLUTION

EXAMPLE 49

SOLUTION

Graphs of simple rational functions

Since this function is a linear function divided by a linear function, we can write f(x)
as a mixed fraction first.

2

x—152x+3
—(2x—-2)

5

2x+3:2+
x—1

Therefore, 2
x—1

Let g(x) = %
gx—1)= ﬁ
5¢(x — 1) = %
2+ 580 = 1) = 2 + 2, which is f(x).
The graph of f(x) can be obtained from the graph of g(x) by shifting g(x) by 1 unit to

the right, then stretching along the y-axis by scale factor 5, and finally by moving this
graph upwards by 2 units.

i
1
4
11
2x+3
yz2 2 ____i __________ =57
i i .
T T T T _|§% .I: T T T T T
2 1
1
-3 :
4
1
! 1
1
1lix=1
1
-1 _ 2
Use the graph of f(x) o to sketch the graph of g(x) PR

We need to look at the relationship between f(x) and g(x).
Now, x* + 2x + 1 = (x + 1)?

_ 1
Therefore, g(x) e
1 = L = 1
Since, flx) = e theznf(x + 1) e
+ frnd
2flx + 1) x+ 17

Therefore, g(x) = 2f(x + 1)
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The graph of g(x) can be obtained from f(x) by moving f(x) to the left by 1 unit and

Note stretching the new graph by scale factor 2 along the y-axis.
You will be doing y
more work on iy
curve sketching =1y
in the section on i3
applications of | 2
differentiation. 1\ T 2 M
1
5 3 10 123456
N
I
1
_|4 -
1
I
x=-1 : ]

x+1
x+ 2

flx) = % onto the graph of g(x). Hence, sketch g(x).

EXAMPLE 50  Given that g(x) = Describe the transformation that moves the graph of

x+1
SOLUTION e

By long division

1

x+2)x+1

—x+2
-1

x+1_
x+2

1

1= x+2

Starting with f(x) = %z

_ 1
fe+ =3
f(x +2) 'This is a shift of f(x) to the left by 1 unit.

Sl +2) = 545

—f(x +2) Thisis a reflection of f(x + 2) in the x-axis.

g)=1—fx+2)=1- e _}_ 3 This is a translation of 1 unit upwards of the
graph of —f(x + 2).

Note

The graph of f(x) = % is

N g
!

gy Lyym P
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EXAMPLE 51

SOLUTION

ax+b
ox+d

We first use division to write the fraction as a mixed fraction. Then we use the
transformations described previously.

Any graph of the form y = can be obtained from the graph of y = &

Describing all transformations clearly, sketch the graphs of:

_x+1
(@) y= x—2
(b) y= 2; _:_ 11, starting with the graph of y = %

Piecewise defined functions

When functions are defined differently on different parts of its domain, they are
called piecewise functions. Recall that the modulus function is defined by three
different equations as follows:

x ifx>0
X =10 ifx=0

—xifx <0
When evaluating 2| we use the part of the function for x > 0, that is [2| = 2. When
evaluating |-2|, we use the function defined for x > 0, that is —(—2) = 2.

The function fis defined by

—x+2 if—2=x<2
flx) = 4 ifx=2
; 2 ifx>2
(a) Findf(1), f(2) and f(3).
(b) Determine the domain of f(x).

(c) Sketch the graph of f(x).

(a) The equation for f(x) when x = 1is x + 2.
Therefore, (1) = —1+2=1
When x = 2, the equation is 4.
Therefore, f(2) = 4
When x = 3, the equation for f(x) is %xz
Therefore, f(3) = 3)2

(b) From the deﬁnltlon of f(x), the domain is x = —2.

(c) When sketching f(x), we draw the graph piece by piece.
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When -2 =x<2,f(x) =—x+2 When x = 2, f(x) = 4

4 y

\ X X
D
2

T T T T T T
6 -4 —2 0 4 6 % -4 2 9 2 4 &
_2_ _2_

4 4
_6_ _6_

2

When x > 2, f(x) = %

We put all of the above on one set of axes. This is graph of f(x):

6_f(X)
(-2, 4)‘ (234)
2
\ X
P S
_2_
_4-
_6_
EXAMPLE 52 If flx) = 2x + 2 if—1=x=<3 nd
P—x+1if3<x=5
(a) f(0)
(b) f(3)
(c) fr(n)
SOLUTION (a) Sincef(x) =2x+2,when-1=x=3

f0) =2(0) +2=2
163
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(b) Since f(x) =2x + 2, when -1 = x =3

f3)=23)+2=8

(c) Sincef(x) =2x+2,when -1 =x=3
f)=21)+2=4
Since f(x) = x* —x + 1,when3<x =5

fA) =42 —-4+1=13

EXAMPLE 53

SOLUTION

oooooooooooooooooooooo

The graph of a piecewise function is given below. Write a definition of a function.

4 (4,6)
61100

1

(2,48 4 i

i

- 1

1

T T T T ; T X
% 4 2 % 2 4 6

_2 -
_4 -
_6 -

For —2 = x = 0, the gradient of the line = _42__00 = —2.

Since the line passes through (0, 0), the equation of the line is y = —2x.

For 0 = x = 6, the gradient of the line = H = %

Since the line passes through (0, 0), the equation of the line is y = %x.
—2x if—2=x=0

Hence, f(x) = %x f0<x=<6

EXERCISE 6C

1 Onasingle clear diagram, sketch the graphs of these.

— A2
(a) y=x Ay

6 -

(b) y=(x+2)? ]
(€) y=2(x+2)?
d) y=2(x+2)?+3

2 The diagram shows the graph of y = f(x). On -6
separate diagrams, sketch the graphs of y = 2f(x)
and y = f(x) — 4. Your sketch should show
clearly the coordinates of the intersections with
the axes.
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3 Onasingle clear diagram, sketch the graphs of these.
@) y =
(b) y=|x+2]
() y=|x+2|+2

4 Given that y = 2x? — 4x + 6. Express y in the form a(x + b)? + ¢. Describe a
series of transformations which map the graph of y = x* onto the graph of
y = 2x* + 8x + 5. Draw each graph on the same diagram.

5 Showthaty = jcc i % can be written in the form A + % where A and B are
constants to be found. Describe the series of transformation which map the
graphof y = % onto the graph of y = z i ; Hence, sketch the curve y = % I é

6  The diagram shows the graph of y = f(x). The 00
curve passes through the origin and the point B 1
with coordinates (b, 0), where b > 0. Sketch, i
on separate diagrams, the graph of these. i
(@) y=f(x+0) J B/x

T 07 T b
(b) y=[fx)] ]

7 Sketch the graph of f(x) = —. Hence, sketch |
these. 1
(@) flx—2)

(b) f(x) —2
(0 2f(x) =3

8  Onasingle diagram, sketch the graphs of these.
(@) y=|x—1|
(b) y=2x—1|

(c) y=2|x— 1+3
9 The equation of a curve C is given by y = 3x + 1 . Write the equation in the

formy = A t 13 B 5 Describe the series of transformat1ons which map the

graph of y = 3x _:_21 onto the graph y = %
10 Sketch the graph of y = % (Hint: Look at the relationship with
1,
Y=z
11 Sketch the following graphs.
(a) y=2=2

4x2 + 4x + 2
b = e ——
®) ¥y =t ar 1

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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SUMMARY

—

A function ffrom a set Ato a set B
assigns to each a € A a single element
f(a) in set B. The element in set Bis
called the image of a under f. The set

A s called the domain of the function,
the set Bis called the codomain of the
function. The range of the function is
the set of elements that are the images
ofacA.

A function can be described:
(i)  using an arrow diagram
(i) as a set of ordered pairs
(iii) usingagraph

(iv) by aformula

(v) by listing values.

¥

Vertical line test: If a line drawn
parallel to the y-axis cuts the graph
at most once, the relation is a function.

X

Not a function Function

Functions

.

One-to-one (injective): A function

f: X—Yis injective iff every element of
Y is mapped onto by one and only one
element of X. (No two x-values can
have the same y-image).

To show that f(x) is one-to-one:
Method 1:If fla) = f(b) = a = b, then
f(x) is one-to-one.

Method 2: A line drawn parallel to the
x-axis on the graph of f(x) must cut f(x)
at most once.

v

Onto (surjective): A function f: X— Yis
surjective iff every y is mapped onto
by at least one x.

v
For a surjective function the codomain
and the range must be the same.

To show that f(x) is onto: a line drawn
parallel to the x-axis must cut f(x) at
least once if f(x) is onto.

v
Bijective: A function f: X — Y'is bijective
iff it is one-to-one and onto.

.
v

Inverse functions: The inverse of f(x) is
denoted by £~ (x). f~1(x) exists iff f(x) is
one-to-one.

v
Domain of f(x) = range of f~'(x)

Range of f(x) = domain of f~(x)

To sketch f~1(x): reflect f(x) in the line y = x.

v
) = F'f(x) = x

v
For gf(x), the range of f is the domain of g.
v
Graph of y = ||
y

o »

Graph of y = %

If w > 0 for b > a, then f(x) is increasing
in [a, b].
If w < 0for b > a, then f(x) is decreasing
in [a, b.

v

Sketching graphs from y = f(x):

(i) f(ax): stretch along the x-axis by
factor L.

(i) af(x): stretch along the y-axis by
factor a.

(ii) f(x + a): shift to the left by a units if
ais positive and a shift to the right
by a units if a is negative.

(iv) f(x) + a: shift upwards by a units if a
is positive and a shift downwards
by a units if a is negative.

(v)  f(—x): reflect f(x) in the y-axis.
(vi) —f(x): reflect f(x) in the x-axis.

(vii) |f(x)|: reflect anything below the x-axis
to above the x-axis, the section of the
curve above the x-axis remains as it is.

Graphof y = %2
y Y
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Checklist

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Can you do these?

Bl Decide whether a relation is a function.

M Identify the domain of a function.

M Identify the range of a function.

[l Show that a function is one-to-one (injective).

@ Show that a function is onto (surjective).

B Show that a function is bijective (both one-to-one and onto).

B Find the inverse of a function.

B Understand the relationship between a function and its inverse.
B Find a composite function.

B Define functions as a set of ordered pairs.

Bl Define functions as a formula.

B Plot and sketch functions and their inverses (if they exist).

M State the geometrical relationship between a function and its inverse.

B Perform calculations using functions.
fla) — f(b)

B Identify increasing and decreasing functions, using the sign of pa—

where a # b.

B Understand the relationship between the graph of y = f(x) and y = af(x) and
sketch these graphs.

B Understand the relationship between the graph of y = f(x) and y = f(x).

B Understand the relationship between the graph of y = f(x) and y = f(x + a).
B Understand the relationship between the graph of y = f(x) and y = f(ax).

B Understand the relationship between the graph of y = f(x) and y = af(x + b).
B Understand the relationship between the graph of y = f(x) and y = |f(x)|-

B Graph a rational function.

M Identify a piecewise defined function and its values.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Review Exercise 6

1

For each of the following relations, state which relation defines a function. If the
relation is not a function, give a reason.

(b)

~~
o
N

/

A

el

(d)

—~
a
~

()

Which of the following relations are functions? If any of the relations is not a
function, give a reason.

(@) {(1,5),(2,10),(3,15), (4,20)}  (b) {(2,2),(4,2),(=2,6),(3,8)}

(c) {(4,5),(5,6),(6,7),(6,8)} (d) {(a, b), (c, d), (¢, ), (fs &)}

A function fis defined by f: x — 4x — 3. What are the images of 4, —3, % and %1
under f?

Given the function f: x — 4 — %x, evaluate the following:
(@) f(1) (b) f(2)
(c) £(0) (d) f(4)

Given the functions f: x = 3x — 7,x € Rand g: x = 4x + 2, x € R. Find the
following.

(a) f(0) +¢g(2) (b) 2/(3) +¢g(1)
(0 2f(1) —3¢(2) (d) 4f(=1) + 3g(-2)

Given the function f(x) = %x + %and glx) = gx + % Find the value of x for
which

(@) fx) =gk (b) f(x) = ix
(0) f(2x) = 3¢(x) @ f(3%) = e[}

Sketch the graphs of the following functions on separate diagrams and state the
range in each case.

(@ fix—>4x+1,2=x=2 (b) fix—>2—-3x,-1=x=1

(0 fix—>2+xx=1 (d fix—>-3x+6,x=0
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11

12
13
14

15

16

17
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State the domain and range of the following functions.
(@) flx)=x>—4

b) fx)=x*+2x+3

() flx)=—4x>+x+1

(d) f(x)=—x*—3x+5

(a) State the minimum value of f(x) = 3(x — 2)? + 1 and the corresponding
value of x.

(b) Sketch the graph of the function f: x — 3(x — 2)? + 1 for the domain
—3 = x = 3 and write down the range of the function for the
corresponding domain.

Determine the domain and range of the following functions.

(a)y=1—%

. dx + 2
(b) f.x—)—x_3

() frx—>Vx—4

If frx—6x+ 2and g:x — 7x — 1, find the composite functions fg and gf.
What are the values of fg(0), fg(—2), gf(0), gf(—2)?

If g: x — x + 3, find the function & such that gh: x — x> + 3x — 2.

x+1
x+2

(forx # —1)and g: x — 4x — 2.

If f: x = 4x — 2, find the function g such that fg: x —

The functions fand g are such that f: x — P i i

(a) Find these in similar form.

W fg (i) gf
(b) Show that there are two real distinct solution to the equation fg = gf.

Functions fand g are defined on the set of real numbers by f: x ~ 13 6 —pXF k,
andg:x — 5x — 3.

(a) State the value of k.
(b) Express these in a similar form.
0 g (i) ')

(c) Evaluate fg~!(4).

4x + 1
3x — 2

A function is defined by f: x —
similar form. Find the value of

foranyx € R, x # % Expressf "'ina

@ f7'@ ®) £(3)
() ff(4).
Functions fand g are defined by f: x " 2 “pxFlgix— Ax? — 1, where \ is

a constant.

(a) Given that gf(3) = 5, evaluate \.

ax+ b

(b) Express f(x) in the form 4

, stating the values of g, b, c and d.
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18

19

20

21

22

23

24

Functions fand g are defined as:

fix—>3x—2,xeR

g: x% 2 T XE R, x#2

() Fmd fland g7}, stating the value of x for which g~ ! is undefined.
(b) Find the values of x for which fg(x) = x.

(c) Sketch the graphs of fand f ~! on the same diagram, showing clearing the
relationship between the two functions.

Functions fand g are defined by f: x ~1r3 3 T X #kandg:x—2x + 1.

(a) State the value of k.

(b) Express fg in similar form, and state the value of x for which fg is not defined.
(c) Find f~!(x).

(d) Find the value of a for which f ~!(a) = g(4).

Function fand g are defined by f: X—= 4x Topr*l andg:x —% + )\,x # 0.
(a) Find f !in a similar form.
(b) Given that gf ~1(5) = 5, calculate the value of \.
(a) Express 3x* + 12x + 5 in the form a(x + b)> + ¢ where a, b and c are

integers. The function fis defined by f: x — 3x* + 12x + 5 for x € R.

(i) Find the range of f.

(ii) Explain why fdoes not have an inverse.
(b) The function g is defined by g: x — 3x* + 12x + 5 for x = k.

(i) Find the smallest value of k for which g has an inverse.

(ii) For this value of k, find an expression for g~!

4x —1, —3x=x<2
Iff(x) ={2x+5, 2=x<4 ,find the following.
X +3, x>4
(@) f(1)
(b) f(3.5) fx)
(c) f(5)
(d) ﬁ(%) ;1: (4,4)
The graph of a piecewise function is given ’ 7 .
below. Write a definition for the function. D S Y B Y
Sketch the graph of the following function. :§:
1+x ifx>0 ~4

f®) :{x2+2, ifx=0
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CHAPTER 7
Cubic Polynomials

©00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

At the end of this chapter you should be able to:

Bl Connect the roots of a cubic equation and the coefficients of the terms in the
equations

B Find a cubic equation, given the roots of the equation

M Find o? + B? + ¥2, & + B° + ¥? etc. where @, B and 7y are the roots of the
equation

B Solve application problems using inequalities

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0

KEYWORDS/TERMS

roots  cubic equation « coeflicients
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EXAMPLE 1

SOLUTION

Review: Roots of a quadratic and the coefficient
of the quadratic

(i) Let a, B be the roots of ax® + bx + ¢ = 0.
a+B=_TbandaB=%
(ii) The quadratic equation is:
x* — (sum of the roots)x + (product of the roots) = 0

(iii) o? + B> = (a + B)? — 2ap

Given that a and 3 are the roots of 3x> — 6x + 12 = 0, find a quadratic equation
with roots

@ @p
(b) o p

(a) 3x2—6x+12=0
—b_ —(=6) _
@ -3 ~2

a+ pB=
af3 =

Sum of the roots =

Qe

3 B+
o
+ B

NS
N

Q— M=

Product of the roots = (l) =1
@) (5) = a8
-1
4
This equation is:
x* — (sum of the roots)x + (product of the roots) = 0
21 1 _
X 2x + 1= 0
452 —2x+1=0
(b) Sum of the roots = a? + 32
=(a+ B} —2aB
=(2)> —2(4)
—4-8=—4
Product of the roots = o? 3
= (aB)?
= (4)2

=16
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Given a cubic
equation ax® +
bx*+cx+d=0
with roots «, B
and y:

(i) sum of the
roots 7) at+ B+
Y= a

(i) sum of the
product of two of
the roots at a time
=af+ By + ya
-

(iii) product of
the roots =

apy=—g

EXAMPLE 2

SOLUTION

The equation is:
x* — (sum of the roots)x + (product of the roots) = 0
X —(—4)x+16=0

x> +4x+16=0

Cubic equations

A cubic equation with real coefficients has three roots that can be classified as:
(i) all three real or

(ii) 1 real and 2 not real.

Let a, B and 7 be the three roots of the equation ax® + bx* + cx + d = 0.
b d

34,02, C a
=x° + x+ax+a

a =0

Thenx = a,x=Bandx =y
Sx—a)x—B)x—7y)=0
S —-—ax—Bx+aB)(x—17y) =0
=00 -y —ax? + ayx — B+ Byx + afx — aBy =0
Combining terms gives:
x> = yx? — ax? — Bx* + ayx + Byx + afx — afy =0
P—(a+ B+ x>+ (aB+ By+ ay)x—aBy=0

b d

Comparing coefficients with x> + 2x2 + £x + £
—(a+[3+y)=%:>a+[3+y=_7b
af + By + ya :%

—(apy) = = apy="1

Given a, 3, y are the roots of a cubic equation we can obtain the equation using:

= 0 we have:

x*> — (sum of the roots)x? + (sum of the product of two of the roots at a time)x
— (product of the roots) = 0

Given that 4x*> — 3x? + 2x + 1 = 0 has roots a, 8 and v, find
(@) a+B+y

(b) aB+ By + ya

(c) apy

43 —3x2+2x+1=0

Since the roots are @, 8 and vy, we compare with ax®> + bx? + cx + d = 0 where
a=4,b=—-3,c=2andd=1.
_—b_ _(=3)_3
173



EXAMPLE 3

SOLUTION

EXAMPLE 4

SOLUTION

EXAMPLE 5

SOLUTION

174

() apy=92-—1-3

Let a, B and 7y be the roots of the equation 7x> + 2x* — 14x + 4 = 0.
Find

(@) a+p+y

(b) aB+ By + ya

(c) apy.

753+ 2x2— 14x+4=0

a=7,b=2,c=—14,d=4
_—b_ -2
(b) aB-l—By—i—ya:%:_TM:—Z

(c) apy="42=4

a, B and vy are the roots of the equation 3x?> = 4x*> — 1. Find
(@) a+B+y
(b) apy.

Writing the equation in the form ax® + bx? + cx + d = 0 we have 4x* — 3x2 — 1 = 0,
wherea=4,b—3,c=0andd = —1.

@ a+p+y=p="GD-3
b apy=2="D-1

Given that 7x*> — 4x? + 2 = 0 has roots «, 3 and v. Find
(@) @+p+7¥
b) o+ p+ 7

1 1 1
(c) a+§+7
Since the roots of 7x> — 4x?> + 2 = 0 are a, B and
_ (=4 _4
aB+By+‘ya=%=0
apy =2
(a) @+ B+ y=(a+B+ 7>~ 2aB+By+ ya)
_ (4\2 _
=7/ 20
=16
49
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(b) Sincex = a,7a® —4a*+2=0 (1]
x=B78 -4 +2=0 2]
x=1v 7YV —4Y+2=0 (3]
7+ B+ y) -4+ +vy)+6=0 [1] + [2] + [3]
16

Substituting &” + B> + ¥* = 45
=70+ B+ ) _4(411_8)+6=0

=7+ +y) =% 6

49
_ =230
49
N 3 _ —230 _ —230
R e e S VAR Tk
1,1 1_pBytyatap _ _ =2
(c) a+,8+7 B v Use af + By + ay = 0and aBy = —
- 0 _
2 0
7
Notation

We can represent the relationships between the roots like this.
at+B+y= Ea

aB+ By + ay= 2 ap

A+ P+ Y= Eaz

A+ B+ Y= 2&3

This leads to:

2
Eaz = Ea - ZE(aB)

Using this notation, if l, % and %, are the roots of an equation, then:
E: 1 _ 1 1 1

1 1 1 1

2 =21 41 41
E & & By

Let a + B + 7y be the roots of a polynomial.
(@a+B+yP=(a+t Bty latp+y)’
=(a+ B+y) (2 + B+ ¥ +2aB+ 2By + 2ay)
=+ af? + ay? + 2028 + 2aBy + 2a%y
+a2B+ B+ By + 2o + 2%y + 2aBy

+ 2y + By + ¥+ 2aBy + 2By + 2ay
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=+ B+ Y +3ap*+ 3ay? + 3By + 3a?B + 3’y
+ 38%y + 6aBy

=(@+ B+ 9)+3BY(B+ v + 3af(a+ p)
+ 3ay(a + y) + 6aBy

=(@+ B+ y)+3Bya+ B+ 7y —3aBy+3apla+ B+
—3aBy + 3ay(a+ B+ ) — 3aBy + 6aBy

=@+ B+ Y)+(a+ B+ 7y BBy +3aB + 3ay) — 9aBy
+ 6afy

= (& + B+ 7)) +3(a+ B+ y)(aB+ ay+ By) — 3aBy

Hence, (&* + B2+ ¥) = (a+ B+ ) —3(a+ B+ v)(aB + ay + By) + 3aBv,
which can be written as

S [Sal S0 S gt S sy

EXAMPLE 6

SOLUTION

Note

Recall that
a+,8+'y=—g
apB+ By+ay=
__ d
aBy=—g

4

a

Given that 7x*> — 4x?> + 2 = 0 has roots «, B and v, find o® + 8° + +°.

Wecanuse (& + B2+ ) =(a+ B+ y)?—3(a+ B+ y)(aB + ay+ By)
+ 3aBy.

Since 7x°> —4x2+2=0

a+,8+y=%
af+ay+ By=0
apy= 22

Substituting into (&®> + B> + ¥)) = (a + B+ ) — 3(a + B+ y)(aB + ay + By)
+ 3afy gives:

2t B {0 o

EXAMPLE 7

SOLUTION

Given that the cubic equation ax® + bx* + c¢x + d = 0 has roots 2, 3, and 4, find 4, b,
cand d.

We can solve this problem by using two different methods.

Method 1

Remember that given the roots of a cubic equation, we can obtain the equation by
using:

x> — (sum of the roots)x? + (sum of the products of two of the roots at a time)x
— (product of the roots) = 0

(This was derived from the expansion of (x — &) (x — B) (x — y) = 0, where «, 3
and vy are the roots.
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EXAMPLE 8§

SOLUTION

Sum of theroots =2+ 3 +4=9

Sum of the product of two roots at a time = (2)(3) + 2(4) + 3(4)
=6+8+12=26

Product of the roots = (2)(3)(4) = 24

.. the equation is

x*> — (sum of the roots)x?> + (sum of the product of two of the roots at a time)x —
(product of the roots) = 0

=X —9x2+26x—24=0
Hence,a=1,b= —9,c=26,d = —24.

Method 2

Since the roots are 2, 3 and 4, we know that:
(x—2)(x—3)(x—4)=0
=x—-2)x*—-7x+12)=0

=S -7+ 12x—2x + 14x — 24 =0
=x3—9x*+26x—24=0
Hence,a=1,b= —9,c =26,d = —24.

1

Find the cubic equation where roots are > —1and 2.
Sum of the roots =%— 1+ 2 =%
Sum of the product of two of the roots at a time = (%)(— 1) + %(2) +(=1)(2)
__1 _
=75 +1—2
- =3
2

Product of the roots = (%)(— 1)(2)
=-1
We can obtain the equation by using:

x*> — (sum of the roots)x?> + (sum of the product of two of the roots at a time)x —
(product of the roots) = 0

.. the equation is x*> — (%)x2 + (_73)x —(-1)=0

:>x3—%x2—%+1=0

=23 —3x2—-3x+2=0
Alternative solution:
Since the roots are %, —1 and 2, we know that:
(x - %)(x +1D)(x—2)=0
_ 12 9=
= (x 2)(x x—2)=0
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EXAMPLE 9

SOLUTION

s -2-2x—i2+let1=0

2 2
:>x3—%x2—%x+1=0

=23 —-3x2—-3x+2=0

11
B

Find the cubic equation where roots are
33— x> =2x+1=0

Since 3x> — x> — 2x + 1= 0 has roots @, B and y

apy=3
1,1, 1_aoBtBytya
Weneedtoﬁnda—i-B—i- 7= aBy
=2
-3 _
1 2
3

y+ta+ B

laﬁv

3o

1\//1\/1 1 3
and(z)(5)(3) = 55
_1

-1
3

.~ sum of the roots = 2
Sum of the product of the roots = —1

Product of the roots = —3
1

and %, where a, B and vy are the roots of

(Sum of the roots)

(Sum of the products of
two roots at a time)

(Product of the roots)

Hence, the equation where roots are 1 and %, isx®>— (2)x*+ (—1)(x) — (=3)=0.

@B

=X -2%2—x+3=0

Alternative solution:

Letyzjlc,xZ%
Substituting%=xinto 3x° — x2 — 2x + 1 = 0 gives:
1) _ (1} _,(1 -
33 =52+ =0
3 1 _2
3 _1_247-
¥y
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EXAMPLE 10

SOLUTION

Since x = «, B, y,theny=%=é,%,%

Therefore, the equation 3 — y — 2y + »* = 0 has roots é, %, %

The roots of the equation x> + 5x*> + 5x + 7 = O are p, ¢, and r.
Find the equation where roots are (p + 3), (g + 3) and (r + 3).

Given that p, ¢, and r are the roots of x> + 5x% + 5x + 7 = 0

We need to find

(Pp+3)+(q+3)+(r+3),(p+3)qg+3)+(@+3)(r+3)+(g+3)(r+3)and
(p +3)(q + 3)(r + 3)

Now(p+3)+(@q+3)+@r+3)=p+q+r+9
=—-5+9
=4
(p+3)g+3)+(p+3)(r+3)+(q+3)(r+3)
=pq+3p+3q+9+pr+3p+3r+9+qr+3qg+3r+9
=(pqt+pr+qr)t+o6(p+qgt+r +27 (Combining terms)
=5+ 6(—5) + 27
=2
(p+3)g+3)(r+3)=(pq+3p+3g+9)(r+3)
= pqr + 3pq + 3pr + 9p + 3qr + 9q + 9r + 27
=pqr+3(pg+pr+qr)+9p+q+r +27
=7+ 3(5) + 9(—5) + 27
= =7+ 15—45+27
=—10

The equation with roots p + 3,9 + 3and r + 3is x> — (4)x*> + 2(x) — (—=10) =0
=S —4x?+2x+10=0

Alternative solution:

Lety =x + 3.

=>x=y—3

Substituting x = y — 3 into the equation x> + 5x? + 5x + 7 = 0 we get:

(y—3)2+5(p—3)2+5(p—-3)+7=0
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EXAMPLE 11

SOLUTION

EXAMPLE 12

SOLUTION

Y =927y —27+5(02 —6y+9) + 55— 15+7=0
=y —472+2y+10=0

(Expanding brackets)

Since x = p, g, r are the roots of the equation and y = x + 3 = the roots of the
equationin yarep + 3,9+ 3and r + 3.

If the roots of the equation x* — 6x? + 3x — 30 = 0 are @, 3 and 7, show that an
equation whose roots are « — 3, 8 — 3and y — 3is x> + 3x* — 6x — 48 = 0.

Hence, find X (a - 3)%

¥ —6x*+3x—30=0

Lety=x—3, . x=y+3.

Substituting x = y + 3 into the equation above we get:

(y+3P3—6(y +32+3(y+3)—30=0

Expanding gives:

+3)p?+6y+9)—60p*+6y+9) +3y+9-30=0

=y’ +6)2+9y+32+ 18y +27— 6> =36y —54+3y+9—-30=0
= +3)2 -6y —48=0.

Since y = x — 3,and x = @, x = B, and x = vy, then the equation in y has roots

a — 3, B — 3 and y — 3. Hence, the equation with roots « — 3, 8 — 3and y — 3 is
Y432 —6y—48=0

This is equivalent to x> + 3x> — 6x — 48 = 0.

From this equation we have:

E(a—3)(ﬁ—3)(y—3)=—@=4g

2
Dla-3r= (E(a ~ 3)) 2D (a—3)(B—3) = (=3)> — 2(-6) = 21

The cubic equation 2x> — 3x* + 4x + 6 = 0 has the roots &, 3, and 7. Find the values of

(@ z+5+3

(b) aiﬁ+%+%

(a) 26° —3x2+4x+6=0
atpry=-3)=3
a,B—i—,B'y-i-'ya:%ZZ

apy=—$- 3
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EXAMPLE 13

SOLUTION

2,2 ,2

(b) Wewritea+ﬁ+7intermsofa+[-}+y,aB+ay+,By,aBy.
2,22 2By) +2(ya) + 2(ap)
@® B 7 aBy
_ 2[aB + By + ya]
aBy
22 _ 4
3773
| 1 1. .
(c) Wewrltea—'8+W+W1ntermsofaﬁy,a+,B+y,and aB + By + ya:

+ o+
1,1 .1 _7rta B

aB By & aBy

The cubic equation x> + 3x? — 4x + 2 = 0 has roots &, B and 7y . Find the following.
(@) @+ p+7
(b) o+ 5+ y

(c) a3133 +B31 S+ yalay

(a) ¥+3x2—4x+2=0

a+B+7::$L:_3 D=3
af+ By +ya="2=—4 Dap=-4
apy=—2 =

Now:

' 2
Eaz = Ea - 22(1,8
20 = (=3~ 2—4)
=9+8
=17
Hence, o + 32 + v* = 17.

(b) Replacing x = a, x = B, x = 7y into the equation, we get:
@ +3a>—4a+2=0
B +38—4B+2=0
Y+3¥—4y+2=0
Adding the above three equations gives:

A+ B+ Y +3a?+38+3yY —4a—4B—4y+2+2+2=0
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D3 Dar—4Dat6=0

= D & +3(17) —4(~3) + 6 =0

D = —69

1

I _prap
a3 BS ,),3
_ =69
(=2)°

_ 6
8

(c) a3IB3 + By + Vo -

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o

SUMMARY

Cubic polynomials

e

Quadratics

v

Let &, B be the roots of the equation
ax2+bx+c=0

a+tB=2ap=%

\ g

Given the sum of the roots and the
product of the roots the equation is:
X2 — (sum of the roots)x +

(product of the roots) = 0

v

a2+[32=(a+,3)2—2a,8

v

@ =p= (= ple+p)
) 4
(@-P)?=(a+P)?- 408

v

If > B, (a—P) is positive

Checklist

Cubics

v

Let , B,y be the roots of
ad+bx2+cx+d=0

a+B+'y=%
4
af+Bytya=g

al37=—%

v

@+ H+y2= @+ B+y)2=2ap + By +7d)
orY e =(Sa - 2¥ap

|
v

Sa?=(Ya) - 3(Sa) Sap) + 38y
4

The cubic equation is:

x3 = (sum of the roots)x? + (sum of the
product of two of the roots at a time)x —
(product of the roots) = 0

©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00

Can you do these?

Bl Connect the roots of a quadratic and the coefficients of the quadratic equation.
B Form quadratic equations.

Bl Connect the roots of a cubic and the coefficients of the cubic equation.

B Find a cubic equation, given the roots of the equation.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o
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Review Exercise 7

1

10

11

Given that a and B are the roots of the equation 2x* = 3x — 5, find
2B+1 2a+1

. e B
(b) the equation whose roots are B 1 and S T 1

Given that a and 3 are the roots of the equation 2x> — 5x + 7 = 0, find the
equation whose roots are a + é and B + %

If @ and B are the roots of the equation 3x> = —(2x — 1) and a > B. Calculate
(@) o+ B+ 2ap

(b) ot = B*+ o — B

(a) the numerical value of

If @, B and y are the roots of the equation x> — 10x + 6 = 0, find the values of
the following.

@ a+B+y
©) o+ B+ ¥
© o+ B+ Y

If @, B and y are the roots of the equation 2x> — x> — 10x — 6 = 0, find the
values of the following.

@ atpty

(b) a2+ B+ 5

© o+ Bty

The roots of the equation x*> + 4x + 1 = 0, are p, g and r.
(a) Show thatp? + ¢*> + 2 = —8.

(b) Find p? + ¢> + 7.

Given that a, B and vy are the roots of the equation 2x* — 4x* + 6x — 1 = 0,
find the equation with roots &, B

Given that the roots of the equation x*> + ax?> + Bx + y = 0 are —2, —3 and 4,
find the values of , B and 7.

The roots of the equation x> + 6x? + 10x + 14 = 0 are , B and . Find the
equation whose roots are:

(a) a? B?and y?

(b) a+3,B+3andy+ 3

The roots of the equation 3x*> — 4x> + 8x — 7 = 0 are , B and . Find the
equation whose roots are é, F ¥
The roots of the equation 2x*> — x*> + 10x — 6 = 0 are @, B and .
(a) Writedown a + B8 + .

(b) Find the value of & + 2 + .
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12

13

14

15

(c) Given that 98% + 99> = 3202, and that «, 7y are both negative and B is
positive, find the exact values of «, Band 7.

The cubic equation x* + ax? + bx + ¢ = 0 has roots @, Band 7. Given that
a+B+y=60a>+ B+ =14and o’ + B + v} = 36, find the values of
a,bandc.

The cubic equation x*> + ax? + bx + ¢ = 0 has roots @, Band 7. Given that
a+B+y=0,a>+ B+ 9y =14and o® + B° + v = 18, find the values of
a,bandc.

The roots of the equation x* — 6x + 3 = 0 are , 3 and 7. Find the equation
a+1 B+l L y+tl
@ p and 7
If @, B and y are the roots of the equation x> — 2x? + 4x + 5 = 0, find the cubic
equation for each of these sets of roots.

with roots

(a) 2a,2Band 2y

(b) é, % and%,
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CHAPTER 8
Inequalities and the Modulus Function

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

At the end of this chapter you should be able to:
B Solve linear inequalities

B Solve quadratic inequalities

ax+b>0

B Solve inequalities of the form xt d

B Solve modulus inequalities

B Define the modulus function

B Use the definition of the modulus function to solve equations
B Identify the properties of the modulus function

B Use the properties to solve modulus equalities and inequalities
B Use the triangle inequality

B Solve application problems involving inequalities

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

KEYWORDS/TERMS

modulus e absolute values o triangle inequality o
inequalities » sign table « zero of the function
linear inequality « quadratic inequality « modulus
inequality
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EXAMPLE 1

SOLUTION

An inequality is a relationship of numbers connected by less than (<), less than or
equal to (=), greater than (>), or greater than or equal to (=). A solution for an
inequality is any number satisfying the inequality. An inequality typically has an
infinite set of solutions and the solution set is given in an interval using set brackets.
For example {x: x < 2} represents the set of values of x less than 2.

Theorems of inequalities

Theorem 1
Ifa>b,thena+c>b+c

We may add the same number to both sides of an inequality without changing the
direction of the inequality.

For example, if x > 5, thenx + 2> 5 + 2.

=Sx+2>7

Theorem 2
Ifa > band ¢ > 0, then ac > bc.

We can multiply two sides of an inequality by a positive number and the inequality
sign remains the same.

For example, if, x > 2 then 2x > 4.

Theorem 3
Ifa > band c <0, then ac < bc.

When we multiply both sides of an inequality by a negative number, the inequality
sign reverses.

For example, if a > b then —3a < —3b.

Theorem 4

1

Ifa>b,then%<5.

Quadratic inequalities

To solve ax? + bx + ¢ > 0, a # 0, we can graph the function f(x) = ax? + bx +cand
identify the values of x for which the curve is above the x-axis.

To solve ax? + bx + ¢ < 0, a # 0, we can graph the function f(x) = ax* + bx + ¢
and identify the values of x for which the curve is below the x-axis.

Find the range of values of x for which x — 3x + 2 < 0.

Let us sketch the graph of f(x) = x> — 3x + 2.
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EXAMPLE 2

SOLUTION

When solving quadratic inequalities, we can sketch the graph by identifying the
coordinates of the turning point, and read off the solution set.

When x = 0, f(x) = 2.

.. (0, 2) is on the curve.
fx)=0=>x*—-3x+2=0
x—1Dkx—-2)=0
=>x=1x=2

. (1,0) and (2, 0) are on the curve.

The graph has a minimum point for:

_—(=3)_3
T 2
=3 3= (3) =33 -9_9
Whenx=3, f(3]=[3] ~3(3) +2=3 -3 +2 y
) fx) = x>=3x + 2
. . 31
Minimum point at (5, 4) .
: , ) o 17
Since we are solving x> — 3x + 2 < 0, we look where
the graph is negative.
The graph is negative for —1 < x < 2.
S 1 <x <2}
Find the range of values of x for which 2x? < 3x + 2.
Rearrange the inequality so that all the terms are on one side.
2x* <3x+2
=2x2-3x—2<0
We sketch f(x) = 2x* — 3x — 2. Ay
When x = 0, f(0) = —2.
.. (0, —2) lies on the curve.
flx) = 2x=3x -2
When f(x) =0, 2x2—3x—2=0 - X

S2x+1)x—-2)=0

=2x+1=0, x—2=0

__1 _
=x= 2,x—2
(= %, 0) and (2, 0) lie on the curve.
.. . _—b_ —(-3) _3
The curve has a minimum point when x = - = = 20) T
3\ _ (3P _ 2(3) _,_ —25
A3)=243 -33) 2=
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EXAMPLE 3

SOLUTION

Therefore, the minimum point is at (—, —=2,

2x2—3x—2<0

flx) <0

The curve is negative when it is below the x-axis

This is when_T1 <x<2.

{x:_Tl<x<2}

Solve the inequality —x? + 4x — 3 > 0.

Let f(x) = —x> + 4x — 3
When x = 0, f(0) = —3.
~.(0, —3) is on the curve.
Whenf(x) =0, —x>+4x—3=0 > 1/\3 d
=S —-(x—1)x—3)=0 /

=x=1,x=3

fx) =—x*+4x-3
. (1,0) and (3, 0) are on the graph. \

Since the coefficient of x? is negative, there is a maximum point when

f2)=—(2)*+4(2) -3
=—4+8-3
=1
Maximum point is at (2, 1)
Since we are solving f(x) > 0, we look for where the curve is above the x-axis.
Thisis 1 <x < 3.
Sl <x <3}

Sign table

The critical values of a function are the values of x for which the function becomes
zero or infinity. Critical values of a function f(x) can be found by solving f(x) = 0. If

gﬁi)), critical values of f(x) are found by solving P(x) = 0

and Q(x) = 0. These values are also called the zeros of the function.

the function is of the form
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EXAMPLE 4 Find the critical values of f(x) = 211,
SOLUTION The critical values of f(x) occur at:
2w+ 1=0=x=21

andx—1=0=>x=1

We can use the critical values of f(x) to solve inequalities by drawing up a sign table.
A sign table consists of the factors of f(x), non-overlapping intervals for x using the
zeros of f(x) and the sign of each factor and f(x).

EXAMPLE 5 Find the set of values of x satisfying x> — 5x + 4 < 0.

SOLUTION Let us use a sign table.
X} —=5x+4<0
Sk —4Hx—-1)<0
o x =4, x = 1, for the critical values.

The critical values of f(x) are x = 1, x = 4, in ascending order. Identifying the critical
values on a number line means we can set up non-overlapping intervals for x.

1 4
xX—4 x—1 (x—4)x—1)
x<1 —ve —ve +ve
1<x<4 —ve +ve —ve
x>4 +ve +ve +ve

To check the sign of x> — 5x + 4 we use one value of x in each interval and check the
sign of each factor and then the sign of the product.

In the interval x < 1, using x = 0 we see that x — 4 is negative and x — 1 is negative.
SLx—4)(x—1)=—ve X —ve= +ve

Since we are interested in x> — 5x + 4 < 0, we can see that this occurs in the interval
1 <x<d4.

.. the solution set is {x: 1 < x < 4}.

EXAMPLE 6 Solve the inequality 12x* — 5x — 2 > 0.

SOLUTION Factorising the function gives:
12x2 —=5x —2>0

= x+1)(Bx—2)>0
( ) 189
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Finding the zeros we have:
(4x+1)Bx—2)=0
=4x+1=0, 3x—2=0

Place the zeros on a number line in ascending order:

< >

10 2
4 3
Sign table:
4x + 1 3x—2 (4x + 1)3x— 2)
x < _T1 —ve —ve +ve
=1 2 _ _
7 <x< 3 +ve ve ve
X >% +ve +ve +ve

We can use one value of x in each region to test the sign of the function.
For x < —%, ifx=—1:

dx+1=4(-1)+1=-3

—3<0
Therefore, 4x + 1 is negative when x < —%.
Also, if x = —1:

3x—2=3(—-1)—2= -5
—5<0

When we find the product of (4x + 1)(3x — 2), we get a positive value.

Since we are interested in 12x> — 5x — 2 > 0, there are two regions where this
occurs:

ser<Plulxx>2]

EXAMPLE 7

SOLUTION

Find the range of values of x for which x> + 2x — 3 = +12.

Bring all the terms to one side of the inequality:
¥ +2x—3=12

=x+2x—15=0

Factorising gives:

x+5((x—3)=0
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Remember

Make the function either greater than or less than zero.

Finding the zeros of the function gives:
x+5=0 x—3=0
=>x=—5x=3

Place the zeros on a number line in ascending order:

-5 3
Sign table:
x+5 x—3 (x + 5)(x — 3)
x<-5 —ve —ve +ve
—5<x<3 +ve —ve —ve
Xx>3 +ve +ve +ve

Since we are interested in x*> + 2x — 15 = 0, we must include the end points as part
of our solution set.

S x= -5} U {x:x =3}

Try these 8.1

(a) Find the values of x for which 3x < x? — 4.

(b) Find the values of x for which 6x> — 11x — 7 = 0.

Rational functions and inequalities

EXAMPLE 8

SOLUTION

Find the range of values of x for which P _’f_ 7> 0.

The critical valuesof xarex =0, x + 1 = 0= x = —1.

Place the critical values of x on the number line in ascending order.

Sign table
Divide the number line into regions banded by the critical values

a1, —1<x<0, x>0
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EXAMPLE 9

SOLUTION

¢ x+1 X+1

x<—1 —ve —ve +ve
—1<x<0 —ve +ve —ve
x>0 +ve +ve +ve

Solution set is {x: x < —1} U {x: x > 0}.

x+1
x+2

Find the range of values of x satisfying > 3.

Method 1

Bring all terms to one side of the inequality:

x+1
x+2

Write as one fraction:
x+1-—3(x+2)

—3>0

x+2 >0
x+1—3x—6
= x+2 >0
—2x—5
=+2 0

Find the critical values:
—2x—5=0:>—2x=5:x=_75
x+t2=0=>x= -2

Place the critical values in ascending order on a number line, splitting into
non-overlapping regions:

5 2
2
Sign table:

—2x—5
2x—5 X+ 2 x+2

X<_TS +ve —ve —ve

_Ts<x<—2 —ve —ve +ve

x> -2 —ve +ve —ve

{x:_T5<x< —2}

Method 2

We can also solve these inequalities by multiplying throughout by the square of the

denominator.
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EXAMPLE 10

SOLUTION

+
x+2

= (x+ D(x+2) > 3(x + 2)?

X (x+2)2>3X (x+2)? (Multiplying both sides by (x + 2)2)

y

=23x+22—-(x+1Dx+2)<0

=S(x+2)Bx+2) - (x+1)<0

Sk+2)Bx+6—x—1)<0 5\, 0
= (x +2)(2x +5) <0

From the graph, {x: —% <x< =2}

2x +1

Solve the 1nequa11ty —

Find the critical values:
xH1=02x=""
x—1=0=>x=1

Place the values on a number line in ascending order, splitting into non-overlapping regions:

»
»
I

1
2
Sign table:
2+ 1 x—1 2+ 1
x—1
x< _71 —ve —ve +ve
_71 <x<1 +ve —ve —ve
x>1 +ve +ve +ve
Since the function 2;5 __i_ 11 is negative for —% <x<l, Y
the solution set is {x: _71 <x<l1 }

Alternative solution:

2 1] 1)2<0 X (x —1)? AV

(Multiplying both sides by (x —1)?)

X (x —

=S>2x+Dx—-1)<0

Therefore{x: —%<x< 1}
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EXAMPLE 11

SOLUTION

Find the solution set of

3

4x + 1

e

The critical values of the function are:

ax+1=0=x=—1

M—2=0:x=%

Place the critical values on a number line in ascending order, splitting into non-

overlapping regions:

12
4 3
Sign table:
— 4x + 1
4x + 1 3x—2 3Ix—2
x < _T1 —ve —ve +ve
-1 <x< 2 + — —
7 <x<3 ve ve ve
x>% +ve +ve +ve
 dx+1 =1 2
Slnce2x_2<0:>{x.—4 <x< 3}.
(a) Find the range of values of x for which ii + % <0.
(b) Solve the inequality % <5.
. . x+1
(c) Find the solution set of T >3,

EXERCISE 8A

In questions 1 to 7, find the solution set of the inequalities.
x*+8x+15<0
x*+3x—4<0
X —x<6

3x2 +4x < —3x—2

1

2

3

4

5 6x2+7x+2<0
6 5x2+6x+1<0
7 x*=2>0

8

Find the range of values of k for which the equation kx? + 2kx + 2x +7 = 0
has real roots.
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9  Find the range of values of k for which the equation 2x? + 5x + k + 2 = 0 has
real and distinct roots.

10 Find the range of values of p for which the equation (p + 2)x* — 4x + 3 = 0 has
real and distinct roots.

11 Calculate the smallest positive integer k for which the equation 4x*> — 2kx + 3 = 0
has real roots.

12 Solve the following inequalities.

x+4
@ 333572

2x — 1
(b) 3x+1>1

(C) 7x + 2

x+1 >3

3x —1
&) ZT= =1

x+1 X
x—2>x+3'
2x + 1 1
x—3 “x+2

13 Find the range of values of x satisfying the inequality

14 Find the range of values of x satisfying the inequality

EXAMPLE 12  Use the definition of the modulus function to solve |x + 2| = 3.

SOLUTION |x + 2| =3
By definition:
x+2=3 or —(x+2)=3
Sx=1 or x+2=-3

x=-3—-2

Remember

The absolute value of x or modulus of x denoted by |x] is defined as
xifx=0

x| ={0ifx=0
—xifx<0

By definition, the absolute value function or modulus function is a positive function.
This means that it returns positive values only.
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EXAMPLE 13

SOLUTION

EXAMPLE 14

SOLUTION

Try these 8.3

EXAMPLE 15

SOLUTION

Find the value(s) of x satisfying the equation |2x — 1| = 5.

[2x — 1| =5
By definition
2x—1=5 or —(2x—1)=5
2x =6 or 2x —1= -5
x=3 2x = —4
x= =2

x=3,-2

Solve the equation |2x + 1| = |3x — 4.

[2x + 1] = |3x — 4|

By definition:

2x+1=3x—4 or 2x+1=—0Bx—4)
=2x—3x=—-4—1 or 2x+1=—-3x+4

Find the value(s) of x satisfying each of the following.
(a) |x+1]=3
(b) |4x —3| =7

(c) |2x+ 5] =|4x — 7|

General results about the absolute value function

Result 1

Solve the equation [2x — 1| = 3.

[2x — 1] =3

We can solve this equation by squaring both sides:
|2x — 1] = 32
Using |x|* = x?

=2x - 1= (2x—1)?
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EXAMPLE 16

SOLUTION

EXAMPLE 17

SOLUTION

Our equation becomes:
(2x — 1)> = 3?

=4 —4x+1=9
=4x’ —4x—8=0
Divide both sides by 4:
=Sx>—x—2=0
S>x—-2)(x+1)=0
Hence,x = 2,x = —1.

We can also use the definition of modulus to find solutions to other types of problems.

Squaring both sides gives:

[2x — 3] = |[4x — 1)?

Using |x|? = x2, gives [2x — 3|> = (2x — 3)?and [4x — 1|* = (4x — 1)~
Our equation becomes:

(2x — 3)? = (4x — 1)?

=4x> —12x +9=16x> — 8x + 1

=>12x*+4x—8=0

Divide both sides by 4:

33 +x—2=0

Factorising gives:

Bx—2)(x+1)=0

3x-2=0=x=%

x+1=0=>x=—1

Hence, x = %, —1.

Find all the values of x satisfying the equation x*> — 6|x| + 8 = 0.

Method 1

(Using the definition)
Using |x| = x we have:
X —6x+8=0
=Sx—2)(x—4)=0
=2x—2=0x—4=0

=>x=2,x=4
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Using |x| = —x we have:

x*—6(—x)+8=0

=Sx*+6x+8=0
=(x+2)(x+4) =0
=x+2=0, x+4=0
x=—2,x=—4
Sox=—2,2,—4,4.
Method 2

(Using Result 1)

Keep the modulus on one side of the equation and carry everything else to the

other side.

x*—6lx| +8=0

= x? + 8 = 6|x]

Square both sides:

(x* + 8)% = (6]x|)?

= x* + 16x2 + 64 = 36|x|
Using |x|*> = x2 gives:

x* + 16x% + 64 = 36x*
soxt =202 +64=0
=X —16)(x>*—4)=0
=x2—-16=0, x2—4=0
=x2=16, x*=14
=>x=*4,x=*2

Sox=—2,2,—4,4

Here is an alternative method of solving x* — 20x> + 64 = 0.

x* — 20x? + 64 = 0 is a quadratic in x*.

Lety = x2.

=y =20y +64=0
=@y -16)(y -4 =0
=y=164
=x2=16,x*=4

=x=2,—-2,4,—4

eyl = [xllyl
Modulus of a product = product of the modulus
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EXAMPLE 18 Solve the equation |(2x + 1)(x — 2)| = 0.

SOLUTION Using the result |xy| = |x||y|, we have:
|2x+ Dx—2)[ =0
= x4+ 1 X |x—2/=0
=[2x+1=0, |x—2/=0
Using the definition:

A+1=0>x= —+

[\

—2x+1)=0=>x=—

N —

x—2=0=>x=2
—(x—2)=0=>x=2
.'.x=—§,2

Result 3
x| _ |x|

1= 5
Modulus of a quotient = quotient of the moduli

EXAMPLE 19  Solve the equation|3;‘j21‘ —2.

3x +1
x+2

Separating, we get:
[3x + 1|

Ix+2]

= |3x + 1] = 2|x + 2|

SOLUTION

Squaring both sides gives:

I3x + 12 = 22|x + 22

Using |[3x + 1> = 3x + 1)?and |x + 2> = (x + 2)?
(Bx + 1)? = 4(x + 2)?

=92 +6x+1=4u*+4x + 4)
=9x> +6x +1=4x>+ 16x + 16
=5x>—10x —15=0

Divide both sides by 5:
x*=2x—3=0

Factorising gives:
x—=3)(x+1)=0

=2x—3=0, x+1=0

=x=3 x=-—1



EXAMPLE 20

SOLUTION

EXAMPLE 21

SOLUTION

EXAMPLE 22

SOLUTION

Result 4

Given any constant ¢, x| < ¢, ifand only if —c <x <ec.

This means that for any constant ¢, the modulus of x is less that , if x lies between ¢
and negative c.

Solve the inequality |x + 2| < 5.

|x +2] <5
= -5<x+2<5 (Using |x| < ¢c= —c<x<)

= —7<x<3

Find the solution set of the inequality |[2x — 1| < 7.

[2x — 1] <7

= —T7<2x—-1<7
= -6<2x<8

= 3<x<4

S —3<x < 4}

Result 5

Given a constant ¢, |x| > cif and only if x > corx < —c.

This means that for any constant ¢, the modulus of x is greater than c if and only if x
is either greater than c or less than negative c.

Solve the inequality |3x + 1| > 7.

[3x + 1| >7
=3x+1>7 3x+1<-7

=3x>6 3x<-—8

=x>2 x<_T8

{x:x>2}U{x:x<_T8}

Result 6

|x| < |y| if and only if x* < y?

The modulus of x is less than the modulus of y if and only if x? is less than y?.
Since [x| < [y| = [x]* < |yI?

=>x2<y?
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EXAMPLE 23  Solve the inequality |2x + 5| < |2x — 1|

SOLUTION |2x + 5] < [2x — 1]
= 2x+ 52 < (2x — 1)2
Expanding gives:
4x* +20x + 25 < 4x? —4x + 1
=0< —24x—24
= 24x < —24

Square root of x?

Consider the expression V2. Since x? is always non-negative, the principal square
root of x? is defined whether x < 0 or x > 0. The principal square root is non-
negative and in order to ensure the non-negative result we have |x| = +Vx2, for any
x € R. The table of values below shows this result for some values of x.

x +\x2 [x]
-3 +(=32=3 | |-3|=3
-2 +(=22=2 | |-2/=2

—1 +HE=2=1 | =1 =1

0 +©0?=0 | Jo|=0
1 12 =1 1] =1
2 +V(2)2 =2 2] =2
3 +V/@3)2 =3 13| =3
4 +V(4)? =4 |4| = 4

The triangle inequality

Is the following statement true?

|A + B| = |A] + [B|

Consider this:

If A = 10 and B = —4, then the left-hand side is |10 + (—4)| = |6] = 6.
The right hand side is |10] + |—4| = 10 + 4 = 14.

So we have that the left-hand side is less than the right-hand side.

If, instead, A = 5 and B = 3 then the left-hand side is |5 + 3| = |8| = 8.
The right-hand side is |5| + [3| =5 + 3 = 8.

Now we have that the left-hand side is equal to the right-hand side.
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PROOF

Clearly the statement must be false and we can therefore say that the modulus of a
sum is not necessarily equal to the sum of the moduli.

Let us consider:
|x + y[ = |x[ + |y

The above result is known as the triangle inequality.

It is known that x = |x| for all x.

= 2xy = 2|x]||y| for real x and y.

= [x? + [P+ 2xy = [x? + [yI? + 2lx]y]

=2+ >+ 2xy = |x|> + |y]> + 2|x||y| (By result 1)
Factorising gives:

(+ 2= (x| + )?

= |x + y> = (|x + |y])? (By result 1)

= |x+y| = x| + |y (Taking square roots)

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 8B

1 Solve the following equations.
(@ |2x+3|=7 (b) [5x— 1| =38
() [4x+3|=1 (d |1—2x=6
2 Find the values of x satisfying the following equations.
(@) |3x+ 1| = |2x — 4|
(b) [x—1] =[x+ 2|
(c) |7x + 1| = |5x + 3|

3 Solve the equations.

(@) |x] =2 — |« (b) 2lx] =3 +2x —«?
(€ |*—=1—-1=3x—2 (d) 2—|x+1|=|4x — 3|
Giventhat‘zx+ 1‘22, find x.

3x — 4

Solve the equation |[4x — 1> — 6|4x — 1| + 5 = 0.

Find the values of x satisfying the equation [3x + 2|*> — 9|3x + 2| + 20 = 0.

N & G s

Solve the equations.

(@) 2x*—5|x| +2=0

(b) 3x>—19|x| +20=0

8  Find the solution set for the following inequalities, using two methods.
(@) [4x—1]<3 (b) [2x+ 4| <5

(© |3x—1|>6 (d) |5x+2[>9
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oooooooooooooooooooooo

EXAMPLE 24

SOLUTION

EXAMPLE 25

SOLUTION

9 Find the values of x satisfying the inequalities.
(@) [3x+ 1| <|2x — 5] (b) |7x + 1] <|3x + 5]

(©) 4lx +2|<|x—1]

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

A stone is catapulted vertically upwards with a velocity of 25 ms™. The distance
travelled by the stone at time ¢ seconds is given by

s =25t — 5¢£

How long does its height exceed 30 m?

The distance travelled by the stone must be:
s> 30

25t — 52> 30

5t — 25t + 30 <0

2—5t+6<0
(t—=2)(t—3)<0
L2<t<3

The stone will be above a height of 30m for 1 second ((3 — 2) = 1).

The cost in TT dollars of producing x carnival costumes is given by

C = —2x? + 1400x + 16000 for 0 = x = 300

A costume designer wants to keep his cost less than TT $166 000 for the year 2013.
What is the maximum number of costumes can be produced within this investment?

Since his cost must be less than TT $166 000, we need to find x for which:

—2x? + 1400x + 16000 < 166000

s —2x% + 1400x + 16000 — 166000 < 0

—2x* + 1400x — 150000 < 0

x* — 700x + 75000 > 0 (Dividing by —2; switch the inequality sign since we are
dividing by a negative number)

Let us find where this function becomes zero.

Using the quadratic formula:

x? — 700x + 75000 = 0

4700 *+\/(—700)% — 4(75000)
*T 2(1)
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EXAMPLE 26

SOLUTION

700 = 435.89 y4

2
x = 567.94 or 132.06

oo (x — 567.94)(x — 132.06) >0

From the graph: 0 132}3{-}{7 54

{x: x < 132.06} U {x > 567.54}

Since 0 = x = 300, x must be in the interval
{x: x < 132.06}.

Hence, x = 132.

Therefore, the maximum number of costumes the designer will produce to keep his
cost less than TT $166 000 is 132.

If you are not sure whether x = 132 or 133, you can check the cost for each and see
which is less than TT $166 000

x =132, C = —2(132)% + 1400(132) + 16000 = 165952
x = 133, C = —2(133)% 4+ 1400(133) + 16000 = 166 822

A tour operator takes tourist to Blue Mountain, Jamaica, on a daily basis. The
profit earned by the company for x number of tourists can be modelled by
P(x) = —x* + 500x — 1500. How many tourists are needed to make a profit
of at least US $3000?

Since the profit must be at least US $3000:

P(x) = 3000

s —x% 4+ 500x — 1500 = 3000

= —x? + 500x — 4500 = 0

= x> —500x + 4500 =<0  (Multiplying by —1)
Let us find where the function becomes 0:

x? — 500x + 4500 = 0

L 500 V(—500)% — 4(4500)

2 P
_ 500 *+ 481.66
2
= 490.83,9.17
s (6 —490.83)(x — 9.17) =0 0 9.17\/190.83
S {x:9.17 = x = 490.83}.
To make a profit of at least $3000, the tour operator will

need anywhere from 10 tourists to 490 tourists.
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If we substitute x = 9, 10, 490 and 491 into P(x) we can we can check where P(x) will
be greater than $3000. When

x =9, P(x) = 2919

x = 10, P(x) = 3400
x = 490, P(x) = 3400
x = 491, P(x) = 2919

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0

SUMMARY

Inequalities and the modulus function

~ [} N,

Properties of inequalities Solving inequalities using a sign table Modulus function
Ifa>b,thena+c>b+c Make the function f(x) > 0 or f(x) < 0 xifx>0

[} x| =14 0ifx=0

. -xifx<0

Ifa>bandc>0,thenac> bc ldentify the critical values of f(x).

4 Ry

Ifa>bandc<0,thenac< bc Draw up a sign table using the critical
values and the factors of the function. ]
s v
1 byl = Iy
Ifa>b,thena<— y y
b Identify the solution set. ‘
x| X
Yl

[x| < |y| if and only if x? < y?

|x| > cifand only if x > corx < —c.

\ 4

|X| < ¢, where cis a constant if and
onlyif —c<x<c.

Checklist

©00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Can you do these?
B Define the modulus function.
B Use the definition of the modulus function to solve equations.

B Use the properties of the modulus function to solve equalities and inequalities.
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B Use the triangle law of inequality.

B Identify different ways of solving equations and inequalities using the modulus
function.

B Solve linear inequalities.

B Solve quadratic inequalities.

ax+ b
cx+d

B Solve applications problems involving inequalities.

B Solve inequalities of the form > 0.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Review Exercise 8

1 Solve the inequality 2x + 1 > 4x — 5.
2 Solve x> — 2V3x > 6.

3 The equation (p + 3)x* — 2px + p + 2 = 0 is satisfied by two distinct real
values of x. Find the range of values of p.

4 Find the range of values of \ for which the equation 4x> — 4Ax = 5\ — 12x — 15
has no real roots.

5  Find the range of values of 6 for which the equation (2 — 36)x*> = (6 — 4)x — 2
has no real roots.

6 Show that the equation (\ + 1)y? + (2\ + 3)y + N + 2 = 0 has real roots for all
real values of \.

7 For what range of values of x is x*> + 11x + 30
(a) positive
(b) negative?
8  For what range of values of x is 4x? — 3x + 2 greater than 3x??
9  Find the values of x satisfying the equation |3x + 2|*> — 9|3x + 2| + 20 = 0.

2x+1|=1
3x — 2

10 Find the values of x satisfying the equation ‘
11 Solve the equation |2 — x| = 2|x + 2|.
12 For each of the following find the range of values of x for which the inequality holds.
(@) XX+5x+6<0
(b) ¥*+2x—8>0
(c) ¥*<x+20
(d) (x+3)(x—2)>2(x+3)

13 Find the range of values of p for which the line y = 3x + p does not intersect
the curve x? + y? = 64.

14 Find the range of values of p for which the line y = 3 + px does not intersect
the curve x? + 2xy + 1 = 0.
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Find the solution set of the inequality gz t 41} <2.
Given that f(x) = 2 — X Find the set of values of x for which flx) > 1.

x+3
Solve these equations.
(@) 2x2 = 5|x| +2=0
(b) 3x2— 19]x| +20 =0
4x + 2
X —

Solve the inequality—1 +2>0.

Find tlrée range of values of p for which the line y = 1% meets the curve
y==x X%

The height s (in metres) of a ball thrown with an initial velocity of 80 metres per
second from an initial height of 6 metres is given as:

s=—16*+ 80t + 6
where t is the time in seconds.
For what period of time is the ball at a height greater than 6 metres?
The daily profit, P (in hundreds of thousands of dollars) of a company is given by:
P = 8x — 0.02x*

where x is the number of items produced per day. What is the range of the number
of items that will have to be produced for the profit to be at least $400000?

Suppose that the manufacturer of phototcopying machines has found that,
when the unit price is $x, the revenue y (in dollars) is given by:

y = —4x2 + 4000x
(a) At what prices $x is revenue zero?

(b) For what range of prices will revenue exceed $800000?
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Module 1 Tests

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Module 1 Test 1

1

()

(b)

()

()
(b)

()

()

(b)

()
()

(b)

Without the use of tables or a calculator, simplify V80 + V245 + V320

in the form k\/5, where k is an integer. (4]

The roots of the cubic equation x*+ 3ax? — bx + 4c = 0 are 2, —3 and 4.

Finda,bandc. (8]

. < Cn(n+ D@n - 1)

(i) Show that Zr(Zr 1= : . neN. (8]
r=40

(i) Hence, or otherwise, evaluate E r(2r — 1). [5]
r=18

. Lo 2xt+ 1

Solve the inequality 3> % (5]

(i) Solve the equation 3|x| — 2x — 1 = 0. (4]

(ii) Determine the values of the real number p for which the roots of

the quadratic equation 2x*> — px + 2p + 1 = 0 are non-real. (4]
Copy and complete the table below to show the truth values [6]
of ~ (pA~ gq).
p q ~q (parvq) |~ (prrvq)

Prove by mathematical induction that 15" —1 is divisible by 7 for every

non-negative integer r. (7]

i) Prove that log b = 2&2” 4
(i) Provethatlog b = log,a (4]
(ii) Solve the equation 3log,x + 2log 2 = 7. [4]
(iii) Find the value of x satisfying the equation 22 * 1 = 3%-x, (4]
Solve the equation 3% — 2(3¥) = 3, for real x. [6]

Find the range of each of the following functions.

(i) fixo>x*+5x+6,xER (3]
.. 1
(ii) ﬁx—)m,wherexaE —22,x¢—3,xe[R [3]
A, B and C are constants such that 4x 2+ lox + 19 _ A s+ G for all
x*+4x+ 4 (x + B)

real values of x except x = —2. Find the values of A, B and C.
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Hence, state precisely the sequence of transformations by
4x? + 16x + 19
X2+ 4x + 4
from the graph of y = % [9]

X

which the graph of y = may be obtained

(c) Arelation hin which X = {a, b, ¢, d, e, f, g} and
Y =1{4,5,6,7, 8} is given by

(i) Express h as a set of ordered pairs. [4]

(ii) State two reasons why # is not a function.

(iii) Construct a function h: X — Y as a set of ordered pairs. (4]

Module 1 Test 2

1 (a) The operation multiplication modulo 8 is defined on two integers a, b as
follows: the remainder of =X b, i.e. multiply the two integers and take the
remainder when the product is divided by 8. The set Sis {1, 3, 5, 7}.

(i) Show that S is closed under the operation multiplication modulo 8. [4]

(ii) Identify the identity in the set S. [2]
(iii) Find the inverse of each element in S. (4]
(b) Show thatlogx + log x> + log x> + ... log x" = %n(n + 1)log x. (6]

(c) The function f(x) is defined as follows:

4x+1, x=0
f)=2x2+1, 0<x<4

x3, x=4
Find the following.
@) f(=1)
(i) f(2)
(i) f(5)
(iv) #(3) (9]
2 (a) Prove by mathematical induction that 2 rzr (—: I-_l)l = ’_1’_2 T (7]

r=1

(b) Prove, using the principle of mathematical induction, that for any integer
n=1,n* + 3n? is divisible by 4. (8]

(c) The propositions p, g and r are defined as follows:
p: the examination is difficult
q: the pass mark is 50
r: Twill pass
Write each of the following as a sentence in words.
(i) g=r
(ii) pA~~T (5]
209
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(d)

()

(b)

()
(b)
(c)

Let t be “Tobago is beautiful’ and z be “Zico likes Tobago. Write the negation
of each of the following as a sentence in words.

(i) th~z
() A~z [5]
Given the function f x > x> —4x + 7,x € R.

(i) Write the function in the form (x — a)> + b, where a and b are

integers. (3]
(ii) Is the function one-to-one? Give a reason for your answer. (2]
(iii) Is the function onto? Give a reason for your answer. [2]

(iv) If the function is not bijective, restrict the domain and range to form a
bijective function g: x — x> — 4x + 7, x € R, x > k, identifying k. [3]

(v) Find g™ (4]
The roots of the cubic equation 2x* — 5x? + 6x + 2 = O are a, B and .

(i) Find o? + B*> + 2 [2]
(ii) Find &® + B° + 7. (4]
(iii) Find a cubic equation whose roots are é, % and % [5]
Solve the inequality —1 < % <1. [6]
Solve the equation [2x — 1> — 6[2x — 1| + 8 = 0. (8]
Solve the equation 3% — 9(3%¥) + 26(3*) — 24 = 0. [11]
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CHAPTER 9
Trigonometry

At the end of this chapter you should be able to:
B Prove and use the identity sin? 6 + cos? 6 = 1

M Prove and use the identity 1 + cot? 6 = cosec? 6

M Prove and use the identity tan? 6 + 1 = sec? 6

B Solve trigonometric equations involving quadratics
B Prove and use sin (A *= B) = sinA cosB = cos A sinB

B Use cos(A = B) = cosAcosB =+ sinA sinB

tanA = tanB
1+ tanAtanB

B Prove and use the double angle results

M Usetan(A = B) =

B Convertacos+ bsin 0 to Rcos (60 — ), R>0,0° < o < 90°

B Identify the maximum and minimum of acos 6 + bsin 0

B Identify the angle at which acos 6 + bsin 6 is a maximum or minimum
B Solve equations of the form acos 0 + bsin0 = ¢, c # 0

B Solve equations using the double angle results

B Convert products to sums and differences

B Convert sums and differences to products

KEYWORDS/TERMS

trigonometric identity « double angle «
maximum « minimum e periodicity « symmetry o
amplitude



MODULE 2 « CHAPTER 9

Inverse trigonometric functions and graphs
y=sinx

INIEE

Inverse sine function

The inverse sine trigonometric function is

Ix or arcsin x.

ISIER

represented by sin™
Let f(x) = sinx, f~!(x) = arcsinx. Since the
function must be one-to-one and onto,
arcsin x is defined over —% =x= %
_'I .

Reflecting y = sinx in the line y = x, the

X

1

graph of y = arcsinx is this.

y=sin~

(SIE}

SIE}

Inverse cosine function
The inverse cosine function is denoted by cos™ ! x or arccosx. The principle values of
y = cosxare 0 = x = 1, we can derive the graph of y = arccosx by reflecting y = cosx

in the line y = x.
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Inverse tangent function

By reflecting the graph of y = tanx in the line y = x we arrive at the graph of arctanx
for — % =x=T

=3

y =tanx
y .

i
I
I
I
I
I
I
I
I
:
T

a
2
I
I
I
I
I
I
I
I

L | b T ——

Solving simple trigonometric equations

Graphical solution of sinx = k

EXAMPLE 1

SOLUTION

Solve graphically the equation sinx = k where —1 = k = 1.

The solution occurs at the point of intersections of the graphs of y = sinx and y = k.

Draw the graph of y = sinx

On the same axes draw the graph of y = k.

sinx = k= x =sin 'k

Letsin 'k = a.

y=sinx

37 -«

'I,

Therefore, x = « is a solution to the
equation.

Reading off the solutions from the
graph we have:

o4t o, 3T — o 2T+
—T— o, 0T 2T+ o 3T
—odTt a...

We can write this as x = nw + (—1)"a,
where n e Zand—%sasg.

This is called the general solution of
the equation sinx = k.

EXAMPLE 2

SOLUTION

Find the general solution of sinx

Using x = nm + (—1)"a, where n € Z, and where @ = sin™! (%) = %, we get:

x =nm+ (—1)”%Wheren e”
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EXAMPLE 3

SOLUTION

EXAMPLE 4

SOLUTION

Note

(—T1)™is positive
when nis even
and negative
when nis odd.
We can split
the solution by
writing n is odd
and even.

Find the general solution of sin2x = %

The general solution is x = nmw + (—1)"a, where n € Z.
Since sin2x = %

2x = sin ! % = %

Therefore, o = %

Hence, 2x = nw + (—1)" %where neld.

<y = N7 —1)r T
LX=5 +(—1) 8whereneZ.

_m_V3
sm(3x 6) >
w1 V3w
= 3x 6 sin 5 3
Therefore, 3x — % =nmw+ (—1)" %, nel.

Let us separate the result and find x, whenn = 2p,p € Z.

We get
=g =2pm+ (-D)* T peZ,(~)*=[(-1)) =1
3x—%=2pﬂ+%,pez
3x=2p'rr+%+%,pez
3x=2p1'r+%,pez
2p
x=T+%,pEZ

Whenn=2p+ 1,p € Z:

3x—g=Qp+Du+ (=DP T p e Z, (1) = (-1 X (=1)¥
=(=Dx(1)=-1

3x—%=(2p+ l)w—%,p e/

3x=(2p+1)7r—%+%,pez

3x=(2p+1)1‘r—%,peZ

@+ Dm g
¥=—3  ~igpbe’
Hence, the general solution is:

2pw
X =3 + %,p /A

@2p + D
MRSV
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Graphical solution of cosx = k

EXAMPLE 5

SOLUTION

Solve graphically the equation cosx = k where -1 = k= 1.

The solution occurs at the point of intersections of the graphs of y = cosx and y = k.
Draw the graph of y = cosx.
On the same axes, draw the graph of y = k.

a = cos ' (k)

cosx = k= x=cos 1k

Let cos™! (k)= a.

Therefore, x = a is a solution to the equation.

Reading off the solutions from the graph we have:

4T o, 4Tt o, 2mt+t o, 2T, 2T — 2T+ 4T — 4Tt ...

We can write these solutions as x = 2nw * «, where n € Z.

EXAMPLE 6

SOLUTION

Find the general solution of cos x = %
First we find a.

- =1 0= cos! (l = 70.5°
Since cosx A cos 3) 70.5

General solution: x = 360°n = «

Hence, the general solution is x = 360°n *+ 70.5°, where n € Z.

EXAMPLE 7

SOLUTION

Solve the equation cos 3x = 0.5.

First we find a.
Since cos 3x = 0.5, « = cos™ 1(0.5) = 60°

Hence, the general solution is 3x = 360°n = 60°, where n € Z.

— 360° . 60°
3 "=73

Sox =120 £20%n € Z.

X neld
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Graphical solution of tanx = k

EXAMPLE 8 Solve graphically the equation tanx = k where —1 = k = 1.

SOLUTION The solution occurs at the point of intersections of the graphs of y = tanx and y = k.
= | | | y | . .
Draw the graph of y = tanx : : : : : :
I I I I I I
On the same axes draw the graph of y = k. | | | | | |
I I I I I I
Since tanx = k= x = tan" ' k. SN ST ST ST ST O R
27 I I I I 1YY=
. I I I I I I
Let tan~! (k) = a, therefore x = ais a 0 i i i i | X
] T T T T I
solution to the equation. _ST(’T _3{ f_% T % 3% 5T(7T
Reading off the points of intersections of : R N O
the two graphs, the solutions are: | | | : : :
I I I I I I
.3 mta—2mto Tto Tt i i i | i i i

2t 3T tadTt+ ...

We can write these solutions as x = nw + «, where n € Z, —% <a< %

EXAMPLE 9 Find the general solution of tanx = 1.

SOLUTION The general solution of tanx = kis x = nmw + a, where n € Z.
Sincetanx = 1, @ = tan" !1 = %

x=m‘r+%,wheren el.

EXAMPLE 10  Find the general solution of 2 sin2x = cos 2x.

SOLUTION 2 sin2x = cos 2x
sin2x _ 1 .
cos2x 2 (Dividing by 2 cos 2x)
tan 2x = %
= -1 l — o
2x = tan ( 1) =266

General solution:

2x = 180°n + 26.6° n € Z.

180°n | 26.6°
> + 5N e Z

Hence, x = 90°n + 13.3°,n e Z.

Therefore, x =

Try these 9.1 Find the general solution of
(a) sin4x =0.28
(b) cos(x +30° =0.6

(c) tan(2x + 45°) = 0.7.
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EXAMPLE 11

SOLUTION

EXERCISE 9A

In questions 1 to 6, find the general solution of the following equations, giving your
answer in radians.

in2g= —+
I sin260=—5
2 cos30=0
m
3 tan(20 + ?) =1
_my_1
4 cos(20 i ) 3
—~m=_L1
5 sm(?;@ 3) 7
_T) = _
6 tan(EO 2) 1
7 Find the general solution of the equation sin 3x = 3 cos 3x.

Trigonometrical identities

Reciprocal identities

Expressions involving cosecant, secant and cotangent can be changed to expressions
involving sine, cosine or tangent respectively. When these expressions are changed,
we are using the reciprocal identities. The reciprocal identities can be used to simplify
other expressions and to solve trigonometric equations by changing the expressions
to sines and/or cosines only. The list below gives these:

_ 1
cosec 6 Sino
_ 1
sec “os0
_ 1
cot tan 0

Every trigonometric ratio can be changed to a combination of sines
and/or cosines.

Show that cot Osec 6 = cosec 6.

cotfsech = C.O—SO X 1 Since cot 0 = C.O—SGand secO = 1
sinf = cos6 sin 6 cos 0
_ 1
sin 6
= cosec 6 QE.D
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EXAMPLE 12  Prove the identity sec fcosec fcot @ = cosec? 6.

SOLUTION
PROOF

1 _ 1 _ cos 0,
o5 COseC 0= S0 and cot 6 sn b

1 1 cos 0
cos 6 X sin 6 X sin 6
_ 1

sin? 6
= cosec? 6 QE.D

Since sec 0 =

sec BcosecHcot O =

Pythagorean identities

The Pythagorean identities are some of the most useful identities in trigonometry
because they can be used to simplify more complicated expressions. The identities are
derived from the right-angled triangle and

y

the reciprocal identities. Three basic properties of
the trigonometric ratios are derived from Py-
thagoras’ theorem as follows.

r

y
For all values of 6: r* = x* + y?
9 X

sin 0 = )—; 0 X
cosf = %
tan 6 = %

2
sin? 0 = )’? [1] (Squaring both sides)
cos’f = xﬁz [2] (Squaring both sides)
sin20+c0520=)£+%2 (1] + [2]
_xty
2

Therefore, sin? 6 + cos? 6 = 1 holds true for all values of 6 and is called a trigono-
metric identity.

We can use this to derive other trigonometric identities.
Since sin2 6 + cos? 0 = 1,
2 2
sin“ @ , cos”6 1 o
+ = Dividing by cos? §
cos’0  cos’f  cos*h ( Ched )
= tan?0 + 1 = sec? 0
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Dividing sin? § + cos? # = 1 by sin? fgives:

sin®0 , cos’f _ 1

sin?@ sin?6 sin%H
=1 + cot? @ = cosec? 0

The fundamental trigonometric identities

tan 0 = St
cos 6
_ 1
sec = 0s 0
_ 1
coth = @no
cotg =050
sin O
_ 1
cosecf = Y]

sin26 + cos26 =1
1+ tan?6 = sec?6

1 + cot?6 = cosec? 0

The fundamental trigonometric identities can be used to prove other identities and
solve some trigonometric equations.

Proving identities

When proving trigonometric identities, follow these steps.

(1) Start with the side containing the most information.

(ii) Keep an eye on what you are proving. Replace any identities to reach what you want.
(iii) Combine the sum or difference of fractions to form one fraction whenever possible.
(iv) Keep your eye on the identity you are proving. Keep looking back to the question.

(V) Know the fundamental trigonometric identities.

1 + cosx

EXAMPLE 13 Prove the identity 1T secx

= COSX.

SOLUTION

PROOF

1 + cosx

The left-hand side has more information. Let us start on this side: T secx

. 1 .
We can replace secx with 553

1+ cosx _ 1+ cosx
l+secx |4 1

COSX
_ 1+ cosx . 1 _cosx+1
T Cosx +1 (Smcel T Cosx ~  cosx )
COSX
—(1+ « __€OSx
(1+ cosx) 1 + cosx
= cosx = right-hand side Q.E.D.
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. . 1 1 _ 2
EXAMPLE 14  Prove the identity T cosd T T "cosp — 2 cosec 0.
SOLUTION
PROOF

Starting on the left-hand side, since there is more information to work with:
1 + 1
1+cos 1—cosO

Find the lowest common multiple (LCM) by multiplying the two denominators
(1 + cos0)(1 — cos 6). Bring together as one fraction:

1 + 1 _1—cosf+1+cosb
1+cosf@ 1—cosf (1+ cosB)(1— cosb)

Expanding the denominator:

1—cosf+1+cosh _ 2
(14 cosB)(1 —cosh) 1— cos’6
= — 22 5 (Since 1 — cos? 0 = sin? )
sin
= 2cosec? 0 Since — 12 i cosec? 6
sin

= right-hand side QE.D.

EXAMPLE 15  Prove the identity cotx + tanx = cosec xsecx.

SOLUTION
PROOF

It is normally easier to convert a sum or difference to a product. We start with the
left-hand side.

COSX ond e
sinx

Ccosx , sinx
sinx =~ €OSX

Convert cotx and tan x to

sinx :
os x respectively.

cotx + tanx =

Find the LCM.
cosx , sinx _ cos?x + sin?x . cosxe_=sinx _ cos?x + sin’x
: = - Since = = -
sinx  COSX sinxcosx sinx 0osx sinxcosx
Replace with cos?x + sin’x = 1.
cos’x + sin’x _ 1
sinxcosx sinxcosx
1 1
sinx COSX
= cosecxsecx = right-hand side QE.D.

EXAMPLE 16  Prove the identity 1 j_uz z)csx +1 _:irf?csx = sirzl <

SOLUTION
PROOF

Start with the left-hand side, and bring together to form one fraction:

sinx 1+ cosx _ (sinx)(sinx) + (1 + cosx)(1 + cosx)
1+ cosx sinx (1 + cosx)(sinx)
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sinx + 1 + 2 cosx + cos®x

(1 + cosx)(sinx)

= (l%l-tozﬁ (Since sin?x + cos?x = 1)
_ 2(1 + cosx)
(1 + cosx)sinx
2. .
=S right-hand side QE.D.

EXAMPLE 17 Show that cos*§ — sin*f = 1 — 2sin2 6.

SOLUTION We know that x* — y* = (x* — y?)(x? + y?).

. cos* @ — sin* 0 = (cos? 0 — sin? 0)(cos? O + sin? 6)

= cos? 0 — sin? 6 (Use cos? 0 + sin?6 = 1)
=1 —sin%60 — sin%6 (Substitute cos? @ = 1 — sin? )
= 1 — 2 sin? § = right-hand side QE.D.

2
EXAMPLE 18  Prove the identity 1% = 1 + sine.
SOLUTION
PROOF

Starting with the left-hand side and using cos? # = 1 — sin? 6:

cos’f _ 1 —sin’6f
1—sinf 1—sinf

Factorising using 1 — sin? 6 = (1 — sin §)(1 + sin 6) gives:
1 —sin?f _ (IL==sm6)(1 + sin 6)
1 —sin6 1 =sin@

=1 + sin § = right-hand side QE.D.

— cot?
EXAMPLE 19  Prove the identity1¢t2x =1—2cos’x.
1 + cot*x

SOLUTION
PROOF

Starting on the left-hand side and using 1 + cot’x = cosec?x:

1 —cot?’x _ 1 — cot’x
1+ cot?’x  cosec®x

2
Since cot?x = % and cosec’x = —5—
n%x sin?x
1 — cos2x
1 — cot?’x _ sin’x
cosec?x 1
sin? x
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sin?x — cosx

_ sin?x Since 1 — cgszx _ sinzx.— cos’x
1 sinx sinx
sin?x
= sin’x — cos’x
=1 — cos?x — cos’x
= 1 — 2 cos’x = right-hand side Q.E.D.
. .1 —sinf _ . 2
EXAMPLE 20 Prove the identity 1T sin0 (sec O — tan 6)°.
SOLUTION
PROOF
Starting with the left-hand side and multiplying by %‘3
1—sinf _1—sinf., 1—sinf
1+sinf 1+sinf@ 1—sin6
_1—2sinf+ sin’0
1 — sin? 0
_1—2sin6+sin’0
cos? 0
_ 1 _ 2sinf  sin’*0
cos?0 cos’f  cos’O
— 20 2sin 6 2
sec-6 050X cos B + tan“ 60
—sec2f— (2800 1 ) n2g
cos 0 cos 6
= sec2f — 2 sec ftan 6 + tan? 6
= (sec § — tan 6)(sec 0 — tan 0) (Factorising)
= (sec 6 — tan 0)? = right-hand side Q.E.D.

Let us see what happens when we start on the right-hand side.

(sec @ — tan 0)> = (sec O — tan 0)(sec O — tan 6)
=sec’f — 2secftan O + tan’6 (Expanding the brackets)

__1 (.2 sinf) , sin’0 . .
= os7s  lcoso Xoso T ey (Changing to sin 6 and cos 6)

_1—2sinf +sin’6
cos* 0
(1 —sin6)(1 — sin 6) . 2h 1 o
[ —sin’ 0 (Replacing cos*§ = 1 — sin* 6)
(1 —sin6)(1 — sin 6)

— . a2 — s .
(1= sin0)(1 +snd) (Since 1 — sin“ 6 = (1 — sin 6) (1 + sin 6))

_1—sinb _ . .
=17 sno left-hand side Q.E.D.

Notice that we can trace our steps back and forth when using the left-hand side or
right-hand side.
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Try these 9.2

EXAMPLE 21

SOLUTION

Prove the following identities.

(a) S 6 —cosf _ sin’0
secO+ cosf 1+ cos?6
1 —cos’0 _

(b) W = sin O

(c) secf+tanf _ sinf
cotf + cosf  cos?6

Solving trigonometric equations

We can use the trigonometric identities we know to solve equations.

Solve the equation 2 cos?x — 3 sinx — 3 = 0 for 0° =< x = 360°.

2cos’x —3sinx —3=0
We can form a quadratic equation in sin x by replacing cos?x = 1 — sin®x.
=2(1 — sin?x) — 3sinx —3 =0
=2 —2sin’x —3sinx —3=0
= —2sin’x — 3sinx — 1 =0

= 2sin’x + 3sinx + 1 =10
Let y = sinx

22 +3y+1=0

Factorising gives:

2+ Dy +1)=0 /\ X

210° —30°
L2+ 1=0,y+1=0
1
=y=—3y=-1
Fory = sinx = —%:
sinx = —=
2 y

— a1
= X = SIn ( 2)
= x = —30°, 330% 210°

Fory = sinx = —1:

/o]

= x=sin"'(—1) ~90°
= x = —90° 270°

Since 0° = x = 360°

x = 210° 270° 330°

Omit all solutions outside of the range 0° to 360°.
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EXAMPLE 22

SOLUTION

EXAMPLE 23

SOLUTION

Solve the equation 3 — 3 cos 6 = 2 sin? 6, giving values of 0 from 0° to 360° inclusive.

3 —3cosf=2sin’6

We can form a quadratic in cos 6 by replacing sin? 0 = 1 — cos? 6.
=3 — 3cos 0 = 2(1 — cos?6)

=3 —3cos=2—2cos’f

=2cos’0—3cosf+1=0

Let y = cos 0.

The equation becomes 2y* — 3y + 1 = 0.

Factorising gives:

2y-Dy—1=0

=2y—1=0,y—1=0

=Sy = %,y =1
Fory = cos0 =

DO —

6 = cos™ (%)
Since cosx is positive in the first and fourth quadrants:
6 = 60°, 300°

Fory = cosf0 = 1:

0 = cos™1(1)

= 6=10°360°

- 6=10°60° 300° 360° for 0° = 6 = 360°

Solve the equation 2 sin?§ + 1 = 3 sin 6.

2sin’0+ 1 =3sin6
=2sin’6—3sinf+1=0
Let y = sin 6.

=22 -3y+1=0
Factorising gives:

2y - 1Dy —1)=0

=2y—1=0,y—1=0
1

Fory=sin0=%:

— a1l
= 60 = sin (2)
sin0=%:>0=nw+(—1)"(%),nez
sin0=1:>0=nﬂrr+(—1)”(%),nez
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EXAMPLE 24

SOLUTION

EXAMPLE 25

SOLUTION

Find the general solution of the equation cosec? § = 3 + cot 6.

cosec’d =3 + cotf

We can form a quadratic in cot 6 by replacing cosec? § = 1 + cot? 6.
=1+ cot?6 =3+ cot

socot?f—cot—2=0

Lety = cot 6

=yP—y—2=0

Factorising gives: (y — 2)(y + 1) = 0

=y—2=0,y+1=0

=>y=2y=-1

Fory = cot0 = 2:

1 _
tan 6 2
:>tan0=%
= _ll
= 0 = tan (2)
= 0 = 26.6°

General solution is:
0=180°7n+ 26.6°neZ
Fory =cotf = —1:

1 _

tanf
= 0= —45°

General solution is:
0=180n+ (—45°),ne Z
= 180°n — 45°
Hence, 6 = 180°n + 26.6° and 180°n — 45°, where n € Z.

Solve the equation 3 secx — 2 tanx — 8 = 0, giving values of x from 0° to 360° inclusive.

3sec’x —2tanx — 8 =0
We can form a quadratic equation in tan x by replacing sec?x = 1 + tan’x.
= 3(1 + tan’x) —2tanx — 8 =0
3tan’x —2tanx —5=0
Let y = tanx,
3 =2y—=5=0
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Factorising gives:
By —5)(+1) =0 ,
=3y—-5=0,y+1=0
-5 = _
=y=3) 1

Fory = tanx = % ﬁg’ X
x= tan‘l(%) 0IN45°

Since tan x is positive in the first and third
quadrants, x = 59°, 239°.

tanx = —1
x=tan"!(—1)
Since tanx is negative in the second and fourth quadrants, x = 135°, 315°.

Hence, x = 59°, 135°, 239°, 315°.

EXAMPLE 26  Solve the equation 2 tan? § + sec § = 1 for 0° = 6 = 180°.

SOLUTION 2tan’0 + sec =1
Note We can write this equation as a quadratic equation in sec? 0 by replacing tan? 6 =
sec?6 — 1.

In order to solve
any trigonomet-
ric equation, first =2sec20+secl—3=0
break it down
and rewrite it in
terms of the basic 2)/2 +y—3=0
trigonometric

functions sin x, Factorising gives:

cos x and tan x. Qy+3)y—1)=0
=2y+3=0,y—1=0

=2(sec?0— 1) +secH=1

Let y = sec@.

3
=y=—3y=1

Fory = sec = -3

2
1 _ .3
cos 0 2
:>c050=—%
el 2
= 60 = cos ( 3)
=131.8°
Fory =sec = 1:
1 =
cos O 1
=cosf=1
= 0= 0° 360°

Hence, 6 = 131.8°, 360°.
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Try these 9.3

(a) Solve for 0° = 6 = 360°:
(i) 3sin?60=1+ cosf
(ii) 4 cosec?@ —4cot0—7=10
(b) Find the general solution of 20 sec?® — 3 tan § — 22 = 0.

EXERCISE 9B

In questions 1 to 6, simplify the expressions.
(sin® + cosH)? — 1
2 sinx(sinx — cotxcosecx)
3  sin*6— cos*6
4 sin?0(cot? O + cosec? )
L 20

e
6 sec’0—tan’0

sin 0
In questions 7 to 16, prove each identity.

7 1 sin® 0

l—cosﬂz_cose
cos’f 1 _

8 T—sing L sin 0
9 cosecB_cosﬂztane
cos O sin 6
1 —cos?f _

10 m—_COSZG

11 sec*x — sec’x = tan*x + tan?x

12 COSX sinx

1 —tanx 1 — cotx = sinx + cosx
13 %ﬁg:;‘ = (cosecx — cotx)?
14 1 + 1 = 2 sec?x

sinx + 1 1 — sinx
15 sin*6H — sin?H = cos* @ — cos? 6
16 Cx—1_ _ o,
tan?x + 1

In questions 17 to 24, find all the angles between 0 and 360° such that the following
are true.

17 4secx —tanx = 6 cosx
18 3tan?x —secx—1=0

19 2 cot?x + cosecx = 1
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20 3cos’x =4sinx — 1

21 2cotx=3sinx

22 sin’x = 3 cos’x + 4 sinx
23 2cosx = tanx

24 2cotx =1+ tanx

In questions 25 to 28, find the general solution of each equation.
25 2+ 3sinZ=2cos’Z

26 2 cot’x + cosecx = 4

27 2secx + 3cosx =7

28 5cosx = 6sin’x

Further trigonometrical identities

Expansion of sin (A * B)

EXAMPLE 27  Prove the identity sin(A + B) = sinAcosB + cos AsinB.

SOLUTION
PROOF

We can split triangle PQR into two right-angled triangles
PNQ and QNR.

. area of APQR = area of APNQ + area of AQNR

Using formula for the area of triangles gives:
area of APQR = %prsin (A+B)

area of APNQ = %hrsinA

area of AQNR = %ph sinB

Hence, %prsin (A+B)= %hrsinA + %ph sinB

h

[+%pr] = sin(A + B) = 7 sinA + ZsinB (1]

h
p
From APNQ, cosA =
From AQNR,cosB =

Substitute these into (1):
sin(A + B) = sinAcosB + cosAsinB
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sin(A + B)
=sinAcosB
+ cosAsinB

sin(A — B)
= sinAcosB
— cosAsinB

EXAMPLE 28

SOLUTION

EXAMPLE 29

SOLUTION

We can use this result to find an identity for sin (A — B).

Using sin (A + B) = sin A cosB + cos AsinB and replacing B = —B, we have:
sin (A — B) = sinAcos(—B) + cosAsin(—B)

Recall that cos (—B) = cosB and sin (—B) = —sinB.

s sin(A — B) = sinAcosB — cosAsinB

Show that sin(x + %) = COSX.

Using sin (A + B) = sinAcosB + cos AsinB, where A = xand B = %, gives:

sin(x + E) = sinxcos X + cosxsinT

2 2 2
Since sin 5 1 and cos 5 0
sin(x + %) = (sinx) X 0 + (cosx) X 1
= cosx Q.E.D.
Show that sin (x - %) = —COSX.

Using sin (A — B) = sinAcosB — cos AsinB, where A = x, B = %, we get:
i — ) = a_ inT
sm(x 2) sinx cos > — cosxsin5

= (sinx) X 0 — (cosx) X 1

Expansion of cos (A = B)
cos(A + B) = cosAcosB — sinAsinB

We can prove this geometrically:

Look at the diagram.

From APQR, cos(A + B) = PR
PQ

Now, PR = PT — RT

And RT = NS

Therefore, PR = PT — NS
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cos(A + B)
= cosAcosB
—sinAsinB

cos(A — B)
= cosAcosB
+ sinAsinB

EXAMPLE 30

SOLUTION

EXAMPLE 31

SOLUTION
PROOF

_ PT — NS
Therefore, cos (A + B) = =5q
_PT NS
PQ PQ
: _PT  PS
We can write: m = P_S X PQ
PQ QS PQ
Therefore, cos (A + B) = PT X 11;(52 o S « QS ]
PT
From APST, cosA = PS
From APQS, cosB = m
From AQNS, smA— @
_ QS
From APQS, sinB = PQ

Substituting into [1], we get:

cos(A + B) = cosAcosB — sinAsinB

We can use this result to find an identity for cos (A — B).
Using B = —B, we have:

cos(A — B) = cosAcos(—B) — sinAsin(—B)

Since cos (—B) = cosB and sin(—B) = —sinB:

cos(A — B) = cosAcosB + sinAsinB

Show that cos( + x) —sinx.

2

Using cos (A + B) = cos AcosB — sin Asin B where A = E, B = x, gives:

COS(E

> + x) = cosT cosx — sinEsinx = 0 X cosx — 1 X sinx

2 2
= —sinx = right-hand side QE.D.

Prove that cos(

l\)|:]

&
Il
<1
=]
=

Using cos(A — B) = cosAcosB + sin AsinB where A = = and B = x, gives:

COS(% - x) = COS% cosx + Sll’l% sinx

=0cosx X +1 X sinx

= sinx = right-hand side Q.E.D.
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EXAMPLE 32

SOLUTION

EXAMPLE 33

SOLUTION

Try these 9.4

Find the exact value of sin-x.

12
Sincel—T; = % - %:
sin({3) = sin(5 — )

Expanding using sin (A — B) = sin AcosB — cos Asin B, where A

(T W T 1) Mo T
sin(+ — —| = sin4 cos— — cos—+-sin—
( ) 3 4 3 4

3 4
V3

Loin I = VO
Recall these: sin 3 5

()
=}
7

(@)

©

[7,]
SNERSNE]

2.
=
= (3
[
o = ol

w
o
&)
5
<
o

2.
=
~E

Find the exact value of cos ﬁ'

S5m_mm.
2416

cos(13) = cos( + §]

Since ==

Expanding gives:

cos(% + %) = cos% cos% - sin% sin%

V2
2

B

- T o in T — m_1l em=V3
Slnce COS SlIl4 and Sln6 2, COS 6 2 5

5m) _ V2 ﬁ
cos(ﬁ) X )

S

2
™

Since cos(slz) (5 - ﬁ), Ccos| ==

To check, recall that cos(E -0 ) = sin 6
From Example 22, we know sin(

Therefore, cos(slg) \/7 (V3 —

we have:

i
3’B

NE]

, gives:

Find the exact value of each of the following. Do not use tables or a calculator.

(a) cosl™ i 2

(b) sin—

7T

(c) sint% B
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EXAMPLE 34 IfsinA = % and cosB = %, where A is obtuse and B is acute, find the values of these.
(a) sin(A + B)

(b) cos(A — B)

SOLUTION Since A is obtuse, A will be in the second quadrant. Since B is acute, B lies in the first
quadrant. y
From the two triangles:
- g4
sinA = 13 sinB g 5 13 S
_ 12 _3 4
COSA = —13 cosB—g A8 x
-12 0 3

(a) sin(A + B) =sinAcosB + cosAsinB

_(5}(3 12\(4
4ﬂ@+kﬁh)
_15_ 48

65 65

33

65

(b) cos(A — B) = cosAcosB + sinAsinB

= (=3l + (5]

_ _36 20
= 7% 65
_ 16

65

EXAMPLE 35 Given that sinA = — % and cosB = i and that A and B are in the same quadrant,
find these.

(a) sin(A + B)
(b) cos(A + B)

SOLUTION Since sin A is negative in the third and fourth quadrants and cosB is positive in the
first and fourth quadrant, then A and B must be in the fourth quadrant.

Remember

Identify the 5 -
quadrants that 15
each angleisin

and decide on A ]

the signs of the 21 1
ratios involved.

sinA=—% sinB=—@
cosA=@ cosB=%

233



(a) sin(A + B) =sinAcosB + cosAsinB

- (-3 -

5N\4 5
2 V21 X15

- 720 20

1
= —552+ 3V35)

Vis

7l

(Since V21 X 15 =V3 X 7 X 3 X 5
=19 V35 = 3V35)

(b) cos(A + B) = cosAcosB — sinAsinB

- B -3

_ 1
—m(\/ﬁ— 2V15)

V15

7l

PROOF

tan (A + B)
_ tanA +tanB

" 1 —tanAtanB

tan(A — B)
_ tanA —tanB

" 1+ tanAtanB

Expansion of tan (A + B)

We can expand tan (A + B) and show that tan (A + B) = tanA + tanB_

sin(A + B)
cos(A + B)

_sinAcosB + cosAsinB
cosAcosB — sinAsinB

tan(A + B) =

sinAcosB | cosAsinB

_ cosAcosB  cosAcosB

cosAcosB _ sinAsinB

cosAcosB cosAcosB
sin A + sin B
_cosA  cosB
__ sinAsinB
cosAcosB

_ tanA + tanB
1 —tanAtanB

Similarly, we can show that: tan (A — B) =

1 —tanAtanB’

(Expanding (sin (A + B) and cos (A + B))

(Divide the numerator and denominator by
cosAcosB)

= right-hand side

tanA — tanB

1 + tanAtanB

EXAMPLE 36

SOLUTION

Using tan (A — B) = tanA — tanB with A = m, B = 6, gives:

1+ tanAtanB’

_ p _ tanm —tané
tan (1 = 6) 1 + tanr tan 6

__ 0—tané
1+ (0 X tan 6)

= —tan 0 = right-hand side
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EXAMPLE 37 Given that sin § = %, 0° < 0 < 90°, show that tan(O + %) = %(9 + 4V2).

. _ tanA + tanB _ _ .
SOLUTION Using tan(A + B) = 1 - tan A tanB’ where A = fand B T
tan 0 + tan%
tan( 0+ E) =
4 1 —tan6 tan
_tanf+ 1 : ™ _
1 —tanf (Since tan 7 1)
Use the right-angled triangle for sin 6 = %
=L
tan 0 = S 3 :
1.4 1+V8
. m o __ V8 _ 8 A ]
..tan(0+z)— 1 RV
1-—=x1 V¥8—-1 \
V8 V8
_1+V8
V8 —1
s V8 X V8 +1 (Rationalise the denominator, i.e., multiply
V8—1 V8+1 .
the numerator and denominator by
V8 + 1, which is the conjugate of V8 —1)
_1+2V8+38
8§—1
_9+2V8
7
_9+2VaX2
7
_9+4V2
7
=%9+m5)

Key points

sin(A + B) = sinAcosB + cosAsinB
sin (A — B) = sinAcosB — cosAsinB
cos (A + B) = cosAcosB — sinAsinB
cos(A — B) = cosAcosB + sinAsinB

_ tanA +tanB
il B = 1 —tanAtanB

tanA — tanB

tan(A —B) = 1+ tanAtanB

EXERCISE 9C

1 Find the value of sin 75° in surd form, simplifying your answer.

2 Given sin(A=B) _ 5

sin(A + B) 13 that show that 4 tan A = 9 tanB.
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10

11
12

|
14

15
16

Given that tana = %, cosfB=— % and that « is in the third quadrant and 8 in

the second quadrant, calculate, without the use of a calculator, the values of the
following.

(a) sin(a + B) (b) tan(a — B) (¢) cos(a— B)

Prove that the identity sin (6 + 30°) + V3cos (6 + 30°) = 2 cos 6 is correct,
where 6 is measured in degrees.

The angle 6, measured in degrees, satisfies the equation sin (6 + 30°) =
2 cos (6 + 60°). Show that this equation may be simplified to cos = 3V/3 sin 6.

If sin(6 + «) = ksin (0 — «), where k is a constant (k # 1), find an expression
for tan 6 in terms of k and tan a.

12
13’
(a) sina (b) tana (c) cos(a + 30°)

Ifsina = % and sin 3 = %, where « and S are obtuse angles, find the values of

the following.

If « is an obtuse angle such that cosa = — 1%, find the following.

(a) sin(a + B) (b) cos(a + B) (¢) tan(a + B)

If cosa = i, and a is in the fourth quadrant, find the exact value of the following.
(a) sina (b) sin(a - %) (c) cos(a + %)

Show that the following are true.
(a) tan(2m — 60) = —tan 6 (b) sin(‘:"T’Tr + 0) = —cos 0
IftanA = y + 1 and tanB = y — 1, show that 2 cot (A — B) = ).

Express each the following as a single trigonometrical ratio.

1 + tan 6 1 1 o
(a) l——tanH (b) WCOSG + WSIHO

Find, without using a calculator, the values of cot § when cota = % and
cot(6 —a) = 4.

cos(a — B) — cos(a + B)
sin(a + B) + sin(a — B)

If tan (o + B) = b and tan 8 = 0.5, show that tana =

Show that = tan .

2b—1
b+2°

In an alternating current circuit, the instantaneous power P at time ¢ is given by
this equation:

P = VI cos ¢psin? (wt) — VI sin ¢sin(wt) cos (wt)

Show that the equation is equivalent to this: P = VIsin (wt) sin (wt — ¢).

Double-angle formulae

Sin260

We can show that sin26 = 2 sin 6cos 6.
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PROOF

PROOF

PROOF

We can use sin(A + B) = sinAcosB + cosAsinB where A = 6,B = 6:
sin (6 + 6) = sin Ocos O + cos Osin O

= = 2 sin fcos O = right-hand side

Cos26

We can show that cos26 = cos? 6 — sin? 6

Substitute A = 0, B = #into cos(A + B) = cosAcosB — sinAsinB.

= cos(f + 6) = cosfcos § — sin fsin O

= = cos’> 0 — sin? 0 (1)
Also, cos26 = (1 — sin?6) — sin?0 (Since cos? @ = 1 — sin?6)
=1-—2sin%6

Further, substituting sin?6 = 1 — cos? 6 into (1), we have:
c0s26 = cos?> 0 — (1 — cos? 6)
=2cos’0— 1
.. cos20 has three different forms:
cos26 = cos? 0 — sin’ 6
cos20 =2cos’6 — 1
cos20 =1 — 2sin’ 0

Tan26

We can show that tan26 = 2tan 0

1 — tan?6

_ tanA + tanB
tan(A + B) = 1 —tanAtanB

Substituting A = fand B = 6, we get:

tan (6 + ) = tan @ + tan 0

1 — tan Otan 0
_ _2tanf
1 — tan?60

Double-angle formulae

sin 26 = 2 sin 6 cos 0
€os 260 = cos? 0 — sin%
€0s20=2cos?0— 1
cos20=1—2sin?0

2tanf
tan20=—"——+—
1 — tanZ4
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o — o i B B
sinf=2 5|n2cos2

cos 6 = cosztj9

_ 20
sin®3

cosf = 2coszg —1
cosf=1— 25in2§0

9
2tan2

tanfgl= ——=—
1—m¥§

Ift= tang, then:

] 2t
g=—%4L_
METTre
1-t
0:
TTIT e
2t
tanf =
1—t2

SOLUTION
PROOF

Half-angle formulae

We can also derive a set of half-angle results by replacing 6 = g into each double-angle
result and obtain half-angle formulae.

t-formulae

Lett = tan g, and we draw a right-angled triangle:

We can use the diagram to derive half-angle formulae in terms of ¢, where t = tan g
.0 t
Sin5 —
20 Vi+2
1

COS7 =

2 Vi+g

We can also use t to derive formulae for sin 6, cos 6 and tan 6.

0= cin ot
sm0—231n2cos2
—ox L x__1

V1+ 2

cos 0 = cos o sin

Proving identities using the addition theorems
and the double-angle formulae

EXAMPLE 38

Prove the identity 1= cos20 _

sin26

Start with the left-hand side and convert the double angles to single angles, using:
cos20=1—2sin*0

sin26 = 2 sin Ocos 0
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So we have:
1 —cos20 _ 1 — (1 —2sin*6)
sin26 2 sin f@cos 6
= m&gi i (Divide numerator and denominator by 2 sin 6)
_sinf
cos O
= tan 0 = right-hand side QE.D.

EXAMPLE 39  Express cos36 in terms of cos 6 only.

SOLUTION Using cos (A + B) = cosAcosB — sinAsinB, where A = 26and B = 6:
cos360 = cos(20 + 0)
= cos26cos O — sin260sin 6
Using cos26 = 2 cos?§ — 1 and sin26 = 2 sin fcos 6, we have:
c0s360 = (2cos>0 — 1)cos @ — (2 sin Ocos H) sin O
=2cos®> 0 — cos @ — 2 sin? fcos 0
Using sin? 6§ = 1 — cos? 6, we have:
c0s360 =2 cos’0 — cos — 2 cos (1 — cos?6)
=2cos’0 — cosf — 2 cos O + 2 cos> O
=4cos*0—3cosb

;. c0s30=4cos*0 — 3 cosf Q.E.D.

EXAMPLE 40 Prove that cot A — tan A = 2 cot2A.

SOLUTION

PROOF

cosA _ sinA
sinA  cosA

_ cos?A —sin’A

cotA — tanA =

S Acos A (LCM is sin A cosA)
= 1C0572A (Since cos2A = cos*A — sin?A
=sin2A 1. .
2 =sin2A = sin AcosA)

2
= 2 cot2A = right-hand side

sin20 + cos260+ 1 _
EXAMPLE 41  Prove that SN0 —cos20 1 cot 0.

SOLUTION

PROOF
Start with the left-hand side, and use:
sin26 = 2 sin fcos 6

cos20 + 1 =2cos?0
1 — cos26 = 2sin%0 239
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EXAMPLE 42

SOLUTION

EXAMPLE 43

SOLUTION
PROOF

We have:
sin26 + cos20 + 1 _ 2 sinfcos 6 + 2 cos? O

sin260 — cos260 +1  2sinfcos O + 2 sin? 0
2 cosf(sin 6 + cos 6)
~ 25sin6(cos O + sin 6)
— cos b
sin 0
= cot § = right-hand side

Show that sin36 = 3 sin @ — 4 sin? 6.

sin36 = sin (260 + 0)
= sin26cos 6 + cos20sin O

Use: sin26 = 2 sin 6cos 6

cos26=1—2sin’6

We get:

sin30 = (2 sin Ocos H) cos O + (1 — 2 sin? O) sin O
= 2sinfcos? O + sin @ — 2 sin* 0
= 2sin (1 — sin? @) + sin O — 2 sin> O
=2sinf — 2sin®> 0 + sin 6 — 2 sin’
=3sinf — 4sin® 0 Q.E.D.

sin4d _ 2tané

Prove that T+ cosd6 1 - tan’d

Start with the left-hand side and convert the numerator to double angles.

Since sin260 = 2 sin Ocos 0
= sin2(260) = 2 sin20cos26
= sin46 = 2 sin26cos20
Also cos26 =2 cos’0 — 1
= c052(260) = 2 cos?20 — 1

= cos46 =2 cos2260 — 1
sin46 2sin260cos26

T+ cosdb 1+ 2cos220—1
_ 2sin26cos26
2 cos226

_ sin26
cos26
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= 221n_0cqs(2 (Since sin20 = 2 sin fcos 0

cos” 6 — sin® ¢ c0s26 = cos®> 0 — sin? 0)

2 sin fcos 6

—__cos’b (Divide the numerator and denominator by cos? 6)

cos? f — sin?

cos? 6

_ 2tanf

1 — tan®6
Hence, sin4f _ 2tané

1+cos46 11— tan2@
Alternative method:

sin26 _
cos26

sin26 _ 2tan®6
cos20 1 — tan%6

Since tan 2 6

The form a cos 0 + bsin 0

EXAMPLE 44 Express acos 6 + bsin 6 in the form rcos (0 — ) where r > 0 and 0° < a < 90°.

SOLUTION Letacos6 + bsin 6 = rcos (0 — «).

Using the expansion of cos (A — B) = cosAcosB + sinAsinB where A = 6,B = a,
we get:

acos @ + bsin 0 = r(cos Ocos a + sin fsin «)
= rcosfcosa + rsin 6 sin «

For the two sides to be equal the terms in cos 6 and sin # must be equal. Equating
coeflicients of cos 6 and sin 6 gives:

= acosf = rcosbcosa
=a=rcosa [1]

= bsinfh = rsin O sin

= b=rsinw (2]
We can now find r and « in terms of a and b:
b _ rsina N
a~ rcosa (2] = [1]
= tan«
=t b
Note =a=tan"';
rrcos?a + rsina = a? + b? [1]% + [2]?
Do not learn this )
result. Under- r*(cos? a + sin®a) = a® + b?
stand the pro- rr=a*+ b’ (Since cos? @ + sina = 1)

cedure and use
— A/ A2 2
the procedure to r==*Va +b

convertfromone  Sincer >0, r = Va2 + b2
form to the other.
s acos @+ bsin 0 = Va? + b? cos(O — tan~! (g))
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EXAMPLE 45

SOLUTION

Express 2 cos 6 + sin 6 in the form rcos (6 — &) where r > 0, 0° < a < 90°.

Let 2 cosf + sinf = rcos (6 — «).

Expand the right-hand side, using cos (A — B) = cos AcosB + sin Asin B where A = 6,
B=oa

.. 2cos0+ sin @ = r(cos fcosa + sin Osin @)
2 cos 6+ 1sin @ = rcos fcosa + rsin fsin «
Equating coefficients of cos 6 gives:

rcosa =2 [1]

Equating coeflicients of sin 6 gives:

rsina =1 (2]

rsina _ 1 .

rcosa ) (2] + [1]
-1

tana = 3

=Sa= tan‘l%z 26.6°

r?cos a + r?sinfa = 12 + 22 (11> + [2]?

=5

r =15, sincer >0
Hence, 2 cos 6 + sin § = V/5cos (6 — 26.6°).

EXAMPLE 46

SOLUTION

Express 2 sinx + 3 cosx in the form 7 sin (x + «), 7 > 0, 0° < a < 90°.

This form is different from that in Example 45 but we can use the same procedure to
make the conversion.

In this case, we expand sin (x + «) by using sin (A + B) = sin AcosB + cos AsinB:
2sinx + 3 cosx = rsin(x + «a)

2 sinx + 3 cosx = r (sinxcosa + cosx sin )

2sinx + 3 cosx = rsinxcosa + rcosxsin a

Equating coefficients of sin x:

rcosa =2 (1]

Equating coefficients of cos x:

rsina =3 (2]

rsina _ 3 .
rcosa (2] = [1]
tanaZ%

a= tan‘1% = 56.3°

r? = 2%+ 3? [1]? + [2]?

r= V13, sincer > 0
s 2 cosx + 3 cosx = V13 sin (x + 56.3°)
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EXAMPLE 47

SOLUTION

There are four different forms that we can use in our conversion. The four forms are:
rcos (x + )
rcos(x — )
rsin(x + a)
rsin(x — )

The conversion is convenient for solving equations and to find the maximum and
minimum of some functions without using calculus.

Follow these steps to find the maximum and minimum of f(6) = acos 6 + bsin 6.
(Recall that the maximum of cos A is 1 and the minimum of cos A is —1.)
(i) Writeacosf + bsinf = rcos(6 — a).

(ii) The maximum value of f(6) occurs when cos (0 — a) = 1

. maximum of f(6) = r.

(iii) The minimum value of f(6) occurs when cos (0 — @) = —1.

. the minimum value of f(0) = —r.

Express f(6) = 4 cos 0 + 3 sin 6 in the form rcos (6 — a) where r > 0, 0° < a < 90°.
Hence, find the maximum value of f(6) and the value of 0 for which f(6) is
minimum.

4cosf+ 3sinf=rcos(0 — «)
4 cosf + 3sinf = rcosBcosa + rsin Osin «

Equating coeflicients of cos 6 gives:
rcosa =4 [1]

Equating coeflicients of sin 6 gives:

rsina =3 [2]
reosa = 1 [2] + [1]
tana = %
Sa= tan‘%
= 36.9°
rr=42+ 3 [1]% + [2]?

r =125 =5, sincer > 0

o4 cosO+ 3sinf =5cos(6— 36.9°)

The maximum value of the function = 5 when cos (6 — 36.9°) = 1.
f(6) is at a minimum when cos (0 — 36.9°) = —1.

When cos (6 — 36.9°) = —1:

0 — 36.9° = 180°

0 =216.9°
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EXAMPLE 48

SOLUTION

(a)
(b)

(c)

(a)

(b)

(c)

Given that 3 sinx — cosx = rsin(x — «), r > 0and 0° < a < 90°, find r and «.

Find the maximum value of 3 sinx — cosx and state the value of x (0° < x < 180°)
for which the maximum occurs.

State the minimum value of 3 sinx — 4 cosx and state the value of x (0° < x <
360°) for which the minimum occurs.

3sinx — cosx = rsin(x — «)

3 sinx — cosx = rsinx cosa — rcosx sina
Equating coeflicients of sinx gives:

rcosa = 3 [1]

Equating coeflicients of —cosx gives:
rsina =1 [2]

rsina _ 1 -
rcosa 3 (2] = [1]

rr=1%+ 3 [1]? + [2]?

r=v10,r>0

. 3sinx — cosx = V10 sin (x — 18.4°)

When sin (x — 18.4°) = 1, maximum value = V10 X 1 =V10.
sin(x — 18.4°) =1

x — 18.4° = 90°

x = 108.4°

When sin (x — 18.4°) =—1, minimum value = V10 X —1 = —V10.
sin(x — 18.4°) = —1

x — 18.4° = 270°

x = 288.4°

Solving equations of the form acos @ + bsinf = ¢

To solve an equation of this form, we convert to one of the forms rcos (6 * «) or
rsin (6 £ «) and then solve.

EXAMPLE 49

SOLUTION

Find the general solution of the equation sin § + cos 6 = 1.

sin@ + cos 0 = rsin (0 + «) where r > 0, 0° < o < 90°

sin 6 + cos 8 = rsin fcos« + rcos Osin «
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Equating coefficients of sin 6:

rcosa =1 (1]
Equating coefficients of cos 6 gives:

rsina =1 [2]
rsina _ 1 .
rcosa 1 (2] = 1]

tana =1

a=tan'1
= 45°
P=12+12 [1% + [2]2
r=V2
- sin @ + cos @ = V2sin (6 + 45°)
We need to solve sin # + cos 6 = 1:
Using sin 6 + cos 6 = V2 sin (0 + 45°), we have:
V2sin (0 + 45°) = 1
sin (0 + 45°) = %
0+ 45°=180°n + (—1)"45°ne Z
0 = 180°n + (—1)"45° — 45°
Let n = 2p, 6 = 360°p + 45° — 45°
=360°p,p e Z
Letn=2p + 1,0 =180°(2p + 1) — 45° — 45°
= 360°p + 180° — 90°
=360° + 90°% p e Z

EXAMPLE 50 (a) Write the function f(x) =7 cosx — 24 sinx in the form rcos (x + a) where r >
0,0° < a < 90°.

(b) Hence, solve the equation 7 cosx — 24 sinx = 4 for 0° < x < 360°.

(c) Identify the maximum value of f(x).

SOLUTION (a) 7cosx — 24 sinx = rcos(x + «)
7 cosx — 24 sinx = rcosx cosa — rsinx sina
Equating coefficients of cosx gives:
rcosa =7 (1]

Equating coeflicients of —sin x gives:

rsina = 24 [2]
rsina _ 24 N
rcosa 7 (2] = 1]
tana = %

a=tan 2t =737°

245
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EXAMPLE 51

SOLUTION

r =7+ 24 [1]2 + [2]?
r=\49 + 576 = 25

o7 cosx — 24 sinx = 25 cos(x + 73.7°)

(b) We need to solve 7 cosx — 24 sinx = 4.
Since 7 cosx — 24 sinx = 25 cos(x — 73.7°), we solve:

25 cos(x — 73.3°) = 4

- o _ 4
cos(x — 73.3°) 35
. o _ 14
x—73.7 cos 35

x — 73.7° = 80.8°,279.2°
x = 80.8° + 73.7°,279.2° + 73.7°
= 154.5°, 352.9°
(c) Since 7 cosx — 24 sinx = 25 cos (x — 73.7°)

The maximum value is 25.

Find the solution of the equation 2 cos2x — 3 sin2x = 2 for 0° = x = 360°.

First we write the equation as:

2 cos2x — 3sin2x = rcos(2x + a), r >0, 0° < a < 90°
Expanding the right-hand side:

2 cos2x — 3 sin2x = rcos2xcosa — rsin2xsin a.
Equating coefficients of cos 2x

rcosa =2 [1]

Equating coefficients of —sin 2x:

rsina =3 [2]

rcosa 2% (2] = [1]

rr =22+ 3 [1]% + [2]?

r=vi3

- 2 cos2x — 3sin2x = V13 cos (2x — 56.3°)
Substituting into 2 cos2x — 3 sin2x = 2:

V13 cos(2x — 56.3°) = 2

o 2
cos(2x — 56.3°) = =—
( ) V13

o 1 2
2x — 56.3° = cos™! ==
V13
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We identify all solutions for 2x — 56.3°.
2x — 56.3° = 56.3°, 303.7°, 416.3°, 663.7°

2x = 112.6° 360°, 472.6°, 720°

x = 56.3° 180°, 236.2°, 360°

EXAMPLE 52  Solve the equation 12 sin § — 5 cos § = 4 for 0° = 6 = 360°. Use two different
methods.

SOLUTION Method 1
Convert 12 sin @ — 5 cos 0 to the form rsin (6 — «):
12sin® — 5cos @ = rsin(0 — «)
12sin@ — 5 cos @ = rsin fcosa — rcos fsin «
Equating coefficients of sin fgives:
rcosa = 12 [1]

Equating coeflicients of —cos 6 gives:

rsina =5 [2]

rsina _ 5 .

rcosa ~ 12 (2] = [1]
-

tana = 12

12
r =5+ 12? [1]2 + [2]?
r=v169 =13

5.12sin@ — 5cos @ = 13 sin(0 — 22.6°)
= 13sin(6 — 22.6°) =4
sin (6 — 22.6°) = %
0 —22.6° = sin‘I%
0 —22.6°=17.9°162.1°
0 = 40.5°,184.7°
Method 2
12sinf — 5cos 0 = 4
= 12sinf =4+ 5cos 6
Square both sides:
144 sin? 0 = 16 + 40 cos 6 + 25 cos? 0
Usesin?f = 1 — cos? 6
144(1 — cos?0) = 16 + 40 cos 0 + 25 cos? 0
247
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144 — 144 cos* 0 = 16 + 40 cos 6 + 25 cos? 0

169 cos?0 + 40 cos§ — 128 = 0
Let y = cos 0.

= 169y + 40y — 128 = 0

_ —40 * V40 — 4 X 169 X —128
) 2 X 169

_ —40 * 296.864
338

y = 0.75995, —0.9966

For y = 0.75995, cos 6 = 0.75995

0 = cos™10.75995

0 = 40.5°, 319.5°

For y = —0.9966, cos 0 = —0.9966
0 = cos 1 (—0.9966)

0= 175.3°,184.7°

At this stage, you need to test all your values to identify which values satisfy the range
in the question.

When 6 = 40.5° 12 sin40.5° — 5 c0s40.5° = 4 (due to rounding off)
When 6 = 319.5°% 12 sin319.5° — 5 c0s319.5° = —11.6 (not a solution)
When 6 = 175.3°% 12 sin175.3° — 5 cos 175.3° = 5.97 (not a solution)
When 6 = 184.7°,12 sin184.7° — 5 cos184.7° = 4 (solution)

s 0 =40.5°184.7°

Equations of the form acos # + bsin 6 = ¢ can be solved by squaring. Each solution
must be tested when using this method for solving the equation.

Try these 9.5 (a) Solve the equation 3 sin & — cos § = 2 for 0° < 6 < 360°.
(b) Find the general solution of the equation V3cos26 — sin26 = —1

(c) write down the maximum and minimum values of f(x) = 2 sinx — cosx and
the values of x in the interval between —180° and 180° inclusive, where the
maximum and minimum occurs.

sin260 = 2sinfcos 6
€0s26 = cos? 0 — sin% 0
€0s260 =2cos?0— 1
cos260=1—2sin%6

2tand
tan20=——"F——
1—tan%6
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EXAMPLE 53

SOLUTION

EXAMPLE 54

SOLUTION

Equations involving double-
angle or half-angle formulae

Solve the equation sin26 + sin § = 0 for 0° = 6 =< 360°.

sin260 + sinf =0

We have a combination of a double angle and a single angle. We can convert the
double angle to a single angle and then solve.

Using sin26 = 2 sin 6cos 6, we get:
2sinfcosf + sinf =0

Factorising gives:
sinf(2cosf+1)=0

.. either sin@=0or2cosf+1=0
6 =sin10

= 0= 0°180° 360°
2cos0+1=0

= cosf = — %
= 0= 120° 240°

Hence, 6 = 0°, 120°, 180°, 240°, 360°.

Solve the equation 2 cos2x + sinx — 1 = 0 for all values of x from 0° to 360° inclusive.

We need to convert cos 2x to a single angle formula.

Since the equation contains sin x, we use cos2x = 1 — 2sin’x.
2cos2x +sinx —1=0

= 2(1 — 2sin’x) + sinx — 1 =10

=2 — 4sin’x +sinx — 1 =0

= —4sin’x +sinx+1=0

= 4sin’x —sinx — 1 =10 (Multiply by —1)
Lety = sinx
A4y —y—1=0
C1EV(-1)2—4x4X—1
Y= 2X 4
_1*xV17
y=—"75

y = 0.6404, —0.3904

sinx = 0.6404, = x = 39.8°, 140.2°

sinx = —0.3904 = x = 203.0°, 337.0°

Therefore, x = 39.8°, 140.2°, 203.0°, 337.0°, for 0 < x < 360°.
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EXAMPLE 55

SOLUTION

Solve the equation 3 tan x = tan 2x for all values of x from 0° to 360°.

We form a quadratic in tanx by using tan2x = %. We have:
— tan’x

3tanx = %
= 3tanx (1 — tan®x) = 2 tanx
Expanding gives:
3tanx — 3tan’x = 2 tanx
= 3tan’x — tanx = 0
Factorising:
tanx(3tan’x — 1) =0
Stanx=0,3tan?x —1=0
For tanx = O:

x =tan10

x=0°180°
For 3tan’x — 1 = 0:
1

tan?x =

3
tanx = i%

1
= +=
For tanx 3

1 1

x =tan"! ==
V3
x = 30° 210°

1
For tanx = V3

1
PR | R O
x = tan ( \/§)
x = 330°, 150°
~ox = 0% 30° 150° 180°, 210°, 330° for 0° = x = 360°.

EXAMPLE 56

SOLUTION

Find the general solution of 3 cos2x — cosx = 2.

We form a quadratic equation in cos x. Converting cos2x = 2 cos’x — 1, we have:
3(2 cos’x — 1) — cosx =2

= 6cos’x —3 —cosx —2=0

= 6 cos’x — cosx — 5 =10

Lety = cosx:

6y)—y—5=0

Factorising gives:

6y +5)(y —1)=0
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“6y+5=0,y—1=0
B
y=—gr=1

Since y = cosx, for y = —

Q@

cosx = —g

x= cos‘l(—g) = 146.4°

General solution:

x =360+ 1464°,n e 7

Since y = cosx, for y = 1:

x=cos!1=0°

General solution:

x =360°n = 0°
=360°n,ne”Z

General solution is x = 360°n * 146.4° and x = 360°n,n € Z.

EXAMPLE 57 Solve the equation cos 6 + sing = 1 for all § between 0° and 180° inclusive.

SOLUTION Convert cos 6 to a half angle result:
cosf=1-—2 sinzg

Substitute into the equation:

o ain2f a0
1 231n2—f—sm2
20 _ 0 _
Zsm2 sm2 0
Factorising:
sin= 2s1n2 1 0 ..sm2 O,2sm2 1=0
Forsing=
0 _ -1
5 sin™' 0
1,_ o
59— , 180
0 = 0°, 360°
For251n50 1=0
Q:l
372
0 _ gp11
2 sy
0_ o o
5—30 150
6 = 60°, 300°

Since 0° = 6 = 180°, § = 0°, 60°.

251
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Try these 9.6 Solve the following equations for 6, giving your answers in the interval
0° = 6= 360°.

(a) cos260— cosf=0

(b) cos6 =sin26

(c) cos260—2cosfh=3

EXERCISE 9D

1

A O _ W N

10

11

12

13

14

15

sin2x + cosx

Show that 5 ~—— = cotx.
2 — 2cos“x + sinx
1 —cos2x _ ., 2
Prove that T cos2x tan’x.
Prove that tanx — cotx = —2 cot2x.
Prove that sz. = cosx + sinx.
cosx — sinx
1 — cos2A + sinA _
Prove that Sn2AT cosd tan A.
Prove that 1 —0840 — (11,00,
sin40
Given that tan2x = i and that angle x is acute, calculate, without using a

calculator, the values of these.

(a) cos2x (b) sinx
sin(x +y) —sin(x —y)

Prove that cosr T ) Tcos(—y) tany.

Given that M = é, show thattan = 9 tana. If tana = l, calculate
sin(0+a) 5 3

without using a calculator, the values of tan § and tan 26.

Given that tana = % and that 0° < a < 90°, calculate, without using a calcula-

tor, the values of cos 2« and cos4a.

If cos 6 = p, express the following, in terms of p.
(a) sin20 (b) tan?6 (c) sin40
Given that tan 2a = 1 and that « is acute, show that tan @ = V2 — 1. Do not use

a calculator.

Express tan 2« in terms of tan « and hence, find, without using a calculator the

values of tan 67%o in surd form.

Two acute angles 6 and S, are such that tan § = % and tan (6 + B) = —2.
Without evaluating 6 or S, carry out the following.

(a) Show thattanB = 12—1

(b) Find sin # and sin .

cos(A — B) _5
cos(A+B) 2

acute and that tan B = 3 find, without using a calculator, the value of the following.
(a) tan(A + B) (b) sinA (c) cos2A

Given that show that 7 tanA = 3 cotB. Given further that A is
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16 Given that o, B and 6 are the angles of a triangle, show that

tana + tan 8

tan 9= tanatanB — 1

17 Given that sin 0 = i, find, without using a calculator, the value of the following.
(a) cos260 (b) cos46
18 Express 3 cosx + 2 sinx in the form 7 cos (x — @) where r > 0 and 0° < a < 90°.

(a) Write down the maximum value of 3 cosx + 2 sinx and the value of x
where 3 cosx + 2 sinx is maximum.

(b) Find the general solution of 3 cosx + 2 sinx = 2.

19 (a) Express f(x) = 2 sinx + 4 cosx in the form 7 sin (x + «) where r > 0 and
0° < a < 90°

2

2sinx + 4 cosx

20 (a) Express4 cosx — 3 sinx in the form r cos (x — «) where r > 0 and
0° < a < 90°

(b) Write down the maximum value of in surd form.

(b) Solve the equation 4 cosx — 3 sinx = 2 for and 0° < x < 360°.
(c) Write down the maximum value of 4 — 4 cosx + 3 sinx.
(d) Sketch the graph of y = 4 cosx — 3 sinx for and 0° = x = 360°.

Products as sums and differences

The following results can be used to convert a product of terms to a sum or difference
of terms. These are particularly helpful in proving other identities, solving equations
and integrating some products of sine and cosine.

Recall:

sin (A + B) = sinAcosB + cosAsinB [1]
sin(A — B) = sinAcosB — cosAsinB [2]

= sin(A + B) — sin(A — B) = 2 cosAsinB [1] — [2]
= sin(A + B) + sin(A — B) = 2sinAcosB [1] + [2]
Using these:

cos(A + B) = cosAcosB — sinA sinB [3]
cos(A — B) = cosAcosB + sinA sinB [4]

= cos(A + B) + cos(A — B) =2 cosAcosB [3] + [4]
= cos(A + B) — cos(A — B) = —2sinAsinB [3] + [4]

Let us use these results.

2sinAcosB = sin(A + B) + sin(A — B)
2 cosAsinB = sin(A + B) — sin(A — B)
2 cosAcosB = cos(A + B) + cos(A — B)
—2sinAsinB = cos (A + B) — cos(A — B)



EXAMPLE 58

SOLUTION

EXAMPLE 59

SOLUTION

EXAMPLE 60

SOLUTION

EXAMPLE 61

SOLUTION

254

Convert sin 80sin 66 to a sum or difference of terms.

Using —2 sinAsinB = cos(A + B) — cos(A — B), where A = 86, B = 660 we have:
—25sin86sin66 = cos (860 + 66) — cos (86 — 60)
—2sin860sin60 = cos 140 — cos260
.. sin86sin 660 —% (cos1460 — cos20)

= %(cos 260 — cos 146)

Convert cos70cos 60 to a sum of terms.

Using 2 cos AcosB = cos(A + B) + cos(A — B), where A = 76, B = 66, we get:
2 cos70cos60 = cos(70 + 60) + cos(70 — 60)

2 cos760cos66 = cos136 — cos 6

.. cos70cos60 = %(cos 1360 — cos 0)

Express 2 sin §cos 36 as a sum or difference of two ratios.

Using 2 sin AcosB = sin(A + B) + sin(A — B), where A = 6, B = 360 gives:
2 sinfcos360 = sin (6 + 36) + sin(6 — 36)

2 sin 6cos30 = sin46 + sin (—26)

Recall sin (—x) = —sinx:

sosin(—260) = —sin26

Hence, 2 sin 0cos30 = sin46 — sin26.

Express 6 cos50cos 36 as a sum or difference of two ratios.

Using 2 cos AcosB = cos(A + B) + cos(A — B), where A = 50 and B = 36, we have:
2 cos50co0s30 = cos(560 + 36) + cos(560 — 36)

2 cos56cos36 = cos86 + cos26

6 cos560cos360 = 3 cos86 + 3 cos20 (Multiplying by 3)

Converting sums and differences to products

sinA + sinB = 2sin2 B osA—B

2 2
sinA — sinB = 2 cos & ; B inA ; B
cosA + cosB = 2 cos & -2’_ B s ; B
cosA — cosB = —2sin2 —; B nd ; B
C+D C—D

Let us prove sinC + sinD = 2 sin >
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PROOF

Try these 9.7

EXAMPLE 62

SOLUTION

EXAMPLE 63

SOLUTION

EXAMPLE 64

SOLUTION
PROOF

Starting with right-hand side, and using 2 sin A cosB = sin(A + B) + sin(A — B):

C+D C—-D_
5 COs= 5 =

sin(A + B) + sin(A — B) where A = C+D,hgp=C-D

2 2
C+D _ C—-D . (C+D _ C-D
5 + 5 )+31n(

2 2
= sinC + sinD = left-hand side

Similarly you can prove the other identities.

2 sin

= sin

Prove that:

(a) sinA —sinB =2sin2 B cosA 1D
(b) cosA + cosB =2 cos A ; B oA ; B
(c) cosA —cosB=—2 sinA —2i_ B sinA ; B

Convert sin96 + sin 76 to a product of terms.

Using sinA + sinB = 2 sin(A -2|- B) cos(A ; B) where A = 96, B = 70 gives:
(90-5 70) 96 — 70)

sin96 + sin760 = 2 sin 5

COS(

= 2sin860cos O
. sin960 + sin760 = 2 sin86cos 6

Convert cos 7x + cosx to a product of terms.

A+B) (A—B
> cos 5
7x + x 7X — X
7 %) cos( 23]
= 2 cos4xcos3x

Using cosA + cosB = 2 cos( )with A=7x,B=ux:

cos7x + cosx = 2 cos(

. cos7x + cosx = 2 cosdxcos3x

Prove that €030 — €030 _ . g

sin @ + sin360

We convert the numerator and denominator to a product. When we do this, both the
numerator and denominator contain the factor 2 sin 26.

For the numerator, we use cosA — cosB = —2 sin(A —2|— B) sin(A ; B), where A
= 6,B=30:
_ 5 [0+ 36).. (60— 30
cos O — cos360 = 251n( > )sm( 3 )

= —2sin26sin(—6)

= 2sin20sin O (Since sin(—6) = —sin 6) 555



For the denominator, use sin A + sinB = 2 sin(A +B ) cos(A — B) where A = 0,

2 2

B = 36

sin @ + sin360 = 25in(0+ 30) cos(e — 30)

2 2
= 2sin260cos(—0)
= 2sin260cos 6 (Since cos(—6) = cos6)

. c0sf — cos360 _ 2sin2fsinfh _ sinf _
" sinf +sin30  2sin26cosh cosb

cosf —2cos30+ cos560 _ . -
EXAMPLE 65 Prove that 050 T 2 cos30 T coss0 tan? 6.

tan 6

SOLUTION
PROOF

We convert cos 6 + cos5 6 to a product and obtain 2 cos 3 # common to both the
numerator and denominator.

cos —2cos360+ cos50 _ cos + cos50 — 2 cos30
cos + 2 cos360 + cos560 cosB + cos50 + 2 cos360

Convert cos 6 + cos 56 to a product, using cosA + cosB = 2 cos(A —2’_ B) cos(A ; B)
where A = 6and B = 56

0 -259)608(0—256)

= 2 cos30cos(—26)
= 2 co0s30cos20 (Since cos(—26) = cos26)

cos O + cos50 = 2cos(

Substituting we have:
cos —2cos30 + cos56 _ 2 cos36cos260 — 2 cos36
cosfO + 2cos36 + cos50 2 cos30cos26 + 2 cos30
_2 c0s36 (cos260 — 1)
2 cos360(cos26 + 1)
_cos20—1
cos26+ 1
We next convert our double angle to a single angle.
cos20—1_1—2sin’0—1
cos260+1 2cos?60—1+1

(Since cos20 = 1 — 2 sin?H and
cos260 =2cos20— 1)
_ 2sin%6
2 cos* 6
_sin’6
cos? 0

.
— tan?6 | Since &20 = tan20
cos~ 6

cos+2cos36+cos560 _ . >
cosO+ 2cos360+ cos56 tan=6 QE.D.

Hence,
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EXAMPLE 66 Given that A + B + C = 180°, prove that sin A + sinB + sinC = 4 cos% cos% cos%.

SOLUTION
PROOF
We start with the left-hand side.

We use sinA + sinB = 2 sin (A _2|_ B) cos (#) and the half-angle formula

0 C = 2 6in C cos &
smC—281n2c032.

sinA + sinB + sinC =2 sin(A —2’_ B) cos(A ; B) +2 sin% cos% [1]

Since A + B + C = 180°
A+B=180°—C

A+B_gpe_ C
- 03

Substituting A —zi_ B _ g0° - %in (1) gives:
sinA + sinB + sinC =2 sin(90° — %) cos(A ; B) +2 sin% cos%
_ C A—B . C C . . o_ C\_
=2 cosj cos( 5 ) +2 smj cosj (Slnce sm(90 2)
C
cosf)
_ C A—B . C
=2 cos > (cos( 3 ) + sm§) (2]

Since A + B + C = 180°
C=180°— (A + B)

%:%twA+%

Substituting% =90° — (A —2|_ B) in [2] gives
sinA + sinB + sinC =2 cos%[cos(A 5 B) + sin (90° — (A ; B)]
=2 cos% (cos(A ; B) + cos(#)) (3] (Since sin(90° -
(A —2|r B\ _
o 5)
Converting cos(A 5 B) + cos(A ;r B) into a product:
A+B,A—-B A+B_A-—B
cos(A; )+cos(A12L )—2cos 2 3 2 Jcos|—2 3 2 )
=2 cos(%)cos(—%)
=2 cos(%)cos(%) (Since cos(—%) = cos(%))
Sustituting 2 cos% cos% in (3) gives:
sinA + sinB + sinC = 2 cos% X (2 cos%cosg)
=4 cos%cos%cos% Q.E.D.



EXAMPLE 67

SOLUTION

EXAMPLE 68

SOLUTION

EXAMPLE 69

SOLUTION
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Solving equations using the sums and differences as products

Find all values of 6 in the interval 0° and 180° satisfying the equation cos46 +
cos26 = 0.

A+B)cos(A_B)

We convert cos46 + cos26to a product using cosA + cosB = 2 cos ( > 5

where, A = 460, B = 26, and then solve:

cos46 + cos26 = 2 cos(49 er 20)cos(49 ; 20)

= 2 cos36cos b

Since cos460 + cos26 = 0:
2 cos36cosf =0
= c0s30=0,cos0 =0

For cos36 = 0:

30 = cos™!0

= 360 =90°,270°, 450°

= 6= 30°90° 180°

For cos 6 = 0:

6 = cos™10

= 0=90°

.. the values of 6 that satisfy the equation are 6 = 30°, 90°, 180°.

Find the general solution of cos § = —1.

cosf=—1
= 0=cos!'(—1)
=2nm*xmnel

The general solution is § = cos™}(—1) = 2nw = m,n € Z.

Find the general solution of cos 2x — cos5x = 0.

Converting cos 2x — cos 5x to a product:

C0s2x — cos5x = —2 sin(zx ;— Sx)sin(zx ; Sx)
= -2 sm% s1n( 32_x)
= 2sin 3 s1n32—x (Smce sm(— %) = —sin 32x)

Since cos2x — cos5x = 0:

7x 3x
2 sin== 2 7 0
7x _ 3x _
= sin 5 0, sin 5 0



MODULE 2 ¢ CHAPTER 9

For sinE =0:

2
%—smlo
72—x—m'r,neZ
x—znTTrneZ

For sm3— =0:

2
3% _ il
> sin™ 0
3x _
> nmnels
x—zgﬂ,nel

2nm 2n
=3 £ nel.

The general solution is x =

EXAMPLE 70  Find the general solution of the equation sinx + sin2x + sin3x = 0.

SOLUTION We have three terms: taking two of them and converting to a product.

We use the first and the last term, since when combined we get sin 2x as a factor.

X +23x)cos(x —23x)

= 2 sin2xcos(—x)

sinx + sin3x = 2 sin(

= 2sin2xcosx (Since cos(—x) = cosx)

Substituting sinx + sin3x = 2 sin2xcosx into sinx + sin2x + sin3x = 0 gives:
sin2x + 2 sin2xcosx = 0
Factorising gives:
sin2x(1 + 2cosx) =0
=sin2x =0,1 +2cosx =0
For sin2x = 0:

2x = sin"!0

2x=nmnel

X = nzfn', ned

For1 + 2 cosx = 0:

2cosx = —1
cosx=—l
2
= -1 _l)— 4 2m
X = cos ( 5 2nm £ 3,neZ
Hence, the solutions arex—2m'ri2?ﬂ,x— n2 nel.
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EXAMPLE 71

SOLUTION

Find the general solution of cos460 + 2 cos56 + cos660 = 0.

Convert to a product:

cos46 + cos66 = 2 cos(49 ; 66)cos(49 ; 6{9)

= 2 cos560cos(—0)

= 2 cos50cos 6 (Since cos(—6) = cos0)

Since cos46 + 2 cos50 + cos660 =0
2 cos56cosO + 2cos50=0

= 2cos50(cosf+1)=0

= cos560 =0,cos0+1=0

For cos560 = 0:

50 = cos™'0

50 = 2nm *+ %,n e/
0=%(2nwi%),n e?
Alsocosf+1=0
0=cos'(—1)=2nm*tmnel.
Therefore, the general solution is 6 =

(2n1T+ )neZ

2
0=2nm*mnel.

EXERCISE 9E

In questions 1 to 10, factorise each expression.

1 sin4x — sinx 2 cos3x + cos2x
3  cos5A — cosA 4  sin4A + sin4B
5 cos6A — cos4A 6 cos2A — cos8A
7 sin7x + sin3x 8  cos5x + cos3x
9  sinbx — sin2x 10 sin7x + sin5x
11 Evaluate the following without the use of calculators:

(a) cosi—g + cosﬁ

(b) cosﬁ - cosﬁ

(c) s1n51—2 - s1nﬁ

o+
12 Prove that S08& ¥ €Os _ cot( B).
sina + sin 8 2

13 Prove that sin40° + cos70° = 2 cos60°cos 10°.
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In questions 14 to 23, find the general solution of the following equations.

14 cos5x + cosx =0

15 sin6x + sin2x =0

16 cos6x — cosdx =0

17 sin3x = sinx

18 cos6x + cos2x = cos4x

19 sin7x + sinx = sin4x

20 cos5x — sin3x — cosx =0

21 sin3x + sindx + sin5x = 0
22 sinx + 2sin2x + sin3x = 0

23 cos3x + cosx +2cos2x =0

In questions 24 to 33, simplify the fractions.

sin46 + sin 0
24 cos46 + cos 6

sin660 — sin26
25 cos60 + cos26

sin86 + sin46
26 cos80 — cos40

cos76 + cos O
27 sin76 + sin 0

28 sinx + 2 sin3x + sin5x
sin3x + 2 sin5x + sin7x

29 sinx + sin2x
COSX — COS2X

30 sin3x + sin2x
sin3x — sin2x

31 cos3x + cosx
sin3x + sinx

sin760 + sin 6
32 cos760 + cos 6

33 cos @ + 2 cos20 + cos360
cos — 2 cos260 + cos30

In questions 34 to 38, prove each identity.

4 sin46 + sin660 + sin560

cos40 + cos60 + cos560 = tan56

sin66 + sin760 + sin 6 + sin26
cos260 + cos@ + cos60 + cos70

= tan46

36 Sin6+sin36 + cos56 + cos76 _ _ sect
sin46 + cos860 + cos46 2 —sec’0
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37 cos —2cos360 + cos76 _ — tan226

cos @ + 2 cos30 + cos70

38 cos560 + 2 cos76 + cos96 _

g2
cos560 — 2 cos76 + cos96 cot” 0

In questions 39 to 44, express the following as the sum or difference of two ratios.

39 2sin66cosH 40 —2sin86cos40
41 2 cos60cos20 42 2sin70sin 6
43 2cos70cos30 44 —2sin76cos30

45  Prove that 2 cosx(sin3x — sinx) = sin4x.

46 Show that sin 5x + sinx = 2 sin3xcos 2x. Hence, find the general solution of
sin5x + sinx + cos2x = 0.

47 IfP + Q + R = 180° prove the following.
(a) sin2P + sin2Q + sin2R = 4 sinPsinQsinR
(b) sin2P + sin2Q — sin2R = 4 cosPcosQsinR

48 If P, Q and R are the angles of a triangle, prove the following.
(a) sin(Q + R) =sinP
(b) cos(Q + R) = —cosP

49 1If o, B and vy are the angles of a triangle, prove the following.
(a) sinBcosy + cosBsiny = sin«w
(b) cosy + cosBcosa = sinasinf
(c) sina — cosBsiny = sin Bcosy

50 Show that 1 + cos26 + cos46 + cos66 = 4 cos fcos26cos36. Hence, find the
general solution of the equation 1 + cos26 + cos46 + cos66 = 0.

51 Provethat1 — cos20 + cos40 — cos60 = 4 sin Ocos280sin 360. Hence, find the
general solution of the equation 1 — c0s26 + cos460 — cos660 = 0.
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SUMMARY

Trigonometry

Graphs and general solutions Trigonometric identities

Q

v
Graph of y = sin x sin20 + cos?0 =1
Wy tan26 + 1 = sec26
1+ cot?6 = cosec?6

% ' ||
) 4
N sin (A = B) =sin AcosB * cos AsinB
cos (A = B) = cos AcosB F sin AsinB
v tan (A + B) = tanA *tanB
raphofy_cosx 1¥tanAtanB
y

I ||
v
sin 20 = 2sin 6 cos 6
0 \/

c0s 20 = cos20 —sin6
€0s 260 = 2 cos20 — 1
] cos 260 = 1-2sin%)

o tan 20 = —21an6_
v 1-tan?9
Graph of y = tan x
1 y 1 -
: 1 : v
6
: : Ift=tan—,then:
= f snm‘)—i
? Lo €41
: : cosﬁ’:1 tz
- 1+t
v tan@:i
Graph of y = cosec x 1-2
y
d -
1 . v .
1N\U R 2sin A cos B = sin (A + B) + sin (A—B)
0 T Zl'n 2cos Asin B = sin (A + B) —sin (A—B)
N i 2cos A cos B = cos (A + B) + cos (A—B)
: —2sin Asin B = cos (A + B) — cos (A—B)
v v
\ 4 _
Graph of y = sec x sinA+sinB=25inA+Bcos AZB
Y
}" '\ sin A—sin B = 2cos A+ B gjn A—B
I 2 2
I _
Yo X cosA-l—cosB=2cosA+BcosA B

o % & 37 2 2
N ﬂ'f cosA—cosB=—25inA_2"BsinA;B

||
| v
v acosf+bsinh =rcosbh
Graph of y = cotx where r> 0 and 0° < a < 90°
1 1
i ( i [l
1 1 V
4 ; ! x Maximum (a cos 6 + bsin6) =r,
IT ‘\ 1|’ when cos (f—a) = 1
o -
v
— Minimum (a cos 6 + bsin ) = —i
General solution of sin x: when cos(@ —a) = —

x=nmw+ (N)"a,neZ

v
General solution of cos x:
x=2nwm*a,ne’l

v
General solution of tan x:
xX=nm+aneZ
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Checklist

Can you do these?

M Prove and use the identity sin? 6 + cos?6 = 1.

B Prove and use the identity 1 + cot? 6 = cosec? 6.

B Prove and use the identity tan? 6 + 1 = sec? 6.

B Solve trigonometric equations involving quadratics.

B Prove and use sin (A *= B) = sinA cos B = cos A sin B.

M Use cos(A = B) = cosAcosB =+ sinAsinB.

B Usetan(A = B) = %.

B Prove and use the double angle results.

Il Convertacos+ bsinftoRcos(0 — a), R>0,0° < a < 90°.
M Identify the maximum and minimum of acos 6 + bsin 6.

B Identify the angle at which acos 6 + bsin 0 is a maximum or minimum.
B Solve equations of the form acos 6 + bsin6 = ¢, c # 0.

M Solve equations using the double angle results.

B Convert products to sums and differences.

B Convert sums and differences to products.

Review Exercise 9

1 Prove the following identities.

cosf _
(a) T—snd secO + tan 0
(b) 1 gecx + tanx

secx — tanx
2 Find the general solution of

(a) 3cos’x =1+ sinx

(b) 3 cosx = 2sin’x

3 Simplify the expression || w.

4 Show that ccodes36(¥1 + % = 4 cos2a.

5  Show thatsin(a + B)sin(a — B) = sin’a — sin?B.

6  Given thatsin§ = %, 0°<0<90°and sina = — %, 180° < a < 270°. Find

(a) sin(6 + a)
(b) cos(6 + a).
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7 Prove each of the following identities

cos —2cos30 + cos76 _ _ .
(a) cosf + 2 cos36 + cos760 tan“20

(b) c0s50 + 2 cos70 + cos96 _

g2
08560 — 2 cos76 + cos960 cot”f

8  Find the exact value of cos 15°.

9  Show that w = cota — cot 0.
sin fsin o
10 Show that sin(% + x)cos(% + x) = %cost.

11 Given that f(6) = 3 sin 6 + 4 cos 6, express f(6) in the form rsin (6 + «) where
r>0and 0° < a < 90°.
. ) . 1
Find the maximum value of f(6). Hence, find the minimum value of 0% 70 7o)
12 fis a function given by f(x) = %sin(4x + g)
(a) Find the range of f. (b) Find the period of f.
(c) Sketch the graph of f over one period.

13 (a) Express 2 cos(2x) + 3 sin(2x) in the form rcos (2x — 6) where r > 0 and
0°<H<90°.

(b) Hence, find the general solution of 2 cos (2x) + 3 sin (2x) = 2.

(c) Find also the maximum value of 2 cos (2x) + 3 sin (2x) and the value of x
for which 2cos (2x) + 3 sin (2x) is a maximum.

In questions 14 to 16, express the following as the sum or difference of two ratios.
14 2sin66cos 6
15 —2sin86cos46
16 2 cos66cos26
17  Find the general solution of
(a) 2tanx — 1 =3 cotx (b) 6sec?Z =tanZ + 8.

18 Prove each of the following.

sinx sinx _ _
(a) — e 7T 1 secx 1 2 cosx cotx
(b) 1 —sinx _ _ cosx (c) cotf+ tan O = sec Hcosec O

COSXx 1+ sinx

19  Find the general solution of the following.
(a) cos5x — sin3x — cosx =0
(b) sin3x + sin4dx + sin5x =0

20 Simplify the following as far as possible.
sin760 — sin 6
(@) cos760 + cos 0

(b) cosf + 2 cos20 + cos30
cos — 2 cos260 + cos30
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CHAPTER 10
Coordinate Geometry

At the end of this chapter you should be able to:

B Recognise the Cartesian equation of a circle, ellipse and parabola
B Identify the centre and radius of a circle

B Find the equation of a circle given its centre and radius

B Find the equation of a tangent to a circle, ellipse and parabola

B Find the equation of a normal to a circle, ellipse and parabola

B Find the point of intersection of a curve and a straight line

B Find the points of intersection of two curves

B Find the Cartesian equation of a circle, ellipse or parabola given its parametric
equations

B Find the parametric equations of a circle, ellipse or parabola given its Cartesian
equation

B Find the foci of an ellipse

B Find the length of the major axis and the length of the minor axis of an ellipse
B Draw the graph of an ellipse

B Draw the graph of a parabola

KEYWORDS/TERMS

coordinates « geometry o circle « radius « centre « intersection « tangent
» normal « Cartesian equation « parametric equation e ellipse « parabola
« focus e directrix « symmetry « major axis « minor axis  vertex  latus rectum
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Review of coordinate geometry

Let A be the point with coordinates (x,, y,) and B be the point with coordinates
(x5 ¥,)-

The length of line segment AB = \/(x2 —x)+ 0, =)

x, +x +
The midpoint of AB = |~ 5 Z,yl > )’2)
i y2_y1
The gradient of AB =
e gradient o =%

Equation of a straight line

(i) Let m be the gradient of a line and (x,, y,) be a point on the line.
The equation of the line is given by:
y =y, = mx—x)

(ii) Let A(x,, y,) and B(x,, y,) be two points on a line. The equation of the line
passing through A and B is given by:

Yo ™ N

X T X

y —y, = m(x — x;) wherem =

A line parallel to the x-axis has equation y = ¢, where c is a constant. The
gradient of the line is 0.

A line parallel to the y-axis has equation x = ¢, where c is a constant. The
gradient of the line approaches infinity.

Parallel lines

Two lines are parallel if and only if their gradients are the same.

Perpendicular lines

Two lines are perpendicular if and only if the product of their gradients is —1.

The equation of a circle

N
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Let P(x, y) be any point on the circle with centre (0, 0).

By Pythagoras’ theorem:
OP? = 0Q? + QP?
=>rr=x>+y

.. the equation of a circle with its centre at the origin (0, 0) and radius r is x> + y* = 1.
The equation x> + y* = 4 represents a circle with centre (0, 0) and radius 2.

EXAMPLE 1 Find the radius of the circle 2x? + 2y* = 18.

SOLUTION We first write the equation in the form x> + y* = 12
If2x2 + 2)% = 18
=>x2+yr=9
=x>+ =32
.. the radius of the circle is 3.

y
X
0
Let P(x, y) be any point on the circle.
From the triangle:
rr=((x-—a?+(y—0b)? (Pythagoras” theorem)

s (x —a)*> + (y — b)* = r* represents the equation of a circle with centre (a, b) and
radius r.

EXAMPLE 2 Find the equation of the circle with centre (2, 3) and radius 1.

SOLUTION Use (x —a)®> + (y — b)> = r* wherea=2,b=3andr = 1.
The equation on the circle is:
(x—2)2+ (y — 32 =12
Expanding we have:
X —dx+4+y —6y+9=1
=>x>+y —4x—6y+12=0
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EXAMPLE 3

SOLUTION

EXAMPLE 5

SOLUTION

Given that the radius of a circle is 4 units and the centre is (1, —2), find the equation
of the circle.

Using (x — a)> + (y — b)> = r* wherea = 1, b = —2 and r = 4, we have:
(x—12+ @y +2)?=42

>x—-2x+1+y +4+4=16

S +y—2x+4y—11=0

s x? + y? — 2x + 4y — 11 = 0 is the equation of the circle with centre (1, —2) and
radius 4 units.

General equation of the circle

The equation (x — a)? + (y — b)? = ? is the equation of a circle with centre (a, b)
and radius r.

Expanding gives:

x* = 2ax + a> + y2 = 2by + b? = r?
=>x2+yP—2ax—2by+a>+ b —r=0

For an equation to represent a circle:

(i)  The equation must be of second degree in x and y.
(ii) The coefficients of x? and y* must be the same.

(iii) There are no terms in the product xy.
From the equation x*> + y* — 2ax — 2by + a*> + b*> — r* = 0, we can say the following:
(i)  The centre of the circle is (— % coeflicient of x, — % coeflicient of y).

(ii) The constant ¢ = a> + b? — r> where r is the radius and (a, b) is the centre.
srr=ad+b—c
Y By

(iii) The coefficient of x*> and y? are both 1.

Find the centre and radius of the circle x> + y* — 4x — 6y — 3 = 0.

Xty —4x—6y—3=0
Since the coefficient of x? and y? is 1, the centre is:

(_71 coefficient of x, _Tl coefficient ofy) = (— %(—4), - %(—6) = (2,3)
Sincec = —3
g

A )

=V4+9+3

=16

=4
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Hence, the centre is (2, 3) and the radius is 4.

We can also convert the equation (x — a)? + (y — b)? = r* as follows:

X+ —4x—6y—3=0

Take the constant to the right-hand side and rearrange the equation as:

X —4x+yP—6y=3

Now complete the square of the quadratic in x and the quadratic in y:

(¢ —4x + (=2)) = (=2 + () =6y + (=3)) = (=3)* =3

=>@x—2?2-4+(—-32-9=3
=>x—-2?2+((—3)32=16
(k=22 (- 32 =4

The centre of the circle in (2, 3) and the radius is 4.

EXAMPLE 6

SOLUTION

Find the radius and the coordinates of the centre of circle
2% + 2)2 — 12x — 8y + 18 = 0.

Divide by 2 to make the coefficients of x> and y* each 1:
=>x2+yYP—6x—4y+9=0
Centre of the circle is (— %(—6), - %(—4) = (3,2).
Sincec =9
r=Va?+ b —c

EFFErTs

=V9+4-9

... circle has centre (3, 2) and radius 2.

Or:x*+y’ —6x—4y+9=0

=>x2—6x+y?—4y= -9

Complete the square:

= 6x+ (=32 = (=3P + )y —4y+ (=22 —(—2)?=
=>x—32-9+(@(p—22—-4=-9
(x—=32+(@—2?*=4

=>x—3)P2+(—22=22

The centre of the circle is (3, 2) and the radius is 2.
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EXAMPLE 7

SOLUTION

If the line joining A(—3, —2) and B(5, 6) is the diameter of a circle, find the equation
of the circle.

Let C(x, y) be a point on the circle. Clx, y) -
H B(5, 6)

Since AB is a diameter, AABC is right-angled.
Gradient of AC X gradient of BC = —1

+ 2 .

Gradient of AC = yrz AC3,-2)
x+3
. y—6
Gradient of BC = &——
x—5

Since the product of the gradients is —1:

yt2_ y—6_
x+3 - x=5 1

2 — 4y — 12

x=—2x— 15
=y —4y—12=—x*+2x+ 15

>x2+y?—2x—4y—27=0
The equation of the circle is x> + y* — 2x — 4y — 27 = 0.

Or: The centre of the circle is the midpoint of AB which is:

52580

Since AB is a diameter

Length of AB = /(6 — (—2)> + (5 — (—3))?
r=5\6 = (=2 + 5 = (-3)

= L/6a + 64

—
[\
o

Il
<' N—= N—= N
W
o W
iI
W
[\

Using (x — a)*> + (y — b)? = r?, where centre is (a, b) and radius is 7, gives a = 1,

b=2,r=132.

.. the equation of the circle is:

(x— 12+ (y — 2)2 = (V32)?
=>x2—2x+1+y —4y+4=32

Xty —2x—4y—27=0
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EXAMPLE 8

SOLUTION

Find the equation of the circle that passes through the points P(2, 3), Q(4, —1) and
R(2, —1).

Let the centre of the circle be (a, b) and radius r.
The equation of the circle is (x — a)* + (y — b)? = 2.

Since the points (2, 3), (4, —1) and (2, —1) are on the circle, they must satisfy the
equation of the circle.

Whenx=2,y=3=02—-a)?+ @B - b?=1r 1]
Whenx =4,y = —-1= @4 —a)’>+ (-1 —-b?> =1 2]
Whenx=2,y=—-1= 02 —a)+ (-1 —b)? =1 (3]

From [2] = (4 —a)*=r — (-1 — b)?
From [3] = (2 — a)* =72 — (—1 — b)?

=@4—-a)P=2—a) (Since [2] = [3])
=16—8a+a*=4—4a+a? (Expanding brackets)
=4a =12

=a=3

Substitute a = 3 into [1] and [2] and equating:
=2-32+B-b?*=M4—-32+(—-1-0b)?
=14+9—-6b+b=1+1+2b+ b

8 =128

b=1

Substitute a = 3, b = 1 into [1]:
=02-3?%+3B-1>2=1r

=rr=5

Using (x — a)? + (y — b)?> = r>, where a = 3, b = 1 and r* = 5, the equation of the
circle:

(x—=32+@—-1)>=5
S —6x+9+)y2—2y+1=5
>3+ —6x—2y+5=0

As an alternative solution, we can find the centre of the circle by finding the point of
intersection of the perpendicular bisector of PQ and QR as follows.

Finding the equation of the perpendicular bisector of PQ:
The mid-point of PQ is 4+23-1)_ (3,1).

2 2
: _3-CED 4
The gradient of PQ = S — =3 2
Since the product of the gradients of perpendicular lines is —1. The gradient of the
perpendicular bisector = %
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Try these 10.1

EXAMPLE 9

SOLUTION

The equation of the perpendicular bisectorisy — 1 = %(x —3).
y= %x - % +1

-1, _1

272

Now, we find the equation of the perpendicular bisector of QR.

The mid-point of QR = 42#, _12_ L) =@, -1).

. _—1—(=1) _
Gradient of QR = —G—3 - 0.

The gradient of the perpendicular bisector — oo.

Since the gradient tends to infinity, the line is parallel to the x-axis and hence the
equation is x = 3.

The equation of the perpendicular bisector is x = 3.

Solving the equations we have:

_1 1
Y=
x=3

— 11

=1
Therefore the point of intersection is (3, 1) which is the centre of the circle.

Using P(2, 3) and (3, 1) the radius of the circle is r = \/(3 -2+ (1—-32=\5

The equation of the circle is:
(x =37+ (= 1)? = (V5)
X+ yP—6x—2y+5=0

(a) (i) Find the equation of the perpendicular bisector of the line joining the
q perp ) g
points P(4, 5) and Q(5, 4).

(ii) Find also the equation of the perpendicular bisector of the line joining the
points Q(5, 4) and R(6, 1).

(iii) Hence, find the equation of the circle passing through the points P, Q and R.

(b) Find the equation of the circle passing through the points A(1, 3), B(—2, 6) and
C(4,2).

Find the equation of the tangent to the circle 3x? + 3y? — 15x + 9y = 0 at the point
A(L, 1).

AQ1, 1)
3x2+3y2—15x+ 9y =0
Divide by 3:

=>x>+y>=5x+3y=0

Centre of the circle is (%, - %)
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EXAMPLE 10

SOLUTION

EXAMPLE 11

SOLUTION

Since the tangent is perpendicular to the radius:

gradient of the tangent = _—é = %
3
Using y — y, = m(x — x,), the equation of the tangent at (1, 1) is:
=3 —
y sx—1)
yol=8%"3
~3,_3
y=5X T3 +1
~3,4+2
y= 5x + 5

Find the equation of the normal to the circle x? + y* — 4x + 6y — 12 = 0 at the point
P(5, 1).

We first find the centre of the circle:

X+ —4dx+6y—12=0

X —dx+ P+ 6y =12

K= dx+ (=22 = (=22 + )2+ 6y + (+3)> — (+3)* =12
(x—22+ (y+32=12+4+9

(x— 22+ (y+3)2 =25

Comparing with (x — a)? + (y — b)? = 1%, centre is (2, —3).

P(51)
Equation of the normal at (5, 1) is: O
y—1=%x-5)
_4 20
Yy - 1= §X - ?
_4 17
Yy=3F T3
Given that the equation of a circle is x> + y* —
5x + 2y + 1 = 0, find the length of the tangent 6l
from the point B(0, 3) to the circle. |
B(0, 3) §
240
X+ —=5x+2y+1=0 I\
\\ A X
Centre of the circle is (%, —1) 6 -4 —2 0o 2\\>y54‘1 6
o 0[2,-1
_\/5)2+(—1)2—(1) ol
r=\l3 W
_5 ]
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|OB| = \/(g —0f +(~1-3y

4
|OA| = % (radius of the circle)
Using Pythagoras’ theorem:
OB? = OA? + AB?

-3+

89 _ 25 2
7 4—i—AB

4

,_89 25
AB =22 -2
_ 64 _
=% =16

AB=V16 =4

.. the length of the tangent from B is 4 units.

Intersection of a line and a circle

When the equation of the No intersection One intersection
line is substituted into

the equation of the circle, /

a quadratic equation is
formed.

If b* — 4ac < 0, the line
does not intersect the circle.

If b* — 4ac = 0, the line is a tangent to the circle.

If b* — 4ac > 0, the line and the circle intersect at two points.

Two intersections

EXAMPLE 12

SOLUTION

Show that the line y + 2x + 7 = 0 does not intersect the circle (x — 1)> + (y + 1)> = 9.

y+2x+7=0

=y=—-7—-2

Substituting into the equation of the circle gives:
x—1)+@p+1)P2=9
=>x—-124+(—7—-2x+1)2*=9
=Sx—1>2+(-2x—6)2=9
=Sx2—2x+1+4x*+24x+36—-9=0
=5x2+22x+28=0
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EXAMPLE 13

SOLUTION

Try these 10.2

Using b? — 4ac, we get b* — dac = 222 — 4(5)(28) = —76

Since b* — 4ac < 0, the equation has no real roots.

Therefore, the line does not intersect the circle.

Find the points of intersection of the circle with centre (2, —3) and radius 5 and the
circle with equation x> + y? — 5x + 3y — 4 = 0.

The equation of the circle with centre (2, —3) and radius 5:
(x =2+ (y+3)*=5
=>x2—4x+4+y>+6y+9=25
=>x>+yP—4dx+6y—12=0

Solving simultaneously gives:

X+ P —dx+6y—12=0 1]
X+ —=5x+3y—4=0 (2]
=x+3y—8=0 [1] — [2]
x=—=3y+8

Substituting into [1]:
=(8-3)2+)»?—48-3y) +6y—12=0
—=64— 48y + 92 +12 =32+ 12y + 6y —12=0
10y* — 30y +20 =0

y¥=3y+2=0
—-Dly—-2)=0
y=12

Wheny=1,x=8—-3(1)=5
y=2,x=8—-3(2)=2

.. the points of intersection are (5, 1) and (2, 2).

(a) Find the points of intersection of the two circles x> + y? = 20 and (x — 6)> +
(y —3)r=5.

(b) The centre of a circle is (—2, 3) and a point on the circumference is (—5, —1).
(i) Find the equation of the line joining the two points.
(i) Show that the radius of the circle is 5 units.

(iii) Write down the equation of the circle.
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EXAMPLE 14

SOLUTION

EXAMPLE 15

SOLUTION

(iv) Determine the equation of the tangent to the circle at the point (—5, —1).

(v) Find the points of intersection (if any exist) of the circle above with the
circle x> + y*> + 6x — 7y — 10 = 0.

Intersection of two curves

The points of intersection of two curves can be found by solving the equations
simultaneously.

Find the points of intersection of the curves y = % and x> — y* = 5.

Substituting y = ginto x? — y* = 5 we have:

o8 -s
xz—%=

X
= x* — 36 = 542

=>x*—5x2-36=0
Factorising gives:
K*—=9)(x*+4)=0
=>x2-9=0,x2+4=0

Since x is real x2 = 9.

=x=3,—-3

Whenx=3,y=g=2

Whenx = =3,y = % =-2

Therefore the points of intersections of the two curves are (3, 2) and (—3, —2).

The curves y = x> and 4x*> + y + 13x = 6 intersect at the points A and B. Find the
midpoint of AB.

Solving the equations simultaneously gives:

y=x (1]
42 +y+13x=6 2]
562+ 13x=6 [1] into [2]

=5x>+13x—6=0
=0GBx—2)(x+3)=0

:>x=%,—3
Whenx=%,y=(%)2=i

25
Whenx = =3,y =(—=3)>=9
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Therefore A(%, %) and B(—3,9).

2-34 49

The midpoint of AB is (

EXERCISE 10A

Find the equation of the circle with centre (1, 1) and radius 4.

Find the equation of the circle with centre (—2, 3) and radius 5.

Find the equation of the circle with centre (4, 2) and radius 7.

Find the equation of the circle with centre (0, 2) and radius 1.

Find the equation of the circle with centre (—1, 1) and radius 2.

Find the equation of the circle with centre (3, 0) and radius V2.

Find the equation of the circle with centre (—1, 2) and passing through (4, 1).

Find the equation of the circle with centre (—3, 1) and passing through (2, 2).

o 0 NN QN U W W N e

Find the equation of the circle with centre (1, 1) and passing through (4, 6).

[
=)

Find the equation of the circle with diameter AB where A is at (2, 4) and B is at
(—1,6).

[a—
[u—

Find the centre and radius of each of these circles.

(@) 6x*+6y>—4x—5y—2=0

(b) *+y*+6x+8 —1=0

() 3x2+3)> —4x+8 —2=0

12 Find the equation of the tangent to the circle x* + y* — 2x + 4y = 0 at the point (2, 0).

13 Find the equation of the tangent to the circle x> + y? — 6x + 4y + 3 = 0 at the
point (0, —3).

14 Find the equation of the tangent to the circle 2x* + 2)? — x + 4y — 15 = 0 at (3, 0).

15 Find the equation of the normal to the circle x? + y*> + 6x — 16 = 0 at the point
(1, =3).

16 Find the equation of the normal to the circle 3x> + 3y? — 6x + 12y = 0 at the
point (0, —4).

Parametric representation of a curve

Let x = f(t) and y = g(t), where fand g are two functions of t. These two equations
are called the parametric equations of a curve with ¢ being the parameter of the
equation. The equation y = f(x) is the Cartesian equation of the curve.
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Cartesian equation of a curve given its parametric form

EXAMPLE 16 Given that x = 2t — 1, y = 2, find the Cartesian equation of the curve.

SOLUTION The Cartesian equation represents an equation that connects x and y only. We can
make ¢ the subject of the formula in one of the equations and substitute into the next.

Sincex =2t —1

x+1=2t

Substituting into y = 2, we get:
=)

y= ixz + %x + i

This is the Cartesian equation of the curve.
Or, since y =

t=\y

Substituting into x = 2t — 1, we have:
x=2y7 — 1

We can make y the subject of the formula:

2y =x+1

_x+t1
V=7
X

=y =[]

Hence, y = ixz + %x + i is the Cartesian equation of the curve.

EXAMPLE 17 Find the Cartesian equation of x = 2> —= 3t + 1,y =t + 1.

SOLUTION In this case, it is easier tousey =t + 1and thust =y — 1.
Substitute into x = 2¢* — 3t + 1:
x=2y—12-3(y—1)+1
>x=2—-7y+6

This is the Cartesian equation of the curve.

EXAMPLE 18  Given thatx = —2t-and y = L1, find y in terms of x.
SOLUTION Using x = 7 _2: i and making f the subject of the formula:

=xt+x=2t
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Substituting into y gives:
x
_2—x 1
A S
2—x

x+2—x
__2—x . x _x+2—x
e Slncez_x+1 > and

2—x

_x+2—x
X —2+x

_ 2
2x — 2

—_1
x—1

The Cartesian equation is y =

x—1

X _=Xx"2+x
2—x 2—x

Parametric equations in trigonometric form

Trigonometric conversions can be done using the identities or right-angled triangle.

EXAMPLE 19

SOLUTION

Note

X2 +y’=1isa
circle with centre
(0,0) and
radius 1 unit.

280

Find the Cartesian equation of the curve x = cost, y = sint.

Method 1

X = cost

x> = cos’t (1]

y = sint

y? = sin?t (2]

x* + y* = sin’t + cos’t [1] + [2]
Recall that sin?t + cos?t = 1

=>x2+yP=1

Hence, the Cartesian equation is x> + y* = 1.

Method 2

Since cost = x

cost =% 1

1 N1 -x2

Draw a triangle:
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Pythagoras’ theorem:

V1=«
sint = 1
sint = V1 — x2

Since y = sint

y=Viw

=2 =1—x (Squaring both sides)
P*+yr=1

Hence, the Cartesian equation is x> + y* = 1.

EXAMPLE 20

SOLUTION

Find the Cartesian equation of x = 3 cost, y = 4 sint.

Method 1
x = 3 cost
Make cost the subject:

cost = %
Square both sides:
2
cos’t = % (1]

y = 4sint

8]

2

coszt+sin2t=%+i}— (1] + [2]
_2 LT

=179 %

= 16x2 + 9% = 144

Hence, the Cartesian equation is 16x> + 9y* = 144.

Method 2

=X
cost 3

V9 — x? 9-x2
3
Since y = 4 sint

9 — x?
3

=3y = 49 — x2

=9y =16(9 — x?) (Squaring both sides)
= 9y = 144 — 16x?

952 + 16x2 = 144

Therefore, the Cartesian equation is 9y* + 16x* = 144.

sint =

=y=4X
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EXAMPLE 21

SOLUTION

Note

We can use the
right-angled
triangle to find
the Cartesian
equation.

EXAMPLE 22

SOLUTION

PROOF

Find the Cartesian equation of the curve x = 3 sect — 2,y = tant + 1.

x=3sect— 2

x + 2 =3sect
sect =% —3}; 2
+ 2
sec’t = (x 92) (1]
tant=y —1
tan?t = (y — 1) (2]
Since sec’t — tan’t = 1:
+ 2
sec’t — tan’t = (x 92) —(y—1)? (1] = [2]
x + 2)?
=85 -y
. . . (x+ 2)2 2
Therefore, the Cartesian equation is 9 —( 1) =1
Sketch the graph of x = 2 + 1,y = 2t — 1. 61 (10, 5)
. )
47 (5.3)
Whent=0,x=1,y= —1 (1, -1) 3
21 @
Whent=1,x=2,y=1 (2, 1) Ly x
Whent=2,x=5y=3 (53) -2 0,(:/21)3 5678910
-2 ,

Whent=3,x=10,y=5 (10, 5)

Parametric equations of a circle

The parametric equations of a circle with centre (0, 0) and radius r are:
x =rcosf y=rsinf

Since x = r cos 6,

x% =r?cos*0 [1]
Since y = r cos 6,

y* = r’sin’ 6 (2]
x*+y?> =r’cos’ 6 + r*sin’ 0 [1] + [2]
= x2 + y? = r? (cos? 0 + sin? 6)

=>x2+yr =12

This is the Cartesian equation of a circle with centre (0, 0) and radius r.

(Since cos? 0 + sin? 0 = 1)

The parametric equations of a circle with centre (a, b) and radius r are:

x=a+rcosf y=b+rsind



MODULE 2 e CHAPTER 10

PROOF

EXAMPLE 23

SOLUTION

EXAMPLE 24

SOLUTION

We use x = a + r cos 6, and make cos 6 the subject of the formula:

-
(x —a)?

2 (1]
We use y = b + r sin 6, and make sin 6 the subject of the formula:

-b
r

= cos2 0=

sin0=y

(y —b)?
T'Z

cos? @ + sin? 6 =

= sin?f =

(2]
(x;za)z_’_(}/;b)2
(x—a)?  (y—b)?
Z g
=S>@x—al+@y—-b?=r

[1] + [2]

=1=

This is the Cartesian equation of a circle with centre (a, b) and radius .

Find the Cartesian equation of:
x=2+3cosh y=4+3sinf

Describe the curve in full.

x=2+3cosf
x—2
3
(x—2)*
32
y=4+3sin6

= cosf =

= cos?h =

:>sin0=y—

—2)2  (y—4)7?
(x32) +y32
—2)2 (y—4)7?
1:(9632) +)/32
=(x =22+ (y—472=3

cos? @ + sin2 6 = (1] + [2]

=

The curve is a circle with centre (2, 4) and radius 3.

Find the Cartesian equation of:
x=2+3cos20 y=4+ 3sin20

x =2+ 3cos26

x—2

= co0s260 = 3
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Note

In Examples

23 and 24, we
started off with
two different
parametric
equations but
ended with the
same Cartesian
equation. Can
you identify the
difference?

EXAMPLE 25

SOLUTION

(x — 2)?

= cos?(20) =

= [1]

y=4+3sin20
—4
:>sin20=y—
3
(y—4)
32

cos2(26) + sin?(26) = P + 3 (1] + [2]
—2)2 | (y— 4)?
(x = ;U =

Sx—22+(y—4)P=32

= sin?(20) =

=1=

The Cartesian equation is (x — 2)2 + (y — 4)? = 32,

The line / has equation 3x — 4y = 0 and the circle C has equation x*> + y? = 25.
(a) Iflintersects C at the points A and B, find the coordinates of the midpoint of AB.

(b)  Find the values of a such that x = a cos @ and y = a sin 0 are the parametric
equations of C.

(a) 3x —4y=0
=4y = 3x
_3

Substituting y = %x into x? + y? = 25 gives:

2+ (3] = 25

:x2+1i6x2=25

=222 — 25

16
2 — 25
=X 16><25

=x*=16

Therefore, x = =4
Whenx=4,y=%><4=3
When x = —4,y=% X —4=-3

Hence, A(—4, —3) and B(4, 3).
X tX oyt )’2)

Midpoint of AB =

)
:(—4+4 —3+3)
2 2

=(0,0)

The midpoint of AB is (0, 0).
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(b)x=acos# y=asin0
= x?=a’cos’ y* = a’sin’0
x? + y? = a* cos’ 0 + a® sin’ 0
= x> + y* = a? (cos? 6 + sin? 0)
=x* +y* = a?

Since we have x> + y? = 25,
a? =25
=a==*5

a must be positive.

Hence, a = 5.

Conic sections

A conic section is a section made from a cone. A conic section is formed by the
intersection of a plane with a right circular cone. Conic sections are popular ways to
describe light, motion and other occurrences.

There are four main conic sections: the circle, the parabola, the ellipse and the hy-
perbola. The angle at which the plane intersects the surface will determine the curve
produced. From the diagram, we can see the circle, ellipse, hyperbola and parabola
cut from the cone.

Parabola Hyperbola

Circle

Ellipse

Hyperbola

There are many real-world applications of conic sections. Some of examples of ellipses
are: the paths of the planets around the sun are ellipses with the sun being a focus;
electrons of an atom move in approximate elliptic orbit with the nucleus as a focus;
and whispering galleries in cathedrals and other buildings are elliptical in shape. If
you throw a ball in the air at some angle to the horizontal, the trajectory of the ball
follows the path of a parabola. Parabolic surfaces are also used as headlamp reflectors.
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Ellipses

An ellipse is the locus of points the sum of whose distances from two fixed points is
constant. The two fixed points are the foci (plural of focus) of the ellipse.

The diagram shows an ellipse.
F, and F, show the position of the foci.
The foci lie on the major axis.
The midpoint of F F, is the centre of the ellipse.

The vertices V, and V, are the points of intersection of the ellipse and the major
axis.

The length of V|V, is equal to the sum of d, and d,.
The minor axis is a line perpendicular to the major axis and passing through the

centre of the ellipse.

Minor axis

/ ‘ Major axis
/" F Centre F,
Vertex Vertex
(V3) (V4)

Focal Focal
point point
Equation of an ellipse
y
Pix, y)
d, d>
B — 4 X

-a F, 0 F, a

2a

Let the point P(x, y) be any point on the ellipse.
F,(—¢, 0) and F,(c, 0) are the foci and (0, 0) is the centre.

The vertices are at (—a, 0) and (a, 0). The distance between the vertices is 2a. (This
distance is equal to the sum of cl1 and dz, which are the distances of P from the foci.)
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EXAMPLE 26

SOLUTION

From the diagram on the previous page:
d =\(x+o)?+y
d,=\(x— )+

Since dl + d2 = 2a

\/(x+c)2+y2+\/(x—c)2+y2=2a
GTT TP =20 \G= TS
(x+c)2+y2=4az—4a\/m+(x—c)2+y2
2+ A+ P =42 —da\l(x — 2+ Y+ 2 —2cx+ A+

(Squaring both sides)

= 4a? — 4ex = 4a\/(x — ¢)* + y?
=a?—cx=a\l(x — ) + )

at — 2cxa® + A2 = a*((x — ¢)? +y?)

= a* — 2cxa? + A2 = a?(xF — 2cx + 2+ yP)

= at — a’c? = a’x? — x> + a?y?

(Rearranging)
(Dividing both sides by 4)
(Squaring both sides)

(Rearranging)

aZ(aZ —_ C2) — xZ(aZ — C2) + (12)/2

(Dividing by a*(a®> — ¢?))

52
The equation of an ellipse with centre (0, 0) is —2 + ;; = 1.

This ellipse is symmetric about the x-axis, the y-axis and the origin. The long axis is
the major axis and the short axis is the minor axis. If the foci are at (0, ¢) and (0, —c¢),

then the minor axis will be along the x-axis.

A chord through the focus of an ellipse and the perpendicular to the major axis is

called a latus rectum of the ellipse. The length of the latus rectum is =— 2 Ly

Find the equation of an ellipse with its centre at the origin, major axis on the x-axis
and passing through the points (6, 4) and (8, 3).

2
The standard form of the equation is =5 + g =1
2 2
Substituting x = 6, y = 4 gives: 6 5+ % =1 (1]
2 32
Substituting x = 8, y = 3 gives: 8 5+ 22 (2]
Multiplying [1] by 32 gives: 36124 + 1:24 9 (3]
Multiplying [2] by 42 gives: 1224 + 1;*24 16 [4]
1024 | 144 324 | 144
+ + =16— -
( a’ bz) (a bz) 16-9 4]~ 3]
=20 =7, a* = 100
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Substituting a*> = 100 into [1] gives:

36, 16 _
100 "2 1
16_,_ 36
5 100
16 _ 64
2 100
2 = 100
b = 16 x 1
=25

yz—l.

2
. i X
Hence, the equation of the ellipse is S

(i)

(i)

Note

5 2
X—2 y_z = 1is the equation of an ellipse with centre (0, 0), foci at (—¢, 0) and (c, 0)
a’ b
and vertices at (—a, 0) and (g, 0). The major axis is the x-axis. > = a*> — b>.

2
X—2 y_z = 1is the equation of an ellipse with centre (0, 0), foci at (0, —c) and (0, ¢)
b’ a
and vertices at (0, —a) and (0, a). The major axis is the y-axis. > = a*> — b*.

(iii)  When drawing the graph of the ellipse, we can find the coordinates when x = 0

and y = 0, and draw the ellipse using these points.

EXAMPLE 27

SOLUTION

Sketch the graph of each of these.

(
(

a)

b

)

2V
2 )
+ 1

2
(a) When x = 0, 2 =1=>y’=9=y==*3

S8}

9
When y = 0, xz=1,:>x2=4:>x= +2

We can draw the ellipse passing through the points (0, 3), (0, —3), (2, 0) and
(_2) 0).

/lv Major axis
S OJZ ‘ X

The y-axis is the major axis and the vertices are at (0, 3) and (0, —3).
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EXAMPLE 28

SOLUTION

e

(b) Whenx=0,-=1=y?=4=y=*2
Y Y

2
9
We can draw the ellipse passing through the points (0, 2), (0, —2), (3, 0) and (—3, 0).

Wheny=0,%=1,=2x2=9=x=*3

y

| Major axis

-3 o,y3

4

Equation of an ellipse with centre (h, k)

If the centre of the ellipse is at (h, k) and the major axis is parallel to the x-axis, the
standard form of the equation is

(x—h? (—k?_

a? " v

The vertices will be at (h = a, k) and the foci at (h = ¢, k) where ¢? = a? — b

1.

If the major axis is parallel to the y-axis and the centre is (h, k), the equation is
AV — k)2
(x — h) + (y—k) _
b? a?

The vertices will be at (h, k = a) and the foci at (h, k = ¢) where ¢ = a? — b

1.

We can rearrange the equation to get the general form of the equation of an ellipse as:

Ax*+ By*+Dx+Ey+F=0 where A and B are of the same sign and A = B.

Given that the equation of an ellipse is 4x*> + 9y? — 48x + 72y + 144 = 0, find its
centre and vertices and sketch the graph of the ellipse.

42+ 9)2 — 48x + 72y + 144 = 0

Arranging the xs and ys together and taking the constant on the right-hand side
gives:

4x? — 48x + 9y* + 72y = — 144
Completing the square of the two quadratics gives:
4(x* — 12x) + 9(* + 8y) = —144
4(x — 6)* — (4)(36) + 9(y + 4)? — (9)(16) = —144
4(x — 6)2 + 9(y + 4)? = 144
289



EXAMPLE 29

SOLUTION

(x—6?, Ny +4°

4

144 144
x—62, (y+4)?_
%6 16 !
_ 2 — )2
This is of the form (x azh) + b bzk) = 1withh =6and k = —4.

Hence, the ellipse has its centre at (6, —4).
Since 36 > 16, the major axis is the x-axis.
The vertices are at (h = g, k), which gives: (6 + 6, —4) and (6 — 6, —4).

The vertices are at (12, —4) and (0, —4).
y

(12,-4)

Identify the centre and vertices of the ellipse with equation
3x2 + 6y> — 12x + 24y + 6 = 0.

We rewrite the equation by completing the square as follows.
Let us divide by 3 and take the constant to the right-hand side:
X+ 2y —4x + 8y =2

X —4x +2y* + 8y = —2 (Rearranging terms)
(x =22 —4+2(*+4y)= -2
(x—22—4+2y+22—8=—2
(x—22+2(y+22=10

—_ 9)\2 + 2)2
(2, HD (Dividing by 10)

10 5
Comparing with the general form of an ellipse, we have an ellipse centre (2, —2). The
major axis is parallel to the x-axis since a*> = 10 and b? = 5.

The vertices of this ellipse are at (h * a, k).
Substituting h = 2, k = —2 and a = V10 gives (2 + V10, —2) and (2 — V10, —2).
The vertices are at (2 + V10, —2) and (2 — V10, —2).

Hence, 3x? + 6y? — 12x + 24y + 6 = 0 is the equation of an ellipse with centre
(2, —2) and vertices (2 + V10, —2) and (2 — V10, —2).
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EXAMPLE 30

SOLUTION

PROOF

2

2
Find the points of intersection of the line y — 2x + 2 = 0 and the ellipse % + % =1L
Using the equation of the line y — 2x + 2 = 0 and writing y in terms of x, we have:
y=2x—2 [1]

. . . x? )’2
The equation of the ellipse is St T =
Substituting [1] into the equation of the ellipse gives:
X, 2x—2)* _
=1
2 2 _
% + W =1 (Expanding the brackets)
x—2+x2—2x+1=1 (Simplifyi
5 plifying)
X+ —18x+9=9 (Multiplying both sides by 9)
X+ 9% —18x =0
10x*> — 18x =0
=2x(5x—9) =0
Hence, x = 0, x = %
Whenx =0,y =2(0) —2 = -2
=9 ,=922)-2=8
When x = =) 2(5) 2=z
Therefore, the points of intersections are (0, —2) and (%, %)
Focus—directrix property of an ellipse
2
The directrix of an ellipse is the line x = %. The distance from the point P on the
ellipse to the focus F is always in a constant ratio e to its distance from the directrix,
where 0 < e < 1, The constant ratio e is called the eccentricity of the ellipse.
For a parabola, e = 1 and for a hyperbola, e > 1.
Parametric equations of ellipses
: . - L (x—h? -k
The Cartesian equation of an ellipse with centre (h, k) is >+ e 1. The
a

parametric equations of this ellipse are x = h + a costand y = k + b sint.

Using x = h + a cost and making cost the subject of the formula gives:

x —h=acost

—h

_X
= Cost = a

Squaring both sides gives:

cos’t = (x 4 h)2 (1]
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Using y = k + b sint and making sin t the subject of the formula gives:

y — k= bsint
= sint = )%k
Squaring both sides gives:
y—ky
b
Adding [1] and [2] gives:
x—hP_ [y ky
A+ 5

sin?t = (

2]

cos?t + sin’t = (
Since cos?t + sint = 1:

u—fy+@—w2

a b?

= 1, which is the Cartesian equation of the curve.

Note

(i)  Anellipse centred at the origin has parametric equations x = h + a costand
y =k + bsint.

(i) x=h+acoswtandy = k + bsinwt also represent the parametric equations
of an ellipse with centre (h, k). Can you identify the difference between the
two equations and the ellipses generated by each equation?

EXAMPLE 31  Find the Cartesian equation of the curve represented in parametric form by
x =2+ 3costand y = 4 + 5 sint. Identify the curve.

SOLUTION Making cost the subject of the formula for x gives:
x—=2

3
Squaring both sides gives:

24 [X — 2 2
cos’t = ( 3 ) (1]
Making sin ¢ the subject of the formula gives:

—4
sint = }}T
Squaring both sides gives:
y—4f
5
Adding [1] and [2] gives:
x—2)\? ()’ — 4)2
72+ s
x —2)? ()’ — 4)2 _
ol
x—2?2 (=4 _
7 s
This is the equation of an ellipse with centre (2, 4).

cost =

(2]

sin?t = (

sin?t + cos*t = (

=|

1.

The equation is
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EXAMPLE 32

SOLUTION

The equation of an ellipse is given by 16x* + 9y* — 96x — 36y + 36 = 0. Find
the values of p, g, r and I such that the parametric equations of the ellipse are
x=p+qcosfandy =r+ Isin6.

16x2 + 952 — 96x — 36y + 36 = 0

First, we rearrange the equation and complete the square.
16x2 — 96x + 9> — 36y + 36 =0

= 16(x* — 6x) + 9> — 4y) + 36 =0

=16(x —3)? = (16 X3) +9(y =22 = (9X2) +36=0
Therefore, 16(x — 3)*> + 9(y — 2)* = 144

Dividing by 144 gives:

(x—3)2  (y—2)?_
R T
-3 (y—2)?

:>(x32)+)’42 _

1

1

The parametric form of an ellipse is x = p + g cos @ and y = r + [ sin § where (p, q) is
the centre.

x=34+3cosfandy =2 + 4sin6.

Thereforep =3,q=3,r=2,1=4.

Equations of tangents and normals to an ellipse

Equation of a tangent to an ellipse

The tangent at a point P(a cost, b sint) to the ellipse has gradient %.
The equation of the tangent at P is:
Y= yp = m(x — xp)
: —bcost

_ — ¢ X _
y — bsint osint (x — a cost)
= aysint — ab sin’t = —bx cost + ab cos*t
= aysint + bx cost = ab sin?t + ab cos?t
= aysint + bx cost = ab (Since sin®t + cos?t = 1)
= % sint + % cost=1 (Dividing both sides by ab)
The equation of the tangent to the ellipse at P is % sint + % cost = 1.
Equation of a normal to an ellipse
The equation of the normal at P(a cost, b sint) to the ellipse has gradient %.
(Since the gradient of a normal at a point X gradient of tangent at that point = —1.)
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EXAMPLE 33

SOLUTION

The equation of the normal at P is:

Y= yp = mx — xp)

y—bsintz%oittx(x—acost)

= by cost — b?sint cost = axsint — a sint cost

The equation of the normal is by cost — b*sint cost = ax sint — a? sinf cost.

Find the equation of the tangent to the ellipse 2y? + x> = 3 at the point (1, 1).

2 2

. L X2 ) X2 Y
Writing the equation in the form o + =i 1, we have s t5 =1
2 y LYY
=+ =1 Since - =%
RN 7S
2 2
Therefore,a = \V3,b = \/%7
. . ..o —bcost
The gradient of the tangent at point P(a cost, b sint) is —sint

At the point (1, 1), we have a cost = 1 and b sint = 1.
acost=1

= V3 cost=1

2cost=L
V3
bsint=1

3
z\/;smt—l

= sint =

S

YK} \ﬁ
—bcost _ \gx 3
asint V3 N

\/%'

Now, the gradient of the tangent at (1, 1) is _Tl

The equation of the tangent at (1, 1) is:

y =y = mx — x,)
=S
=2y—2=—x+1, 2y +x = 3.

Hence, the equation of the tangent at (1, 1) is 2y + x = 3.

Parabolas

A parabola is the set of all points in a plane, which are the same distance from a fixed
point P as they are from a fixed line I. The fixed point P is called the focus of the
parabola, and the fixed line [ is called the directrix of the parabola.
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The diagram shows a parabola.

The point V is called the vertex of the parabola.
The point X is on the parabola and |XP| = [XN]|.

The line through the focus P and the perpendicular to the directrix is the axis of
the symmetry of the parabola.

The distance from the vertex to the directrix is the same as the distance from the
vertex to the focus that is [VP| = [VQ].

Equation of a parabola

y
X(x,y)l\
NG
I X
' v
______ PN R I B
N —a Directrix

Since the distance between a point on the parabola and the focus is equal to the
distance between the point and the directrix:

|XP| = [XN|

S\V2+(@—al=y+a (Using Pythagoras’ theorem
IXP| = \x2 + (y — a)?)

=>x2+ @y —a)?=(y+a)? (Squaring both sides)

= x>+ —2ay +a*=y* + 2ay + a*

Hence, x* = 4ay.

x* = 4ay is the equation of a parabola with centre (0, 0) and the parabola is upwards.
The equation of the parabola with centre (0, 0) and opening to the right is y* = 4ax.

The parabolas with equation y = ax? + bx + ¢, a # 0 are all parabolas with the axis
of symmetry parallel to the y-axis.

The equation x = ay? + by + ¢, a # 0, represents a parabola whose axis of symmetry
is parallel to the x-axis.
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EXAMPLE 34

SOLUTION

The equation of a parabola can be written in two different forms, either vertex

form or conics form.

The vertex form of a parabola is y = a(x — h)*> + k or x = a(y — k)* + h where
(h, k) is the vertex of the parabola.

The conics form of the equation of the parabola with vertex (h, k) is 4p(y — k)
= (x — h)? or 4p(x — h) = (y — k)*> where p represents the distance from the

vertex to the focus, which is also the distance from the vertex to the directrix.
(2p is the distance from the focus to the directrix.)

State the vertex and the focus of the parabola having the equation (y — 4)> =
6(x — 7).

The equation is of the form 4p(x — h) = (y — k)2

Comparing with (y — 4)> = 6(x — 7) gives 4p = 6, h = 7and k = 4.

_ _6_3

The vertex is (7, 4).

Because the equation involves y* and p is positive, the parabola is sideways and
opens to the right.

Since the focus is inside the parabola, it is % units to the right of the vertex.

Therefore, the focus has coordinates (7 + %, 4) = (%, 4).

Parametric equations of parabolas

The parametric equations of a parabola are x = at?, y = 2at,te R, a > 0.

From y = 2at, we get = Zy_a'

Substituting into x gives:
- l)z

x a( 2a

2

7
4a
Hence, y* = 4ax which is the Cartesian equation of a parabola with centre (0, 0)
and opening to the right.

Equations of tangents and normals to a parabola
Equations of a tangent to a parabola

Let P(at?, 2at) be any point on the parabola with equation y* = 4ax.

From calculus, we have the gradient of the tangent to the parabola at P is % .

The equation of the tangent to the parabola at P is:

_ _ x — at?
y 2at——t
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Therefore, ty — 2at? = x — at.

Hence, ty = x + at? is the equation of the tangent to the parabola.

Equations of a normal to a parabola
The gradient of the normal at P is —t.

The equation of the normal is:

y — 2at = —t(x — at?)

y — 2at = —tx + at

Hence, y + tx = 2at + at® is the equation of the normal at P.

EXAMPLE 35  Find an equation of the tangent and of the normal to the curve y* = 4x at the
point (1, 2).

SOLUTION We use the parametric equations for a parameter x = af? and y = 2at.
Comparing with y> = 4ax,a = 1.
At P(af?, 2at), a = 1,t = 1, gives the point (1, 2).
The gradient of the tangent = % =1
The equation of the tangent at (1, 2) is
y—2=1x—-1)
=>y=x+t1
The gradient of the normal is —1 and the equation of the normal at (1, 2) is
y—2=-1(x—1)
=>y=-—xt3

Hence, the equations of the tangent and normal at (1, 2) are y = x + 1 and
y = —x + 3 respectively.

EXERCISE 108B

Find the Cartesian equation of the curvex = 2 + t + 1,y = 2 — 2.

Find the Cartesian equation of the curve x =t + %, y=t— %

Find the Cartesian equation of the curve x = 41> — 2,y = 3t + 5.
2 _
Find the Cartesian equation of the curve x = t —Z Z y= at 7 3,

Find the Cartesian equation of the curve y = 3 cost, x = 4 sin’t.

Find the equation in Cartesian form of the curve x = 3 sint + 2,y = 2 cost — 1.

N & G W W N -

The parametric equation of a curve is x = 5sint, y = tant — 1. Find the
Cartesian equation.
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10

11

12

13

14

15

The parametric equations of a curve are x = 4sect — 1,y = 3 tant + 7. Find
the Cartesian equation of the curve.

The parametric equations of a curve are x = 6 cosec 6, y = 2 cos 6. Find the
Cartesian equation of the curve.

Show that the Cartesian equation of the curve x =3 cos @ + 2,y = 5sin 6 + 2
represents the equation of an ellipse. Find the centre and length of the major axis.

2V
§+2_5_1-

(a) Find the x- and y-intercept of the graph of the equation.

The equation of an ellipse is

(b) Find the coordinates of the foci.

(c) Find the length of the major axis and the minor axis.
(d) Sketch the graph of the equation.

Identify the centre of the following ellipses.

(@) X*+4 +4x—8y+4=0

(b) 9x* + 4y — 18x + 16y — 11 =0

(x—172, (+3)?_
i 9~

(a) Find the coordinates of the centre of the ellipse.

The equation of an ellipse is 1.
(b) Find the coordinates of the foci.

(c) Find the parametric equations of the ellipse.

(d) Sketch of the graph of the ellipse.

Find the Cartesian equation of the parabola given in parametric form by each of
the following equations.

(@) x=1t,y=4t
(b) x=6t%y=12t
() x=t—1Ly=£+1

Find the equation of the tangent and normal to the curve y* = 16x at the point
(1, 4).
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SUMMARY
o

Circles

\ 4

A circle is the locus of a point
which moves in a plane so that
it is equidistant from a fixed
point.

Equation of a circle centre (0, 0)
and radius r:
X2+ y2=p2

v

Equation of a circle centre (g, b)
and radius r:
(x-a?+(y-b?=r2

General equation of a circle:
Ax2+By2+Cx+Dy+E=0,A=8B

v

Parametric equation of a circle
centre (a, b) and radius r:
xX=a+rcos§ y=0b-+rsing

or x=a-+rsing y=>b+rcosf

Gradient of the normal at
p= y07b
XO*G

1 %o Yo)

Since the tangent is perpendicular
to the radius, the gradient of the

(Yo~ b
tangent of P is —( xofa)

Given three points on a

circle we can find its equation
by using the general form
(x—a)2+ (y-b)2=r2

We form three equations

and solve them simultaneously
tofinda, bandr.

Or, if the circle passes
through P, Q and R, the
centre of the circle is the
point of intersection of the
perpendicular bisectors

of PQ and QR. The radius
can be found using the
centre and any of the
points P, Q and R.

Coordinate geometry

v
Ellipses

An ellispse is the locus of points,

the sum of whose distance from two
fixed points is constant. The two fixed
points are the foci of the ellipse.

Equation of an ellipse Jvith centre (0, 0)
and foci at (¢, 0) and (¢, 0) is:

2 2
X2y

a2 b2

Equation of an ellipse with foci (0, ¢)
and (0, —¢) is:
2,y _
K=

Equation of an ellipse with centre
(h, k) and major axis parallel to the

X-axis is: 5 ,
x=h* -k’ _
a? " b ]

Foci are at (h + ¢, k) and (h —c, k).

Equation of an ellipse with centre
(h, k) and major axis parallel to the
y-axis is:
x=h?, (y-k?*_
b? - a2 1
Fociare at (h, k + ¢) and (h, k—¢).

General equation of an ellipse:
Ax2+B2+Cx+Dy +E=0, A#B

Graph of an ellipse centre C,
foci F;and F,

Minor axis

NN

T Y

v, F, Centre F,/V,

Major
axis

Parametric equations of an ellipse centre
(h, k) and radius r:
x=h+acost y=k+bsint

Gradient of the tangent at
P(acost, bsint)is
—bcost
asint
and the gradient of the normal is
asint
bcost

Equation of the tangent can be found
by using the gradient and point.

S

Parabolas

A parabola is a set of all points in a plane, which
are at the same distance from a fixed point P as
they are from a fixed line /. P is called the focus
and /is called the directrix.

Equation of a paraI)oIa with centre
(0, 0) and opening upwards is:
X2 = 4ay

Equation of a parabola with centre
(0, 0) and opening to the right is:
y2 = 4ax

Equation of a parabola with axis of symmetry
parallel to the y-axis is:
y=ax2+bx+c a#0

Equation of a paraioola with axis of symmetry
parallel to the x-axis is:
x=ay2+by+c a#0

Equation of a parabola in vertex form:
y=alx—h?2+k
or y=aly-k2+h

Equation of a parabola in conics form:
4p(y —k) = (x—h)2
or 4p(x—h) = (y — k)2

where p is the distance from the vertex
to the focus (also the distance from the
vertex to the directrix).

(2p is the distance from the focus to
the directrix).

v

Axis of symmetry

Parametric equations of a parabola are:
x=at2 y=2at teR, a>0

) 4

Gradient of the tangent to a parabola
at P(at?, 2at) is 17
Gradient of the normal to a parabola at
P(at?, 2at)) is - t.
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Checklist

Can you do these?

B Recognise the Cartesian equation of a circle, ellipse and parabola.
M Identify the centre and radius of a circle.

B Find the equation of a circle given its centre and radius.

B Find the equation of a tangent to a circle, ellipse and parabola.

B Find the equation of a normal to a circle, ellipse and parabola.

B Find the point of intersection of a curve and a straight line.

B Find the points of intersection of two curves.

M Find the Cartesian equation of a circle, ellipse or parabola given its parametric
equations.

B Find the parametric equations of a circle, ellipse or parabola given its Cartesian
equation.

B Find the foci of an ellipse.

M Find the length of the major axis and the length of the minor axis of an ellipse.
B Draw the graph of an ellipse.

B Draw the graph of a parabola.

Review Exercise 10

1 Prove that the line 3x + 4y = 25 is a tangent to the circle x*> + y* = 25.

2 Find the equation of the diameter x> + y* — 2x + 4y — 1 = 0 which passes
through the point (3, 1).

3 Show that the circle with centre (4, —1) and radius V2 units touches the line
x+y=1

4 Given that (5, 1), (4, 6) and (2, —2) are three points on a circle, find the
equation of the circle.

5  Find the equations of the circles having radius V13 and tangent 2x — 3y + 1 =0
to the circle at (1, 1).

6 Show that the Cartesian equation of the curve x = 4 cost — 3,y = 4 sint + 4
represents a circle. Identify the centre and radius of the circle.

7 Find the centre and radius of the circle C, represented by the equation
x* + y* — 6x + 8y = 5. Find also the length of the line joining the centres of the
circle C, and C, where C, is the circle 4x* + 4y* — 12x + 16y = 12.
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Show that the circles x* + y* + 6x — 2y —54 =0andx* + > = 22x — 8y — 12 =0
intersect.

A curve is given parametrically by x = cost — 1 and y = cos 2t.
(a) Calculate the distance between the points with parameters 0 and %T
(b) Find the Cartesian equation of the curve.

Find the equation of a circle, given that (0, 6) and (8, —8) are the end points of a
diameter.

The end points of the diameter of a circle are (—3, 2) and (5, —6). Find the
centre and radius of the circle. Write down the equation of the circle.

Find an equation of the line containing the centres of the two circles x* + y* —
2x —4y+3=0and 2x* + 2)? + 4x + 6y + 9 = 0.

Given aline y — 7x = 2, and a circle x* + y* + 8x + 2y — 8 = 0, determine
whether the line and the circle touch, intersect at two points or never meet.
If they intersect, find the point(s) of intersection.

Find the points of intersections of the circles x> + y*> = 4 and x? + y* — 4x —
4y +4=0.

Given that the circle with equation x? + y> — 2x — 4y = 0 and the circle with equa-
tion x> + y* — 2y — 2 = 0 intersect at two points, find the points of intersection.

What are the points of intersection of the circle of radius 1, centre the origin,
and the circle of radius 2, centre (0, 3)?

Show that the circle with centre (0, 0) and radius 1 does not intersect the circle
with centre (3, 1) and radius 1.

The centre of a circle is (—2, 3) and a point on the circumference is (—5, —1).
(a) Find the equation of the line joining the two points.

(b) Show that the radius of the circle is 5 units.

(c) Write down the equation the circle.

(d) Determine the equation of the tangent to the circle at the points (—5, —1).

(e) Find the points of intersection (if any exist) of the circle above with the
circle x> + y*> + 6x — 7y — 10 = 0.

Show that the line with equation y = 5 + %x is a tangent to the parabola
2 —
y° = 15x.

Given the equation 4x* + 9y = 36, complete the following.
(a) (i) Find the x and y intercepts of the graph of the equation.
(ii) Find the coordinates of the foci.
(iii) Find the length of the major axis. Hence, sketch the graph of the equation.

(b) Write down the parametric equations of the curve.
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21

22
23

24

2V

The equation of a line [ is x + y = 5 and an ellipse E is
(a) Find the coordinates of the points of intersection of the line and ellipsis.
(b) Write the equation of E in the form x = p cos 6, y = p sin 6.

=1

2
Show that the lines with equation y = x + 1 is a tangent to the curve % - %2

The equation of an ellipse is 4x> + 9y* + 32x + 36y + 64 = 0.

—h)? (y—k?
(xa2)+y _

ERit

(a) Write the equation in the form

(b) Write down the centre of the ellipse.
(c) Find the point of intersection of the ellipse with the line y = x + 2.
(d) Write the equation of the ellipse in parametric form.

Find the equation of the normal to the parabola with equation y? = 4x at the
point (£, 2t). At the points P and Q on the parabola, t = 2 and t = % The

normal at P and the normal at Q meet at C. Find the coordinates of C.
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Chapter 11
Vectors in Three Dimensions (R3)

At the end of this chapter you should be able to:
B Add two vectors

B Subtract two vectors

I Multiply a vector by a scalar quantity

B Find the length of a vector

M Identify a position vector

B Derive and use displacement vectors

B Derive and use unit vectors

y
z
B Find the scalar product of two vectors

B Express a vector in the form (Y| and xi + yj + zk

B Find the angle between two vectors

B Find the equation of a line given a point on the line and a vector parallel to the line
B Find the equation of a line given two points on the line

B Determine whether two lines are parallel, intersect, or skewed

B Identify a vector normal to a plane

B Find the equation of a plane given a point on the plane and a vector
perpendicular to the plane

KEYWORDS/TERMS

vectors e position vector « displacement vector o
unit vector e scalar product « dot product e
direction vector e parallel « perpendicular « skew o
intersect « normal vector « plane
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Vectors in 3D

Vectors have numerous physical and geometric applications since they have both magni-
tude and direction. Forces, acceleration, velocity and displacement are all vector quanti-
ties. Computer graphics and 3D game programming makes extensive use of vectors.

Colour information is displayed on most monitors. These make use of the three

wavelengths for red, green and blue referred to as RGB colour. Other colours are

derived from these three basic colours. For example, purple can be derived from a

combination of red and blue. We can express colours as triplets of red, green and blue
C

.
whose values will range from 0 to 1. We can write C = | C, |. Using this vector, we

G,
can produce different colour schemes by adding or multiplying by a scalar. Colour
multiplication is also called modulation.

A vector quantity has both magnitude and direction z

while a scalar quantity has magnitude only. A

vector can be written as a letter in bold typeface p. X
. . Y1

A vector starting at O and ending at P can be P\z

written as OP. R3(read as ‘r three’) is the set of all ,

ordered triples of real numbers. Let O be the
origin and O, Oy, O, be perpendicular axes.

If P(x, y,» z,) is a point in three dimensions, then
the position vector of P, that is OP, is as shown.
To get from O to P, we move x, units along the x-axis, y, units along the y-axis and z,

units up the z-axis. X
1

4
Z

The position vector OP has components

Plotting a point in three dimensions

To plot a point in three dimensions, you need to
move parallel to the axes in the x- and y-direction

as shown. Then from the point of intersection, you
move up the z-axis. The point (2, 3, 5) is plotted by
moving 2 units along the x-axis, 3 units parallel to the
y-axis and then 5 units upwards.

Algebra of vectors

We carry out vector addition, subtraction and scalar multiplication in three dimen-
sions in the same way that we carry them out in two dimensions.

Addition of vectors

The result of adding two vectors is the diagonal of the
parallelogram shown in the diagram below.

We can also add vectors by adding their corresponding
components as shown below. u
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EXAMPLE 1

SOLUTION

EXAMPLE 2

SOLUTION

u 6}
Letu=|Y|andv = |V,|.

U, V3

u, v, u, + v,
utv=|U|+ |V =|U, + v,

Uy V3 u, + v,

Subtraction of vectors

We can also subtract vectors by subtracting the correspond-
ing components.

Uy 61 ="
u—v= uz— 2:1/12_1/2 v
Us V3 Uy = v
Multiplication by a scalar 4
We multiply each component by a scalar, \.
ul )\ul u
N|Uy| = |Nu,|whereX € R / 2u
Us Nu,
N 2 N —1
Given thatOA =|1|andOB =| 2 |, find the following.
3 4
(a) OA +OB (b) OB —OA
(c) 20A + 30B
NN 2 —1 2—1 1
(a) OA +OB =[1|+| 2 |=|1+2]|=]3
3 4 3+4 7
(b)OB—-0A =|2 |—|1|=|1
4 3 1
N N 2 —1 4 -3 1
(c) 20A —30B =2|1|+3| 2 |=[2|+| 6 |=|8
3 4 6 12 18

Equality of vectors

Recall that two vectors are equal if and only if the magnitude and direction of the
vectors are equal. Also two vectors u and v are equal if and only if the corresponding
components are equal.

Uy Y1
Therefore, |4, | = |V, |iffu; = v, u, = v,and u, = v,.
Uy Y3
2 y
u and v are equal vectors. Given that u = 1 |andv=|x— 2| findxandy.
x—1 2
2 Y
Since[ 1 |=|x — 2|, equating corresponding components gives:
x—1 2 305




EXAMPLE 3

SOLUTION

EXAMPLE 4

SOLUTION

2=y

1=x-—-2
x—1=2
= x=3

Hence,x =3,y = 2.

Magnitude of a vector

U
Letu = |Y,]|.
U3
The modulus or magnitude (length) of wis [u| = \/uj + u3 + u3.
1
Find the magnitude of | 2 |.
—2
1
2 || =7 + @7 + (-2
=\VITt4a+4
=9
=3
— 3 —
Given thatOA =| 2 | Find the values of z given that |OA| = 5 units.
z—1

OA =132+ 22 + (z — 1)
=SV9+4+(z—12=5

134+ (z—1)>=25 (Squaring both sides)
(z—1)?=12

z—1==*V12

z=1+VI2

z=1=*2V3

Hence,z =1 + 2V3,1 — 2V3.

Displacement vectors

The displacement vector AB = AQ + OB
= —OA + OB
=OB — OA
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EXAMPLE 5

SOLUTION

EXAMPLE 6

SOLUTION

EXAMPLE 7

SOLUTION

Given that OA = |1]and OB = ( 2 |, find the following.
3 -2
(a) AB (b) |AB

(a) AB=0B —OA
-[2)-[3
2
(3]

(b) 1ABl=V2)? + (1)? + (—5)?
S /ES e
=30

Unit vectors

A unit vector is a vector whose magnitude is 1 unit.

1
For example, [0 || = V12 4+ 02+ 02 = 1
0
Since the magnitude of |0 | is 1, {0 | is a unit vector.
0 0

a unit vector?

WIN WM W=

To decide whether the vector is a unit vector, we find the magnitude of the vector. If
the magnitude of the vector is 1 unit, then vector is a unit vector.

1
3
2 || = ¢/(L)? Z)Z Z)Z_ 1.,4.,.4_4/9_
3 \/(3)+(3 +(3 9totg=\g=1
2
3
1 1
3 3
. 21 _ 2. .
Since 3= 1, 3 1s a unit vector.
2 2
3 3
................ V x
Show thatﬂisaunit vector, wherev = | }|.
v z
X
Sincev = Y|, = |v| = \x? + y* + 22.
z

307
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Note

We have just
shown that any
vector divided
by its length is
a unit vector. v
is the notation
used for a unit
vector.

EXAMPLE 8

’ ‘ 2y )y 2 z
vl “2+ﬁ+z V2 + 2+ 2] |+ 2+ 2
_ x? " v " Z*
+y+2 P+ Pty 42
. X%+ y2 + 22
X2+ + 2
=V1=1
Since |—| =1, is a unit vector.
|V| V|
— — 3 —
Find a unit vector in the direction of PQ where OP =| 2 |and OQ =
—1

SOLUTION

X

\x? + y? + 22

y

v _ |
v‘ \/x2+y2+22

Z

Va2 + 2 + 22

Therefore,

First we find IYQ):
PQ =0Q - OP
4 3
=(2)— >
1 —1

1

(g

2

Now we find the length of PQ:
PG| = VAP + 07 + @7 =5

A unit vector in the direction of IYQ) is:

o) [
PQ _laf _V®
pgl V5 |2

NG

Special unit vectors

1\ (0 0
The vectors | 0|, | 1| and | 0| are unit vectors in the
0/ \0 1

direction of the x-axis, y-axis and z-axis respectively.
We use the letters i, j and k to represent them.

1 0 0
i=|0,j=(1landk={0
0 0 1

We can represent any vector as a sum or difference of

the three unit vectors as follows.

. a
Let OA = |b|.

c

2
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EXAMPLE 9

SOLUTION

EXAMPLE 10

SOLUTION

a 1 0 0
b|=al0|+b|1|+c 0)
¢ 0 0 1
=ai+ bj + ck
a
The vector | b | can be written as ai + bj + ck.
c

Write the following vectors in terms of i, j and k.
2 -2 5

(a) |1 (b) | 3 (c) |4
4 3 5

The x-component is the coeflicient of i, the y-component is the coefficient of j and
the z-component is the coeflicient of k.

2

(a) |1

4

-2

(b) 3)=—y+y+3k
3

=2i+j+ 4k

5
(c) 4=5r+g+5k
5

Scalar product or dot product

u 14

1 1
Letu= |4 |andv = |V,|.
Us V3
The dot product or scalar product of u and v is given by:
Uy M
u-v=|ul-|v,
us] Vs

=uv, + U,v, + UV,

We find the product of the corresponding components and then sum.

Giventhatu =i+ j+ kandv=2i — 3j + 5k, findu - v.

u-v=(+j+k-Qi-3j+5k
=2i-i—3j-j+5k-k
=2-3+5
—4

Note

1 (1
i-i=(0)-(0)=1andsimi|arlyj-j=1andk-k=1.
0/ \0

309



EXAMPLE 11

SOLUTION

Find the value of a for which the scalar product of

2

1
a

-1
a—3
2
= 2)(=1) + (1)(a — 3) + (2)(a) = 10

—2+a—3+2a=10

3a=15=a=>5

=10

Hence, a = 5.

2

1
a

—1
a— 3]|is 10.
2

and

Properties of the scalar product
If u, v and w are vectors, then:

(i) uv=v-u

(ii) u*(v+w=u'v+u-w

(iii) vev=|v]?

(iv)o-v=0

commutative property
distributive property

(a vector dot itself is the square of the
magnitude of the vector)

Angle between two vectors

Uy Y1
Letu= |4 |and v =|",|.
U3 V3

If the angle between u and v is 6 then

lu|[v|]cosf=u-v

Orcosf = uzv
lul |v]

EXAMPLE 12

SOLUTION

2
1
-1

Find the angle between the vectors

Let 0 be the angle between the two vectors.

2 1
1 (-1
_\=1) 10
Nowcos,49—72 1
1 1
—1/11\0
_ 2+1+0
V22 + 12+ (—1)2 V1% + 12 + 07
_ 3
G
0=cos( 3 )71
V6\V2
= 30°

and

(Using cosf = ][V

1
1]
0

o

Hence, the angle between the two vectors is 30°.
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EXAMPLE 13

SOLUTION

EXAMPLE 14

SOLUTION

— 1 ., -2
LetOA = |3|and OB = ( 1 )
2 2
Find the following

(a) OA-OB
(b) The angle between the vectors OA and OB

1\ [—2
31+ 1
2 2

(b) Let 6be the angle between the two vectors.

(a) OA -OB = =()(-2)+ B)1) + (2)2) =5

Since cos 0 = uv
[ul|v]

1 -2
3011
_\2 2
cos O = T =2\
3 1
2 2
_ 5
VI2 432 4 22\/(=2)2 + (1)? + 22
_ 5
V14V9
__5
3V14
Hence, 6 = 63.55°.
. 2\ 1 N 1
Find the angle ABC where OA ={1],0B =|—1|andOC = |4|.
3 2 1
Angle ABC is between the vectors BA and BC. (When finding A

the angle between two vectors, both vectors must be in the same
direction.)

Since we are finding angle ABC, this is the angle between BA ﬁ
and BC or the angle between AB and CB. B

NOWB—A):O_A—O—B)

2 1 1

1| — —1)= 2)

3 2 1

1 1 0

4| —|—=1|=| 5

1 2 -1
NowBA-BC=(2)' 5|=0+10—1=9

1 —1

BAl=VIZ+ 22+ 12=16

—  —

c=oc—<ﬁ3’=(

oe)

BCl =02+ 52 + (—1)? = V26

A BA -BC 9
cosABC = ———~ =
BAI[BC| V626

311



EXAMPLE 15

SOLUTION

EXAMPLE 16

SOLUTION

EXAMPLE 17

SOLUTION

312

AECZCOS’I( 9 )

V6126
=43.9°

Hence, angle ABC is 43.9°

— 1 — -
Given the vectors OP = [2|and OQ = ( 1 |, find the angle between the two vectors.
1 —1
Let 6 be the angle between OP and 0Q.
1 —1
HAE
_ 1) =1
cosf = =1
2 1
1 —1
_ —1+2-1
VIZ+ 22+ 12\(=1)2 + (1) + (—1)?
-_0 _
V6V3

= 0= cos~1(0) = 90°

Hence, the angle between the two vectors is 90°.

Perpendicular and parallel vectors

Perpendicular vectors

Any two vectors u and v are perpendicular if and only if the scalar product of the two
vectors is 0, thatisu * v = 0.

2 -2
1land| 0
4 1

To prove that two vectors are perpendicular, we need to prove that their scalar
product is 0.

Prove that are perpendicular vectors.

2\ [—2
1|-|o|=-4+0+4
4 1
=0
2 —2 2 —2
Since(1|+| 0 |=0= [1|and| 0 |are perpendicular vectors.
4 1 4 1

The vectors 2i + j + ak and (a — 2)i + 3j + 4k are perpendicular vectors. Find the
value of a.

2 a—2
Since|1|and| 3 |are perpendicular:
a 4
2\ [a—2
1| 3 |=0
a 4
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EXAMPLE 18

SOLUTION

EXAMPLE 19

=2a—4+3+4a=0

=6a=1
:>a=%

-1
Hence, a = 2

Parallel vectors

Two vectors are parallel if and only if one is a scalar multiple of the other.

2 4 2 4
The vectors | 1| and |2 | are parallel since | 2| = 2| 1|, thatis |2 | is a scalar multiple of | 1|.
2 4 4 2 4 2

Relative to an origin O, the position vectors of the points P, Q, R and S are given

by OP =|-2],0Q = (1), OR = q),os = | p| where p and q are constants. Find the
3 2 1 1

following.

(a) A unit vector in the direction of IYQ)

(b) The value of g for which angle POR is 90°

(c) The value of p for which the length of PS is V21

{-[21-(2)

We next need the length of PQ.
PG| = V(=2) + GBP + (-1 = Via
. . . . — Iﬁ 1 -2
A unit vector in the direction of PQ is — = —=| 3 |.
[PQ| VI4{-,
(b) Since angle POR is 90°, OP is perpendicular to OR and hence, OP - OR = 0

(a) First we find PQ.

PQ=0Q -OP =

4 1
Therefore, —2)'(Q)=0:>4—2q+3=0:>2q=7,q=%.
3 1
N ., (3 4 -1
(c) PS=0S—-OP=|p —(—2)= p+2
1 3 -2

PS| =1+ (p+27 +4=V2l
Therefore, 5 + (p + 2)* = 21.
={p+2?>=16

=Sp+t2=x4
Hence,p=—2+4=2,p=—4—-2= —6.

Relative to an origin O, the position vectors of the points P and Q are given by
— 1) 1
OP=(-2],0Q= 1).
3
(a) Find angle QOP.

1
(b) The point R is such that OR = 2i + 5bj where b is a constant. The lengths of
PQ and PR are equal. Find the value(s) of b.

313
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SOLUTION

EXAMPLE 20

SOLUTION

(a) The angle QOP is the angle between the vectors OP and O—Q) Let 6 be angle QOP.

1—2+3 2
N 0: = =
OW COS I e Vit =
-2 1
1 3
Therefore, § = cos™! (%) = 75.7°.
(b) PQ=0Q—-0P=|1|—|-2|=3
3 1 2
PG| =Vvo 4 =13
Now,PR =0OR — OP =|5p _(—2): 5b+2
0 1 —1

PRI = (1) + (5b + 2)> + (—1)?
= V13, since ‘lﬁ‘ = |lﬁi‘

Therefore, 2 + (5b + 2)> = 13.

= (b +2)2 =11

=5b+2=+V11

-2 +=VI1

Hence, b = 5

Relative to an origin O, the position vectors of A and B are given by

N 4\ _, —1
OA=|-2,0B=| 2 |
1 5

(a) Find the position vector of the midpoint M of A and B.

(b) Given that C is the point such that AC = 3AB, find the position vector of C.

(a) Using coordinate geometry,
4-1

2
OM = —22+2 _
1+5

2
Alternative method: B

W O W

GM = OF + LAF v

=|-2
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— — P — 4
AC=0C —-0A=0C - (—2)
Since AC = 3AB:

. 4 —5
oC—|—-2|=3

4
4

.....................................................................................................................

EXERCISE 11A

1 Find the scalar products of the following pairs of vectors.

1) [—1
(a) (2)( 2
3/ 1 4
0} (2
(b) {1},]1
4] \5
4\ [—1
o )
=3/ 11
4\ [ 3
(d) |2} 4
2) \—4
2 Find the length of the following vectors, referred to an origin O.
S
(a) OA = 2)
1
— 3
(b) OB =( 2 )
-2
N 4
(c) OC= —1)
=2

3 Are the vectors in each of the following pairs perpendicular to each other?

1\ /(3
(a) ( ,(2
2

(d) (

4 Referred to the origin O, the position vectors of A, B and C are given
respectively by OA = 2i + 4j + k,OB = —2i +j + 3kandOC = —i —j + k
Find a unit vector parallel to each of these.

(a) AB
(b) AC
(c) BC

315
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10

2 3 1
Giventhata=| 4 [b=|2|andc=| P | find the following.
—1 2 2p—1

(a) The angle between the directions of a and b
(b) The value of p for which a and c are perpendicular

The points A, B and C have position vectors 2i + j — 4k, 3i + 2j + kand
i + j — k respectively, relative to an origin O. Find angle ABC.

Relative to an origin O, the position vectors of the points A and B are given

6 3 —_— —_—
2 1|- Given that C is the point such that AC = 2AB, find
1 2

the unit vector in the direction of OC.

byCY{Z and OB =

Relative to the origin O, the position vectors or the points P, Q, R and S are

— 2\ 3\ =2 — -
given by OP = 3),OQ = 2), OR=| 1]andOS = 3), where a and b are
2 4 a b

constants, find the following.

(a) The unit vector in the direction of IYQ)

(b) The value of a for which the POR is 90°

(c) The values of b for which the length of PS is 5 units

— —2
Relative to an origin O, the position vectors of A and B are given by OA = ( 4 )

3
1

p
(a) Find angle AOB whenp =1

(b) Find the values of p for which the length of AB is 8 units

and OB = |1}, where p is a constant.

Referred to the origin O, the position vectors of P and Q are given respectively
by OP = 3i + 2j + 5k, OQ = 5i — 4j + 5k.

(a) Find angle POQ.

(b) Find the position vector of the point A on OQ such that PA is
perpendicular to OQ.

Equation of a line

A line is defined in space by either one of the following.

(a) A point on the line and a vector parallel to the line (direction of the line)

(b) Two points on the line

Finding the equation of a line given a point on a line and the
direction of the line

Let a be a fixed point on the line and m be a vector parallel to the line. The equation
of thelineisr = a + Am where A € R.

The vector r represents any point on the line

X

J
z
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PROOF

Note

A vector parallel
to a line is called
the direction
vector of the
line.

EXAMPLE 21

SOLUTION:

EXAMPLE 22

SOLUTION

PROOF

X

Let R be a point on the line with position vector r and A be a known point on the line
with position a. Since m is a vector parallel to the line:

AR is parallel to m

— AR = Am, A € R.ie. AR is a scalar multiple of m.
Since AR=OR —OA =r — a:

= OR — OA = A\m

=r—a=Am

Therefore,r =a + \m, A € R.

2
Find the equation of the line parallel to the vector | 1 | and passing through the
1 1
point | 1
0
2
Usingr = a + Am, A € R, where m is a vector parallel to the line, i.e. m = |1 | and
-1 —1 1
a=| 1 | the equation of the lineisr=| 1 |+ )\(1),)\ e R
0 0 1
................................................. s
Find the value of p for which theliner ={2| + N| 3 |, A € R has the same
-2 2 2
directionas| 3
p—1
-2 -2\ | -2
Since the line is in the same directionas| 3 |wehave| 3 |=| 3
p—1 2 p—1

Therefore,p — 1 = 2.
Hence, p = 3.

Finding the equation of a line given two points on the line

Let P and Q be two points on the line with position vectors OP and 0Q respectively.
The equation of the line passing through P and Q is:

r=0P + NMOQ —OP), \ € R.

Can you prove this result?
317



EXAMPLE 23

SOLUTION

EXAMPLE 24

SOLUTION

EXAMPLE 25

SOLUTION

EXAMPLE 26

SOLUTION

318

2 4
Find the equation of the line passing through the points | 1| and 2).
3 4
Usingr = OP + A(OQ —OP), N € R, whereOP = (1|, OQ =2
— 2 2
OQ—OP=(2 —(1 :(1
al 3] 1 5
Therefore, the equation of the lineisr = 1|+ N |1\ € R.
3 1

Relative to an origin O, a line contains the points 2i + j and 3i — 2j + k. Find the
equation of this line.

Letp=i+jandq=3i—2j + k
q-p=0CGi—2j+k) —(2i+j)
=i-3j+k

The equation of the lineisr =2i +j + AN(i — 3j + k), A € R.

1 0
Identify two points on the line with equationr = (2| + t{2|,t € R.
5 4
To identify a point on the line we assign a value to t.
1 0 1
Whent=0,r=|2|+0(2|=(2
5 4 5
1 0 1 0 1
Whent=1Lr= 2|+ ) (2|=|2|+(2]|=14
5 4 5 4 9
1 1
Hence, two points on the line are: {2 | and (4 |.
5 9
2 —1 2
Is the point | 1| on the line with equationr =| 2 |+ ¢(3],t € R?
2 0 2

on the line, then the point is on

2
If we can find a value of t which gives the point ( 1

2
the line. To do this, we can form three equations using the components and solve one

of them. Then we check if all the equations are satisfied using this value of ¢.

If the point is on the line, then we have a value of t for which this is true:

2 -1 2 —1+2t

1|=| 2 |+t3|=|2+3t

2 0 2 0+ 2t
Equating corresponding components gives:
2=—1+2a=t=3

1=2+3t=t= —%
2=2t=>t=1
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All the values of t are different. There is no value of t giving the point. Hence, the
point is not on the line.

4 3 1
EXAMPLE 27  Isthe point |4 |on the line with equationr = |2 | + s{2|,s € R?
3 2 1
4 3 1 3+s
SOLUTION Let|{4|= (2| +s|2|=|2+ 2s]|
3 2 1 2+s

Equating the corresponding components gives:
4=3+s=s=1

In this case all 4=2+4+2s=s5=1
three equations
gave the same

Note

3=24+s=>s=1

value for s. 4
When s = 1, we get the point |4 | on the line.
3
4
Therefore, the point |4 | is on the line.
3
Vector equation of a line .
1 —
The equation of a line in the formr = (2| + A\| 2 |, N € R s the vector equation of
the line. 1 0
1 —
In this form, | 2| is a fixed point on the line and | 2 |is a vector parallel to the line.
1 0
Parametric equation of a line
Let ai + bj + ck be a fixed point on a line and xi + y,j + zk be a vector parallel to
the line. The equation of the line is
a %o
r=|b|+ N|Yo|, where A € R.
c z,
X
Since r represents any point on the line we haver = (¥
z
X a o
Therefore, | Y| =|b|+ A[Yo |\ e R
z c z,
X a Ax,
= (7| =|b| +| Mo
a + \x,
x
Note z ¢+ Az,
We have an

Equating corresponding components gives:

equation for x in
X =a+ \x,

terms of \, one

for y in terms y=b+ Ay AeR
of A and an z=c¢ + Az
equation for z in

These are the parametric equations of the line. \ is called the parameter in the
equation.

terms of A.
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EXAMPLE 28

SOLUTION

1
The equation of a line is givenasr = (2| + A
parametric equations of the line. 4
1 i
r=|2|+A| 2 [AeR
4 2
X
Replacing r by | Y | gives:
z
X 1 —1
YI=12l+N| 2 )
z 4 2
X 1 -\
YI=12|+ |2\
z 4 2\
X 1—A
YI=12+2\N
z 4 + 2\

Equating corresponding components:
x=1—N\

y=2+2A)NeR

z=4+2\

—1
2
2

, A € R. Write down the

Hence, the parametric equations of the line are:

x=1—-Ny=2+2\z=4+2, NeR

Cartesian equation of a line

Let the vector equation of a line be:
X

a 0
r=|b|+ N Yo, NeR
c z,
x
If we replace r by )’)we have:
z
x a Xo
YI=1b|+N{Mo
z c z,
X =a+ \x, [1]
y=b+ Ny, (2]
z=c+\z (3]
From[l]:x—a=)\x0:>)\=x;0a
_ _y—b
From[2]:y—b—)\y0=>)\—y_0
From[3]:z—c=)\z0:>)\=zz_c
0

Equating equations for A
x—azy_b:z—c
0 Yo %

Note

The denominator of each is a compo-
nent of the direction vector, and the
numerator contains the components of
the fixed point on the line.
x—a_Y—b z-¢|(d
= = b

X, Z,
0 Yo o '\¢

: fixed point
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EXAMPLE 29  Write the following equation in Cartesian form:

2 2
r=|4 |+ N3,Ne”Z
-1 5
X
SOLUTION: Replacing r by | V | gives:
z
X 2 2
Yi=|4|+A\3
z -1 5
x 2+ 2\
YI=|4+3\
z —1+ 5\

Equating components gives:

x=2+2\ [1]
y=4+3\ [2]
z=—1+ 5\ [3]

From [1]:x =2 + 2\

N=2_
From [3]:z= —1 + 5\

z+1=05\

_z+1
A= 5

_ 4
Therefore, * 3 2_7 = z -g L which is the Cartesian equation of the line.

Equation of a line

The different forms of the equation of a line are:

Vector form:

X0

Yo

2y

Parametric form:

a

b
c

= + N AeR

x=a+)\xo
y=b+ Mg NeR
z=c+)\zo

Cartesian form:

x—a:y—b:z—c
Xo Yo Zy
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EXAMPLE 30

SOLUTION

The Cartesian equation of a line is given by:

x—2_)Y*t5 _2:—4
3 7 5

Write this equation in vector form and parametric form.

We can write the equation in the form:
x—azy_b:z—c

Xo Yo %
x—2_y— (=5 _2(z-2)

3 7 5
x—2_y—(=5) _(z-2)

3 7 5

2

=

=

The vector equation is:

2
=5
2

3
+AN7Lh e R
5

2

r =

Letr =1y

3\
+ |7\

5
E)\

2
r=|->5
2

2+ 3\
=|—-5+7\

5
2+§)\

x =2+ 3\
y=-5+7ANeR

_ 2
z—2+2)\

The parametric equations are:

x =2+ 3\
y=—5+7A
z=2+32\
where \ € R.

Finding the angle between two lines, given the equations of the lines

The angle between two lines is the angle between their direction vectors. Let 6 be the
angle between the lines with equationsr = a + Aband r = ¢ + ud, where \, u € R.
Since the directions of the lines are b and d respectively, the angle between the two lines is:
_b-d

R IF]

Note

(i) Two lines are parallel if and only if their direction vectors are scalar multiples of
each other.

(i) Two lines are perpendicular if and only if the scalar product of their direction
vectors is zero.
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1 —1 1 1
EXAMPLE 31 Find the angle between thelinesr = 0|+ t| 1 |t € Randr= 4|+ s({4],s € R.
1 2 2 1
SOLUTION The angle between two lines is the angle between their direction vectors. Therefore,
we first identify the direction vectors of the line.
- 1
The direction vectorsare | 1 |and |4 |, let 6 be the angle between the lines.
2 1
-1 1
1|14
2 1 —1+4+2 5
cos ) = = =
—1}[|(1 V6Vi8  6V3
1 4
2 1

Hence, the angle between the two lines is 61.2°.

Skew lines

Skew lines are lines that are not parallel and do not intersect. If two lines are on the
same plane, they are either parallel to each other or they intersect each other. Hence,
skew lines will be on different planes.

These lines intersect.

<«— Point of intersection

x

These lines are parallel lines.

N

x
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EXAMPLE 32

SOLUTION

These lines are skew lines.

Skew lines will not intersect even though they are not parallel.

z

1 —1 2 1
Decide whether the linesr = |2|+ \| 2 |andr=[1|+ u 3), where \, u € R,
are skew. 1 4 0 2

Skew lines are not parallel and do not intersect. Therefore, we need to decide:
whether the lines are parallel

whether the lines intersect

1
Since | 3 | is not a scalar multiple of

2
4

1
3 2 |. Therefore,
2 4

, then is not parallel to

the lines are not parallel.

Let us decide whether the lines intersect. If they intersect, there will be a point that
satisfies the equations of both lines for particular values of N and w.

Equating the equations of the lines gives:

1 -1\ |2 1
2|+ N 2 |=(1|+ |3
1 4 0 2

11—\ 2t
=[2+2\|=|1+3u

1+ 4\ 2
=1-A=2+p (1]
2+20=1+3u (2]
1+4N=2u (3]

Now we solve equations [1] and [2] simultaneously:

1-A=2+pu
1,3
1+)\—2+2p,
Adding gives: 2 Z%-i-%p,
_1_5
=272k
= u=-5

Substituting u = —5 into [1] gives:
A=4
Equations [1] and [2] are satisfied by w = —5and A = 4.
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Substituting A = 4 and u = —5 into equation [3] gives:
1 +4(4) = 2(—5)
= 17 = —10, which is inconsistent.

Since all three equations are not satisfied by A\ = 4 and u = —5, the lines do not
intersect.

Since the two lines are not parallel and do not intersect, the lines are skew.

EXAMPLE 33 (a) Find the equation of the line passing through the points | 2| and

1
2
2

(b) Find also the equation of the line passing through | 1| and parallel to | 2

4

2
1
0

(c) Do the lines from (a) and (b) intersect?

SOLUTION (a) The equation of the line is
1 —1 1
r=|2l+X\ O)—2),)\ER,usingr=p+)\(q—p),)\eR
2 1 2
1 -2
r=(2|+ N -2 A eR
2 —1
(b) The equation of the line is
2 1
r=|1|+tu|2,neR usingr=a+xm,\ e R
0 4
(c) Equating components gives:
1 -2 2 1
2|+ N 2= 1]+ 2
2 -1 0 4
1-2\=2+p [1]
2-2 =142 2]
2—\N=4du [3]
We solve equations [1] and [2]:
l=—-1+pu (2] = [1]
S>u=2

Substituting into [1] gives:
1—=2A=2+2

—2A=3

__3
AN==3

Substituting . = 2 and N = —% into [3] gives:

2+ % = 4(2), which is inconsistent.

Since all three equations are not satisfied by u = 2 and A = —%, the lines do not
intersect.
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EXAMPLE 34

SOLUTION

Note

A vector per-
pendicular to a
plane is called a
normal vector
to the plane.

The vector equation of a straight line lisr = —4i + 3j + k + t(i +j + 2k), t € R.
All position vectors are with respect to the origin O.

(a) The point A(—2, a, b) is on L Find the values of a and b.
(b) The point B on /is given by ¢ = 4. Find the coordinates of B.
(c) Find the coordinates of C on I, such that OC is perpendicular to [.

(a) Equating gives:

-2 (—4 1)
a|=|3|+t|1
b 1 2
-2 —4 +t
a|=|3+t
b 1+ 2t

Therefore, =2 = -4+ t=t=2
a=3+t=>a=3+2=5
b=1+2t=1+2Q2)=5
Hencea =5,b = 5.
1 —4
1/]=1| 3

—4
3
1 2 1
The coordinates of B are (0, 7, 9).
-4+t
34+t
1+ 2t

We need to find ¢ such that OC is perpendicular to I.

(b) Whent =4, +t +4

{-f

(c) SinceCisonl: OC =

Since OC and [ are perpendicular:

(1 1
OC-(l =0,(1 is the direction of I.
2 2
—4 4+ ¢ 1
=3+t ]|(1]|=0
1+ 2t 2
=S —4+t+3+t+2+4=0
=S6t+1=0, t=—¢
a1 _25
4-% 6
N =|_1]|-| 17
Hence,OC =| 3 6 3
_2 2
1-% 3
. _EHQ)
The coordinates of C are( 66 3)

Equation of a plane

A plane can be specified by either of the following.

(1) A unit vector perpendicular to the plane and the distance from the origin to the
plane.

(ii) A point on the plane and a vector perpendicular to the plane.
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PROOF

EXAMPLE 35

SOLUTION

Equation of a plane, given the distance from the origin to the plane
and a unit vector perpendicular to the plane

Given a unit vector n perpendicular to a plane, and the distance d from the origin to
the plane, the equation of the planeisr - n = d

5>

X

Y
z

LetOTiz ,r=OTi.

Since OR is on the plane and ONis perpendicular to the plane, we have:
NR-ON =0
Since d is the distance from O to N and n is a unit vector perpendicular to the plane:

ON = dh

NR = OR — ON
=r—dn (Since ON = d)
NR-ON =0

=(r—dn)-dn=0
=>r-dn—dn-n=0

A

=r-dn=dn-n

=d(r-n) =d? (Sincen+n = 1)

=>r-n=d (Dividing both sides by d)

QE.D

........................................................... e

3

Given that a unit vector perpendicular to a plane is % and the distance from the
2
3

origin to the plane is 2 units, find the equation of the plane.

Using r - n = d gives:

1
3
- % =2
2
3
1
=r-|2|=6 (Multiply throughout by 3)
2
1
The equation of the plane is r - (2) =
2



2
EXAMPLE 36  The equation of a plane is given by r - | 1 ) = 5. Find the distance from the origin to
the plane. —1
2
SOLUTION We will convertr+| 1 |=5tor-n=4d
-1
2
We first find the magnitude of | 1 |:
-1
2
1||=V22+ ()2 + (-1 =V6
2
1 5
=r°-— 1 = =
V6|2 T Ve
Hence, the distance from the origin to the plane is i.

Ve

Equation of a plane, given a point on the plane and
a normal to the plane

Let a be a point on a plane and n a vector perpendicular to the plane.
The equation of the plane is

r-n=a-n

PROOF
N
R ; A

i

i

i

i

0]

Since NR and NA are on the plane and ON is perpendicular to the plane, NR and NA
Note are perpendicular to ON.

Any vector per- —NR-ON =0
pendicular to a L
plane is perpen- =NR =0OR —ON
dicular to every — = ==
e Therefore, (OR —ON) - ON = 0
plane. Similarly, NA =OA — ON

= (0A-ONJ)-ON=0

= (OR —ON)-ON = (0A —ON)-ON =0
= OR-ON =OA -ON

Therefore, OR -ON = OA -ON.

Hence, r - n = a - n is the equation of a plane perpendicular to the vector n and
containing the point a.
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EXAMPLE 37

SOLUTION

EXAMPLE 38

SOLUTION

1 -1
Find the equation of the plane passing through |2 | and perpendicular to| 2 |. Find
also the distance of the plane from the origin. 1
Using r * n = a - n gives:
-1 1y [—1
r-| 2 |= (2 12
1 4 1
-1
=r:| 2 |=—-1+4+4
1
—1
=r-| 2 |=7
1
-1
Hence, the equation of the planeisr-| 2 | =7.
1

-1
2 )is\/1+4+ =16
1

The magnitude of

S

Therefore, r -

sl 5l 5L

Hence, the distance from the origin to the plane is 7 units.

V6

1
4
1

Find the equation of the plane passing through |4 | and perpendicular to the line

3
2|
1

A vector parallel to the normal to the plane is the direction of the required line. Since
the line is perpendicular to the plane, equation of the line is given by:

passing through the points |2 | and

4
2
0

4 3 4
r=(2|+A - 2)
0 1 0
4 —1
=r=[2|+N 0 JAeR
0 1
-1
A normal to the planeisn = | 0 )
1

The equation of the plane is

-1 1 -1
r-| 0 |=[4|]0
1 1 1
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EXAMPLE 39

SOLUTION

EXAMPLE 40

SOLUTION

Cartesian equation of a plane

The vector equation of a plane is

r-n=D
A X
Ifn=|B|landr = |)|, then
C z
x\ (A
Y|-IB|=D
zl \C

=Ax+By+Cz=D

Ax + By + Cz = D is the Cartesian equation of the plane with the normal vector

being | B |, i.e. the coefficient of x, y and z respectively.

A
B
C

2
4|in
3

1
5

Find the equation of the plane passing through
vector form and Cartesian form.

and perpendicular to

The equation of the plane is given by:

2 1 2
r-|4/={5]"(4
3 —1/ 13
2
=r-(4|=2+20—3
3
2
=r-(4|=19
3 2
The vector equation of the planeisr * 4) = 19.
3
x\ (2
Y|4 =19=2x+4y+3z=19
zl \3

The Cartesian equation of the plane is 2x + 4y + 3z = 19.

Find the Cartesian equation for each of the following planes.
(a) The plane 7, through A(4, 2, —1) and parallel to the plane 2x — y + 3z = 4

(b) The plane 7, through B(—1, 2, —3) and perpendicular to the line [:

x—2_)Y -1 _z-1
3 2 1

Since the two planes are parallel, they have the same normal vectors.

2
-1
3

2
Therefore, the normal to 7 is ( -1 )

(a) Thenormalto2x — y+ 3z =41is
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Usingr * n = a - n gives:

EIE
r-° —1 = 2 . _1
3 -1 3
2
=r-|—1]=8-2—-3=3
3
x
Substituting r = | V| gives:
z
x 2
y l—11=3
z 3

The Cartesian equation of the plane is 2x — y + 3z = 3.

(b) Since , is perpendicular to [, the direction vector of [, is perpendicular to ,.

The direction vector of [, is 2). The equation of 7, is given by:

3 -1\ (3
r-|2|=1{2/|-(2
1 -3/ \1
3
Sr-(2|=-3+4-3=-2
1

Hence the Cartesian equation is 3x + 2y + z = —2.

EXAMPLE 41 The equation of alineisx =2 + t,y =1 —3t,z=4 + .

(a) Find the value of ¢ which satisfies the equation of the plane 7 x + 2y + z = 12.
Hence, find the point of intersection of the line and the plane.

(b) Find also the acute angle between the normal to the plane and the line. Hence,
deduce the angle between the line and the plane.

SOLUTION (a) Substitutingx =2+t y=1—3t,z=4+ tintox + 2y + z = 12, gives:
24+ t+20-3)+4+t=12
8 —4t=12
t=—1
Substituting t = —1 gives:
x=2—-1=1

y=1-3(-1)=4
z=4+(-1)=3

1
Hence, the point of intersectionisx = 1,y = 4,z = 3 or | 4|.
1 3 1
(b) The direction vector of the line is | —3 | and the normal to the plane is 2). Let
the angle be 6. 1 1
1 1
Note =312
_ 1 1/ _ —4

A diagram will cos 6 = 1 1\ Viive
assist in identify- —3)‘ (2)
ing the angle 1 711
between the line Therefore, # = 180° — 119.5° = 60.5°.

andithe plane. Hence, the angle between the line and the plane is (180° — 90° — 60.5°) = 29.5°.
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EXERCISE 118B

Find the equation of each line given the direction vector and a fixed point on
the line.

1 2
(a) |2|is the point and the direction is 1)
4 3
1 3
(b) |—1]isthe pointand| 2 |is the direction
4 —4
4 J—
(c) |1|isthe pointand| 0 |is the direction
4 2
Find the equation of the lines passing through the following points.
2 4
(a) |1]|and|1
1 3
—1 4
(b) | 0 |and |2
2 4
4 6
(¢) |4|and|2
5 7

Find the vector equation and Cartesian equation of the plane passing through the
point A and perpendicular to the vector B with position vectors to an origin O.

. 2 . 1
(a) OA=| 4 |andOB = 4)
-2 1
. 2 N 4
(b) OA =2 andOBZ(Z)
5 2
. 6 N —1
(c) OA =7 andOB=( O)
3 —4

2 |. Find the equation of
1

A line passes through the point | 1 | and is parallel to

2
1
3

lin vector form, parametric form and Cartesian form.

— -3 —
The Cartesian equation of a line is * T 2_7 T = 2 3 Z Write the equation

in vector form and parametric form.

Given the equation of thelinex =2 + N,y =3 + 4\, 2 =2 + 2\, N € R, write
the equation in vector form.

The line L passes through the point A(2, —3, 4) and is parallel to 4i + 5j + 3k.
Find the following.

(a) The vector equation of L
(b) The parametric equations of L
(c) The Cartesian equation of L

The equations of the lines [, [, and [, are given as:

Lir=Qi—=5—k) +s(—i—2j—k)
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10

11

12

13

14

15

16

12:x=4—3t,y=1+5t,z=2—t

j.xt2_ Yol _z+2
373 4 -1

(a) Find a vector that is parallel to each line.

(b) Find a point on each of the lines.

6 12
Relative to an origin O, points C and D have position vectors |4 |and | p
respectively, where p and g are constants. 5 1
6 1
(a) The line through C and D has equationr = |4| + A\| —1|, A € R. Find the
5 0

values of p and q.

(b) Find the position vector of the point A on the line CD such that OA is

perpendicular to CD.
1 2
The equation of a straight line lisr = | —1 |+ \ 1), where A € R.
2 3

(a) Find the position vector of P on [ such that OP is perpendicular to /and O
is the origin of position vectors.

(b) A point Q is on [ such that the length of OQ is 4 units. Find the exact
possible values of \ for which the length of OQ is 4 units.

0 -2
Find the point of intersection of the linesr = [1|+ s| 2 |and
9\ 5 0 3
r={36|+t2,steR
1 5
1 0

With respect to an origin O, points A and B have position vectors | 2 |and |2].

—1 3

Find the equation of the plane passing through A and perpendicular to B. Write
the equation in both vector form and Cartesian form.

2 4
Relative to an origin O, the position vectors of A and Bare| 3 |and|2
—2 2

respectively. Find the equation of the plane passing through B and perpendicu-
lar to A. Find also the distance from the origin to the plane.

The points P, Q and R have position vectors 2i + j + k, —32i + 4j + 2k and
2i + j + 4k respectively, with respect to an origin O.

(a) Find an equation of the line PQ.

(b) Find the equation of a plane passing through R and perpendicular to the
line PQ.

Find the angle between the lines [, and [, where the equation of /, is
x=1_)YT2 _2:-14
2 3 4

z = 3 + 4t. Are the lines perpendicular?
The vector equation of a straight line [is —i + j + #(i + 2j + 2k), t € R. All
position vectors are with respect to the origin O.

and the equation of l2 isx=2+3t,y=1—1t,

(a) The point A(p, g, 3) is on . Find the values of p and q.
(b) The point B on [ is given by ¢ = 2. Find the coordinates of B.
(c) Find the coordinates of C on [, such thatOC is perpendicular to L.



SUMMARY

preet

Vectors

v

Uy 2
Letu=| Uy [andv=| V,
us V3

v
up+ v
u, + v
utv=| 2772
usz+vs

5 @

u—v=| 272

> 4

Al Uy |=| AUz [, AeR

<
w

>

<
w

€

u=viffu; =vy,uy =vyu3=v3

v
UV =ugvq + UV, + Usvs

r

lul =A/ u2+ u2+u?

v

A unit vector is a vector with

magnitude 1 unit.

A unit vector in the direction of u is

v

u -V = |u||v| cos 6, where 0 is the

angle between uand v.

v

Vectors in three dimensions (R3)

||
v

Lines

Vv
Let a be a point on a line and m be
the direction vector. The equation of
the line is

r=a+AmAire R
||

v
Let p and q be two points on a line.
The equation of the line is
r=p+A(q-p), AeR

) 4
Vector equation of a line:
Xo
r=|b|+1]| Yo
C Z

,AeR

v
Cartesian equation of a line:

X—a

Parametric equations of a line:
X =a-+ Axg

y=b+Ayor1eRr

z=c+ A1z,

v
Skew lines are lines that are not
parallel and do not intersect.

v
The angle between two lines is the
angle between their direction vectors.

v
Two lines are perpendicular iff the
scalar product of their direction
vectors is 0.

u and v are perpendiculariffu-v = 0.

) 4
u and v are parallel iff one is a scalar

multiple of the other.

-
v
1 0
i=[0|,j=1] k=
0 0
a A 4
b |=ai+ bj+ck

334

'

Planes

v
Let n be a unit vector perpendicular to a
plane and d be the distance from the
origin to the plane. The equation of the
planeis:

r-n=d

v

Let a be a point on a plane and n a vector
perpendicular to the plane. The equation
of the plane is:

rrn=a-n

v
Vector equation of a plane:
A
r.|B|-D
C

v

Cartesian equation of a plane:
Ax+By+Cz=D

A

where | B | isa vector perpendicular to
C

the plane.
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Checklist

Can you do these?

B Add two vectors.

B Subtract two vectors.

B Multiply a vector by a scalar quantity.
B Find the length of a vector.

M Identify a position vector.

B Derive and use displacement vectors.
B Derive and use unit vectors.

y
z
B Find the scalar product of two vectors.

B Express a vector in the form (Y| and xi + yj + zk.

M Find the angle between two vectors.

B Find the equation of a line given a point on the line and a vector parallel to
the line.

B Find the equation of a line given two points on the line.

B Find the vector equation of a line.

M Find the parametric equations of a line.

B Find the Cartesian equation of a line.

B Determine whether two lines are parallel, intersect, or skewed.
M Identify a vector normal to a plane.

B Find the equation of a plane given a point on the plane and a vector
perpendicular to the plane.

B Write the equation of a plane in Cartesian form and in vector form.

Review Exercise 11

1 With reference to an origin O, the position vectors of A, B and C are 2i + 4j + 5k,
—2i —j —kandi + j + krespectively. Find angle ABC.
2

2 The equation on a plane 7isr - | 1| = 6. Find the distance from the origin to the
2
plane.

3 Are these two lines skew?

1 - -2
r=[0]+N 2 | NeR ’“{4:Y _z+1
1 3 3 -2
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10

11

-2 _y—4_ z-1

The Cartesian equation of a line /, is % R and the equation of
0 -1

aline 12 isr=1|2|+t| 4 |, wheret € R. Are l1 and 12 skew lines?
3 1

Find the angle between the normal to the planes with the equations
x+2y+z=4and2x —y—z=1.

Referred to the origin, the points A and B have position vectors OA=2i+j—k
and OB = i — 2j + 3k. The point C on AB is such that AC:CB = p:1 — p.

Show thatOC = (2 — p)i + (1 — 3p)j + (=1 + 4p)k.
Hence, find the value of p for which OC = AB.
Find also the values of p for which angles AOB and COB are equal.

Decide whether the following lines intersect.

4 1 -3 2
r=|9|+tl6|landr=|—15|+s(8|,t,s e R
12 5 —19 8
1 0
The equation of alinelisr =| 2 |+ N[1|,\ € R, and the point A with re-
—1 4

spect to an origin O has position vector 3i + 2j — k. The point N is on the line /
and is such that AN is perpendicular to I. Find the position vector of N and the
magnitude of AN.

Are the lines l1 and 12 skew?

2 1 —2
x=1—-3u

Lyy= neR
z=2+4u

Referred to an origin O, the point A is (1, 3, 1), Bis (—2, 1, 1) and C is a variable
point such that OC = OA + NAB. Find the following.

(a) OA -OB

(b) Angles AOB

(c) The values of \ for which OC is perpendicular to AB
(d) The value of N for which |0C| = |AC|

With respect to an origin O, the points A, B and C have position vectors 51 — j — 3k,
—4i + 4j — kand 5i — 2j + 11k respectively. Find the following.

(a) The angle between the vectors OA and OB

(b) A vector equation for the line BC

2
1 |and normal to

(c) The equation of a plane 7 passing through

—1
1
2
(d) The angle between the normal to 7 and the direction of the line BC

Hence find the angle between the line BC and the plane .
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Decide whether the following lines are skew.

10 0 0 1
0 1 5 0
0 —1 0 5

The points A and B have position vectors 3i + 4j — kand 5i + 7j + 6k
respectively.

r= +t andr = +sl0,t,s e R

(a) Find the equation of the plane passing through A and perpendicular to AB.

(b) The point C has position vector 6i + 23j + 8k. Find the parametric equa-
tions of the line AC.

(c) Find the position vector of the point D where the line AC and the plane in
(a) meet.

The equation of a plane 7is 2x — 3y + z = 6 and the equation of a line / is

2 1
r=|1|+¢t2,teR
—1 2

(a) Write the equation of / in parametric form.

(b) Find the value of ¢ for which the line / and the plane 77 meet. Hence, find
the point of intersection of the line and the plane.

(c) Find the acute angle between the line / and the normal to the plane 7.

With respect to an origin O, the point A has position vector 2i — j + k. The

3 —
line I has equationr = |4| + s| 1 |,s € R. The point B on /is such that AB is
1 2

perpendicular to L.
(a) Find the position vector of B.
(b) Find the length of AB.
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Module 2 Tests

Module 2 Test 1

1 (a) Find the general solution of the equation sin2x + sin3x + sin4x = 0. [8]

(b) Giventhat A + B + C = 180°, prove that sinA + sinB + sinC = 4cos%
B s C
€085 €08 - [8]
(¢) (i) Express2sin6 + cos6in the form Rsin(6 + «), where R > 0 and
0° < a < 90°. (3]
(ii) Find the general solution of the equation 2sin 6 + cos 6 = 2. [4]
(iii) Write down the maximum value of ! [2]

4 + 2sin 6 + cos O

2 (a) Find the equation of the circle which passes through the points P(2, 3),
Q(4, —1) and R(3, —1). (9]

(b) Show that the Cartesian equation of the curve represented by parametric
equations x = 1 + 4cos 6, y = 4sin 6 — 2 is a circle with centre (1, —2) and
radius 4 units. [8]

(c) The parametric equations of a curve are x = 2 + costand y = 3 + 2 sint.
Find the equation of the curve and describe the curve. (8]

3 (a) With respect to the origin O, the position vectors of A, B and C are
OA=i+2j+kOB=-2i+j+ kandOC = pi + 2j + 5k, wherepisa

constant.
(i) Find angle AOB. (4]
(ii) Find the value of p for which ABis perpendicular to BC. (4]

(b) The straight line y + x = 11 cuts the circle x> + y* — 8y = 9 at the points A
and B.

(i) Calculate the mid-point of AB.
(ii) Calculate the equation of the perpendicular bisector of AB. [11]

(c) The equation of an ellipse is 25x? + 9y = 225. Find the centre of the ellipse
and the length of the major axis. Write the equation in parametric form.

1 —2
4 (a) Theequationofalinelisgivenbyr=(2|+¢t 1 |t e R.
4 1
Write this equation in parametric form. [4]
2
(b) The equation of a plane isr - 3) = 8. Write this equation in
2

(3]

Cartesian form.

(c) Find the value of ¢ for which the line in (a) meets the plane in (b).
(Solve the two equations simultaneously.) (4]

(d) Hence, find the point of intersection of the line in (a) and the plane in (b). [2]
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5 (a) Find the general solution of the equation cosx + cos3x + cos5x +
cos7x = 0. [9]

(b) Find the Cartesian equation of the curve x = 1 + tant,y = 2 + cost.  [5]

Module 2 Test 2

1 (a) Thecircle C has equation x? + > — 4x — 9y — 12 = 0.
(i) Find the radius and the coordinates of the centre of the circle. (3]
(ii) Find the equation of the tangent at the point (6, 0) on C. [4]

(iii) Calculate the exact value of the x-coordinates of the points of
intersection of C with the straight line y = x + 8. [7]
1 —1
2 4
2 1

(b) Are the lines with equations [;: r = +t

y=1—s,z=5t5 € Rskew?

and 12: x =2+ 3s,

2 (a) Find the value of tan 22.5° in surd form without using a calculator

or tables. [8]
(b) Given that A and B are acute angles such that sin A = % and cosB = %,
find, without the use of a calculator, the exact values of
(i) sin(A + B) [3]
(ii) cos(A — B) [3]
sinf — sin26 + sin360 _
(c) Prove that 050 — cos20 T+ cos30 tan26. (5]
3 (a) Find the Cartesian equation of the curve x = 4 + 2tant, y = sect + 3. (6]
1 —1
(b) Two planes 7, and 7, have equations r - (2 =4andr-| 1 |=6. Write
2
the equations in Cartesian form. Find the angles between the normal to the

planes.

4 (a) (i) Find the equation of the normal to the parabola y* = 16x at the point
(3, 4t).

(ii) At the points P and Q on the parabola, t = 3 and t = % Find the

intersection of the normals at P and Q.

(b) (i) Prove thatcos® + 2cos36 + cos560 = 4cos* Ocos36. (6]
(ii) Hence, find the general solution of the equation cos # + 2cos36 +
cos560 = 0. (4]

(c) Given that the circle x> + y?> — 7x + 2y + a = 0 passes through the point
(7, 1), find the value of a. Show that the equation of the diameter of this
circle which passes through (7, 1) is 7y = 4x — 21. Find the coordinates of
the other end of the diameter. [9]
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CHAPTER 12
Limits and Continuity

©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00

At the end of this chapter you should be able to:

B Use graphs to determine the continuity or discontinuity of a function

B Describe the behaviour of a function as x gets close to some given fixed number
B Use the limit notation }131‘1 fix) =L, flx) >Lasx—>a

B Use simple limit theorems

B Use limit theorems for specific cases

B Show and use ’}gno % = 1, by a geometric approach

B Solve problems involving limits

M Identify the region over which a function is continuous

M Identify the points where a function is discontinuous and describe its
discontinuity

B Use the concept of left-handed and right-handed limits

B Use the concept of continuity on a closed interval

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o

KEYWORDS/TERMS

limits « continuity « discontinuity « left hand
limits  right hand limits « jump discontinuity e
point discontinuity e infinite discontinuity e
removable discontinuity « non-removable
discontinuity  existence
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Limits Sy
Y2 i
Limits are important in the development of calcu- |
lus and in other branches of mathematical analysis i
1
such as series. The gradient function is defined in 1 0
. . . 5 0
terms of limits and will be used in a later chapter 3
to find the gradients of different functions. Let us i
look at what we mean by a limit. :
-1 |
Let flx) P |
Let us see what happens to f(x) as x approaches 2.
Look at the tables and the graph.
x fx) = -1 x fx) = -1
x+2 x+2
1.9 0.25641026 2.1 0.24390244
1.99 0.25062657 2.01 0.24937656
1.999 0.25006251 2.001 0.24993752
1.9999 0.25000625 2.0001 0.24999375
1.99999 0.25000063 2.00001 0.24999938
1.999999 0.25000006 2.000001 0.24999994

Notice that as x gets closer and closer to the value 2, f(x) gets closer to % This value is
the limit of f(x) as x approaches 2.

A limit of a function f(x) is the value the function approaches at a given x-value. The

function may not actually reach the value for the given x. For flx) = x%Z’ we say

¢ .. 1 . .
that ‘the limit, as x approaches 2, of f(x) equals 7 and we write xh_)mz P RaE

Let us look at what happens to the function flx) = x2;3+1+2 as x approaches —1.
X xz-l);ix1+2 X+ 2
4 (_4)2;35:14) T2 5 | —442=-2
3 (_3)2f33fr_13)+2= 1 ~34+2=-1
-2 (_2)2f23i_12) 20 —2+42=0
1 (_1)2f13fr_11)+2=8 —1+2=1
0 %:2 0+2=2
1 %=3 14+2=3
2 (2)2*2'3#=4 2+2=4
3 (3)2*?;3#:5 3+2=5
4 (4)2:3#=6 4+2=6

1 1
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X2+ 3x+2
x+1

When we substitute x = —1 directly into f(x) =
(—1)*+3(-1)+2 o

(-1)+1 0
Note that for the two functions flx) =

,weget f(—1) =
. Let us investigate this a little further.

X H3x+2 404 fix) = x + 2 all the values

x+1 5
correspond except at x = —1. At x = —1, the function f(x) = x-;3+1+2

and for the function f(x) = x + 2 the value of the function is 1. When drawing the
K +3x+2
x+1
circle at the point (—1, 1) indicating that this point is not part of the graph. We
say that there is a ‘hole’ in the graph at the point (—1, 1). Does this function have a

limit at x = —1 and if the function does have a limit, how can we find it?

is undefined

graphof y = , we can draw y = x + 2 instead and leave an unshaded

From the table below, we see that as x — —1, f(x) aproaches 1. The limit of f(x) as x
xX*+3x+2
x+1
to flx) = x + 2 with the point (—1, 1) excluded from this graph. Since lim f(x) =1,

x— —1
the limit exists but the function will not actually reach this value.

approaches —1 is 1. As indicated above, the graph of f(x) = is equivalent

Think of someone driving towards a wall to park their car. Assuming that they do not crash,
they will drive as close as possible, without touching the wall. They have reached their limit.

Let us investigate this by completing the table below.

—0.9 1.1 -1.1 0.9
—0.99 1.01 —1.01 0.99
—0.999 1.001 —1.001 0.999
—0.9999 1.0001 —1.0001 0.9999
—0.99999 1.00001 —1.00001 0.99999
—0.999999 1.000001 —1.000001 0.999999

As x — —1, f(x) approaches 1. The limit of f(x) as x approaches —1 is 1. We can
graph this function in the following way:

flx)

_x+3x+2_(x+

D(x+2) _

x+1

x+1)

x+2

The graph has a hole at (—1, 1) even though lim : flx) = 1. In this case, the limit
x— —

exists but the function will not actually reach this limit.

Note

An indeterminate form of
a limit is a form in which
we do not have enough
information to evaluate
its limit. = is considered
indeterminate since it
can be 1, « or 0.

The following table gives some deter-

minate and indeterminate forms.

Indeterminate | Determinate
0
% —o0 —o0o—» —o0

00 X —oo ©0")>—o0 «
0 X oo ©0H)~>—o0

0° 950
o0
‘Ibo
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Left-hand limits and right-hand limits

Some functions will approach to differ- Approach from
ent values of y at a given value of x: one theleftof2
y-value as we come from the left and a y
different y-value as we come from the
. (2,2
right. These y-values are called left-hand s
limits and right-hand limits. Let us look .
at how this works. .
As x approaches 2 from the left, the 2 1 9 1 2
function approaches the y-value of 2 =17 (2,—1)0\
and as x approaches 2 from the right ’y
the function approaches the y-value of Approach from
i . the right of 2
—1. Therefore, we write lim flx) =2

and lim f(x) = —1. e
x—2"

The notation used for left-hand limits is xli)n} f(x). This is read as ‘the limit of f{x) as

x approaches a from the left' and lim f(x) is used for the right hand limit and is read
x—at

as ‘the limit of f(x) as x approaches a from the right’

The existence of a limit

For a limit to exist for a function f(x) at some value x = g, then the following must
be true.

(i)  The left-hand limit must exist at x = a.
(ii) The right-hand limit must exist at x = a.
(iii) The left-hand limit and the right-hand limit at x = a must be equal.

This means that if lim f(x) exists, then both the I
left-hand limit and the right-hand limit must exist —~
and li)m_ flx) = lim f(x).

xX—a x—at

There are situations where a limit does not exist.

|
|
(i) A limit of a function f(x) does not exist if the 0 a \

left-hand limit and right-hand limits of f(x)
are not equal.

(ii) A limit of a function f(x) does not exist if f(x)
oscillates infinitely.

(iii) A limit of a function f(x) does not exist if f{x)
increases or decreases infinitely.
Limit laws
Suppose that the limits lim Ef(x) and lim g(x) exist.
x— x—>b
Law 1

lim ¢ = ¢, where c is a constant.
x—b

For example: lim5 =5
x—b
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Law 2

limx=b

x—=b

For example: lim x = 2
x—2

Law 3

limbx” = b", where b is a positive integer and in the domain for x.
X —>
For example: lim x* = 32

x—3

=9

Law 4
lim (flx) + g(x)) = lim f(x) + lim g(x)
x—>b x—b x—b
This means that the limit of a sum is equal to the sum of the limits.
For example: lim (x?> + x — 3) = limx? + limx — lim 3

x—>b x> x—b x—b

=b+b-3

Law 5
lim (¢f(x)) = clim f(x), where c is a constant.
x—b x—>b

For example: lim 4x? = 4 lim x? = 4b?
x—=>b x—=>b

Law 6
Jim i) = lim) i)

This means that the limit of a product of two functions is equal to the product of the
limits of the functions.

For example: lim (x + 2)(2x + 3)> = lim (x + 2) X lim (2x + 3)?
x—>b x—>b x—=b
= (b +2)(2b + 3)?

Law 7
lim f(x)
g 1) _

xﬁh(@ - lim g(x)’
x—b

provided that limbg(x) # 0.
X —>

lim 3x% + 2
2
For example: lim 3’; +t2_xob 3
x—bx’ +1 limx® + 1
x—b
_3b2+2
b +1

Law 8

lim (f(x))" = ( lim f(x))”

x—b x—>b

For example: lim (4x + 3)° = ( lim (4x + 3))5
x—b x—b

= (4b + 3)°

Law 9

Y, 1767 = T
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EXAMPLE 1 Using the limit laws, evaluate the following limits.
(a) lim (3x% + 4x — 2)
x—2
(b) lim (x + 2)(3x — 2)2
x—2

(c) lim(x2+ 1)

x—3\3x — 4
SOLUTION (a) lim(3x% + 4x — 2) = 3limx? + 4limx — lim2
x—2 x—2 x—2 x—2
=3(2)2+4(2)—2 (Substitute x = 2)
=12+8—2
=18

(b) lim(x + 2)(3x — 2)2 = lim (x + 2) X lim (3x — 2)?
x—2 x—2 xX—2
=2 +2)X(3(2) —2)? (Substitute x = 2)
=4 X16
=64
lim (x2 + 1)
_ x—3

~ lim (3x — 4)
x—3

(© Jim(£H]

= (;’:’;7—’__131) (Substitute x = 3)

Evaluating limits

Most limits can be found by using one of three methods: direct substitution (as we
did in Example 1), factorising or the conjugate method. When finding limits you can
try one method at a time until one works (of course you can try direct substitution
first). Let us look at the different methods of finding limits, starting with the easiest,
which is direct substitution.

Direct substitution
Note

To find xh_r)na f(x) by direct substitution, we substitute x = a into f(x) and we arrive at

If you substitute the value where lim f(x) = fla).

into a function

like Iin; y—3and  Direct substitution is the first method one should attempt when evaluating a limit.
X—
youg et% (any This method works for functions that are continuous everywhere or continuous

T S over its domain. For these functions, the limit is also equal to the function value at
than zero divided ~ that particular point. Direct substitution works for any type of functions, including

by zero), thenthe  piecewise functions, unless the function is not continuous at the point.

limit does not
e If this method does not work, one of the other methods described below should be

used to evaluate the limit.
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EXAMPLE 2

SOLUTION

EXAMPLE 3

SOLUTION

EXAMPLE 4

SOLUTION

EXAMPLE 5

SOLUTION

Try these 12.1

Find lim (x? + 4x + 1).
x—1

We can find this limit by substituting x = 1 into the function x* + 4x + 1.
Hence, liml(x2 +4x+1)=12+4(1) + 1
X —>

Find lim Sx;.%x
x—>0x’ +4x + 5

lim (x2 — 3x)

lim x> —3x _ x50
so03 +4x+5  1lim(x + 4x + 5)
x—0
2 _
= 30—3(0) (Substitute x = 0)
0° + 4(0) + 5
-0
5
=0

Find lim (3#2 + 1)*(t + 2)°.
t——1

tl_i)rr_11(3t2 + DHt+2)3=0@(—1)2+ D*X(—1+2)} (Substitute t = —1)
= (4H(1)°
= 256

Evaluate lim V3 + 3t2 + 5.

t—2

hth3 +3t2+5 = \/hm(t3 + 3t2 + 5)

25+ 3(2)2+5 (Substitute t = 2)
=\V8+12+5

In questions a to j, evaluate the following limits.

(a) lim (422 + 6x + 1) (b) lim(Z 1)
© 1S (@) fimGe+ 17
(e) tli_l;r}l (t+ 1)%4t —2) (f) xlil)no(3x —4)2x*+7)
(8) xl_i)n}2(4x3 —3x2+5) (h) hrr} 29;_:_ 13

NPt (1)
O A ()
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EXAMPLE 6

SOLUTION

EXAMPLE 7

SOLUTION

Try these 12.2

Factorising method

. _x*—4
Let us look at xh_r)nz flx) where flx) = p—
Using direct substitution gives:

This value is considered indeterminate. To evaluate this limit we need to look at
another method and in this case factorising will work. After factorising, we cancel
and then substitute directly to evaluate the limit.

=4 _ (x=2)(x+2)

Now, f(x) = x—2 x—2
=x+2
Therefore, xhl)nz flx) = xh_)mz (x+2)
=2+2)
=4
XX —4

Therefore, lim ( ) =4

x—2

x—2

. . x> +5x+6
Flnd hm W

x— =2

2 +2)(x +
lim XX+ 6 iy G+ 2)x +3) (Factorise the numerator and cancel)

x>-2 Xx+t2 x— =2 x+2
= lim (x + 3)
x— =2
=—-2+3 (Substitute x = —2)
=1
. x>+38
Evaluate xl_l)n} xTF o

Factorise x> + 8, recalling x*> + a* = (x + a)(x* — ax + a?):
B+8=x+2)x*—2x+4)
S8y (xA42)(x? — 2x + 4)

o P

Therefore, xlgrz )

x——2
= lim (x* — 2x + 4)
x— =2
= (-2 —2(-2) +4
—4+4+4
=12

(Substitute x = —2)




EXAMPLE 8

SOLUTION

EXAMPLE 9

SOLUTION

Note

In this case, do
not expand the
denominator. The
numerator
=(Vx+8—3)
(Vx+ 8 + 3)
= (Vx + 8)2 — 32
=(x+8) —9

EXAMPLE 10

SOLUTION

Conjugate method

This method for evaluating limits is useful when the limits contain radicals. We learned
to conjugate radicals in Module 1 (a revision of radicals may be useful at this stage).

o x—25
Evaluate xli)ngs N

Multiply the numerator and denominator by vx + 5:
x—25 Lo x—25 VX +5

Am R =5 M E =5 X Vr T

iy 29)(OVE +5)
x— 25 x=—25

= lim (Wx +5)=V25 + 5
x— 25

=5+5

Evaluate lim M.
x—1 x—1

Multiplying numerator and denominator by Vx + 8 + 3, we get:
Vx+8 -3 _ jyxt8 -3 vx+8+3

lim

r>1 x—1 =51 x—1 Vx+ 8 +3
L (x+8)—9
= lim
x=>1(x — 1)(Vx + 8 + 3)
= lim x—1
x—=1Le—1)(Vx + 8 + 3)
tht——L——)
x=1\Vx+8+3
1 .
= Substitute x = 1
V9 + 3 ( )
1 1
3+3 6
Evaluate lim-X—=95_
x—=6\x — 6

Multiplying the numerator and denominator by Vx — 6, we get:
lim X =0 — |jm X =06 » VX6
x—=6\x — 6 x—>6\Vx — 6 \/x—6

.. (x—6Vx—6

= lim————

x—6 xX—6
= limVx — 6

xX—6
~\6=%6
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EXAMPLE 11

SOLUTION

Try these 12.3

EXAMPLE 12

SOLUTION

Find the value of lim —X—14
v 144 — Vx + 2
1- x— 14 =1 x— 14 X4+\/x+2

m ———-:- m
x>144 —\Vx+2 x>lu4—\Vx+2 4+Vx+2

L (x— 1)@+ VxTF2)
L P Py oy

(x—14)(4 +Vx +2)

= Jim, 14— x
iy T 1)@+ VX 2)
x—> 14 14 — x

= lim —(4+Vx+2)=—(4+VI4+2)

Evaluate the following limits.

5— V&
(a) lim S=—

x— 19
(b) lim

x—5
(C) xh—r>n5 xX—5

Tending to infinity

A limit does not exist if a function i 1ncreases or decreases infinitely. When we sub-
stitute our x-value into f(x) and we get 5 there may be a hole in the graph. If we get
a fraction of the form % where a # 0, this indicates that there is a vertical asymptote
and this indicates that the function is increasing or decreasing without bound.

2
For what value(s) of x does no limit exist for f(x) = xz+4—x+3?
2x*+ 3x + 1
Factorising the expression we have:
_ (x+1(x+3)
= Dex+
(x + 3)
fo) = Qx+1)
- 1 fl-1)=_—1+¥3 _ 2 _ _
When x = —1, f(—1) D +1 =1 2
Therefore, the function has a hole at x = —1 and the limit is 1.
1 1
When x = 2’f( 2) 2(_1) +1 0
2

lim f(x) does not exist since f(x) will either increase or decrease infinitely.
X— —5
2

Therefore, the limit does not exist when x = —%.
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EXAMPLE 13

SOLUTION

EXAMPLE 14

SOLUTION

X+x+1
xX*+5x+6
Decide whether the limit of f(x) exists at these values of x.

Determine the x-values at which the function f(x) = is undefined.

Factorising the denominator gives:

_ xX*+x+1
ﬂ“‘&f@m@+3)

When the denominator is zero:
x+2)(x+3)=0

=x=—-2,—3

. flx) is undefined when x = —2,x = —3.

Let us find out if the limit exists when x = —2:

. o 24 x4 1
x1—1>nlzf(x) B x1—1>n12(xx+ 2))(Cx + 3)

_ (=2 +(=2)+1

C(—2+2)(-2+3)

(Substitute x = —2)

_4-2+1
0
=3
0

Therefore, the limit does not exist.
Let us find out if the limit exists when x = —3:
. . X +x+1
x1_1>rr12f(x) x1—1>n12(x + 2)(x + 3)
_ (=32 +(—3)+1

(=3+2)(—3+3)

_9-3+1
0

(Substitute x = —3)

[=1EN|

Therefore, the limit does not exist.

Hence, f(x) is undefined at x = —2, x = —3 and the limit does not exist at these two
values.

Limits at infinity

When finding xli_l)n f(x), where f(x) is a rational function, we can divide the numera-
tor and denominator by the highest term in x and evaluate the limits.

2
Find lim 2+ X+ 1
x—>eext+2x+ 3

Since we are dealing with infinite limits, we can divide the numerator and denomina-
tor by x? (highest power).
2
lim 2x-+x+1 _

= lim

2x° 1
x? x*

x>eox? 4 2x+ 3 x>y 3
2

2
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1 1
L 2txt
—Am T
1+%+3
_240+0 112 .3
=1T0+0 Asx — ,x,xz,xandxzalltendtoo.
2
Hence, lim 2;c+7x+1 =
xoex*+2x+ 3
2
EXAMPLE 15  Evaluate lim —*—+0
x—>e3xt —4x + 1
SOLUTION Since we are dealing with infinite limits, we can divide the numerator and denomina-
tor by the term with the highest power of x, which is x2.
X, 6
2 2 a2
lim 2x t6__ _ lim 2x X
x> 3x% — 4x + 1 x—>°°3i_g+L
2 2 2
X X x
1+8
X
=i T
“3-Z+=
1+0 b 6
—_ 1+ ince 2 4 L o
=3-0+0 Slncexz,x,x2—>0a3x—> .
-1
3
2
EXAMPLE 16  Evaluate lim 3X-+X*3
x=ex?+8x+ 9
SOLUTION Since we are dealing with infinite limits, we can divide the numerator and denomina-
tor by the term with the highest power of x, which is x°.
X x4 3
2 3 3773
lim 3+ X+ 3 _ jjy XX X
¥oexd+8x+9 xoext 8x 9
© X8 X
204+2
. Xt x
=m s
1+5+5
=% Since%,é,%,%and%—)Oasx—)oo.
=0
1

Try these 12.4  Evaluate the following limits.
.o x*+6x+9
a 1 X Tox T I
@ Jim e s
X+ T7x%+ 2
®) Jim s e 1
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PROOF

Note

OAB is the sector
of a circle with
center O and
radius r units.

EXERCISE 12A

Where possible, evaluate the following limits.

1 lim(x*+4x+5) 2 lim3*
x—?2 x—0
3 Jim3X*t2 4 lim3x2+5x+2
x—0d4x — 1 x—2 x—4
5 lim 22 —3x+2 6 lim (4x + 3)2
x->-1 x*+x+2 x—1
7 lim (x —=5)(x+2) 8 lim (x—3)(2x+1)
x—5 x—5 x—>3 x—3
9 lim 3x3 — 4x2 10 lim x2 +5x + 6
x—0 x2 x>-2 Xx+2
. x2+9x+ 20 x*— 16
M A“%W 12 m
13 \/.x+1 —4 14 x+ 2
x—>5 - x—5 x> 2Vx+6 —2
.. x—16 3x +1
15 lim =4 16 lim> —
17 lim 9%=2 18 hmm
x—oeodx — 1 x>ex2 —2x — 1
oxd—6x+1
19 Jlim e
Special limits
1 hmsme—l
6—-0 0
Triangle ABC is a right-angled triangle. A
tan =A—rC r
= AC=rtanf 0
o) 5 C

Area of triangle OAC = l X base X height
= %r X (r tan 0)
= %rz tan 0

Area of sector OAB = _1,2 6

Area of triangle OAB = %r sin 6

Area of triangle OAB < area of the sector OAB < area of triangle OAC

= %rzsin 6< erB < lrztanO

Dividing by 5 12 e get:

sinf< f<tan@

sin 0

sinfd< < ——
cos O
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Dividing by sin 6, we get:

sin 0

sin 0 0 cos 6

sinf sinf® sinf
(%) 1

:>1<sm0 cos 0

AsO—0,cos60—1

Therefore, 1 —1
cos 6
Therefore, as 6 — 0, _0_ —1

sin 6
= lim —— 0 =1
9= 0sin O

Hence, limM =1
6—-0 6

2 limsf—1_

0—0 0
PROOF
. cos@—1_ . cos@—1,,cosf+1
011310 0 ehino 0 x cosf+1
— iy €0s°0— 1
P 6(cos 6+ 1)

_ lim —(1 — cos?0)
050 6(cos+ 1)

= lim —sin?6
i 6(cos 6+ 1)

_ ... _Sin6 sin 0
9h—I>no 0 cosf+ 1

(Since 1 — cos? 0 = sin? )

sin 0 % lim sin 6

- ehino_ 0 90 cos 0 + 1
_ 0 \_
= 1X(1+1)_°
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EXAMPLE 17

SOLUTION

EXAMPLE 18

SOLUTION

EXAMPLE 19

SOLUTION

sin66
6—>0 6 -

Evaluate lim

Multiply numerator and denominator by 6:

.6 Xsin66 _ 1. (sin60)
Jim ™6 lim 6|~ 66 '
= lim 6 X lim 8069
0—>0 6—0 0
We can now use lim M, since lim s1n6618 of the same form as lim >~ sin 0 . We have:
6—0 0 6—-0 60 6—0 0
sin66 _
glino 60 1

Alternatively, let u = 66

. s1n60) _ sin u
(}lino( 60 (}—>0( u )
=1
Therefore, lim >~ sin66 _ lim 6 X lim >~ sin 60
60 (7] 6—>0 6—>0 60
=6X1
cos46 —1

Evaluate (}ino >0

Multiply numerator and denominator by 2:

. cos40 1 2 . (COS40 1)
_—2 - - X £= _ - =
— li]'ﬂ 2 X h cos40 1

6—0 0—0 40

—2%0 (Sincelimz = 2and lim 0840 =1 _
60 >0 40

Find the value of hm sin70
6> 0sin46

Since we know that ehmo (%9) = 1, we can introduce this form by dividing
-
numerator and denominator by 6:
sin76 ;8076
lim 0 _ 00 0
§>0sindd lim Sin.460
im
0 050 0
sin76 _ 7sin76
Now, =g~ =779
Therefore, lim SI1 70 _ iy, 75076
60 90 70
— 1 sin 70)
(}gn07( 70
= lim 7 X lim 8070
0—0 0—0
=7X1
=7
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sin46 _ 4sin40

Similarly, 7 T |
Therefore, hm sin46 _ . 4sin46
>0 0 o0 46
= 1 sin 40)
3‘5’04( 40
= lim4 X lim $in40
60 60
=4X1
=4
sin76 _
Hence, hino sin40 4'
EXAMPLE 20  Evaluate lim 2040
o650 6

tan460 _ . sin40 ( . _ sin46
SOLUTION 011_)0 0 (}11)110&0540 Since tan46 cosdf
_ i (SIN40 1 )
0hi>no( 0 ><(:0340
_ sin460 _ ;. 4sin40
Now, = hino 0 ehino 460 -
Therefore, lim sind6 _ lim 4( sin 40)
g0 0 60 460
_ % sin 40
Jmd < im =y
=4 X1
=4
Now we look at 11m 1
60 cos40
. 1 1
G}Lnocos40 cos4(0)
-1
1
=1

Hence, limw= 4X1=4
6—-0 0

EXAMPLE 21 Evaluate lim 20X — 60X
x—o0sin3x — 5x°

sinx
. tanx — 6x Cosx _ 0% . sinx
SOLU - = - =
TION xhino sin3x — 5x xlgno sin3x — 5x (Smce tanx = Cosx
sinx _ 6
lim |-COSX
=x-0| — X (Divide numerator and denominator by x)
sin3x — 5x
X
sinx |
_ (x cosx) 6
x—0| (sin3x)
(SI82%) — 5
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sinx
_x—)Oxcosx x—0

lim — limé6

lim $I03% _ jim 5

x—0 x—0
. sinx . 1 .
SILX o -t
:xhino X xhi)nocosx x11£>n06
limi‘o’ sin3x _ lim 5
x—0 X x—0
_ ()W) =6
3—-5
- =5_5
— 2

Try these 12.5  Evaluate the following limits.

. sin86
(a) 0hi>no 0

. _tan76
() i 577

. sin66
(©) lim &g

Continuity

If flx) is continuous at x = g, then the following conditions must be met:

(i)  fla) must be defined.
(ii) xhgna f(x) must exist.

(iii) lim fx) = fla)
This means that for a function to be continuous at a point: the function must have a

value at that point; the limit of the function must exist at that point; and the function
must have the same value as the limit at that point.

EXAMPLE 22 Is the function f(x) = 2x + 1 continuous at x = 2?

SOLUTION f2)=5
xh_)rr%ff(x) = xh_)n} (2x+1)=5
Xll_)n%+f(x) = x11_1)1%+ 2x+1)=5
Since, li_>n%_ flx) = lirr%+ f(x), the limit of f(x) exists at x = 2 and its value is 5.
X X —>
xh_r)nzf(x) = xh_)mz(Zx +1)
=5
Hence, f(2) = xhinz fx).

Therefore, the function is continuous at x = 2.
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Note

If lim f(x) = o
X—>a

or lim f(ix) = — oo,
X—a

fix) is said to

demonstrate infi-

nite discontinuity

atx =a.

Note

If lim f(x) exists
X—a

but does not

equal f(x), f(x)

is said to dem-

onstrate point

discontinuity at

X =a.

Note

If lim f(x) =
x—at

and lim flx) = y,,

x—a"

wherey, #y,,

then f(x) is said

to exhibit jump

discontinuity at

X =a.

Types of discontinuity

Infinite discontinuity

The graph of f(x) demonstrates infinite disconti-
nuity at x = 0.

Point discontinuity

The graph of f(x) has a hole at x = 1. The
function is discontinuous at x = 1 since f(1) = 0,
while lim f(x) = 2. If f(x) is continuous at x = 1,
the limit and the function values must be equal.

Jump discontinuity

]Jump in the graph

The graph has a break at x = 2. The function is discontinuous at x = 2.

xli)ng+ filx) =4 xli)ngf flx) =2and 4 # 2.

EXAMPLE 23

Using the graph of f(x), identify whether the function f(x) is discontinuous at the
given values of x. If the function is discontinuous, identify the type of discontinuity.

(a) x=—1
(b) x=2
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SOLUTION

(C) x=4

(d) x=0
(a) x = —1, infinite discontinuity since the
graph moves towards infinity at this point. | —oX

(b) x = 2, infinite discontinuity since the
graph moves towards infinity at this
point.

—
e e m e\ o - —————————
w
N

(c) x = 4, point discontinuity since there is a
hole in the graph at x = 4.

(d) x = 0, jump discontinuity since there is a jump in the graph when x = 0.

Removable and non-removable discontinuity

Functions with point discontinuity are said to be removable discontinuous since we
can redefine the function to correspond with the existing limit and remove the dis-
continuity from the function. Jump and infinite discontinuities cannot be removed
and are classified as non-removable.

In the graph in Example 23, x = —1, x = 2 and x = 0 are non-removable disconti-
nuities, while x = 4 is a removable discontinuity.

Can you identify why jump and infinite discontinuties cannot be removed?

EXAMPLE 24

SOLUTION

Remember
4x —x2, x> 2
IX—2,x<2 )

f(x) is not defined
atx=2.

Given the function f(x), where f{x) = 4x — x* for x > 2 and f(x) = 3x — 2 for
x < 2, identify the value(s) of x at which f(x) is discontinuous and describe the type
of discontinuity.

Both parts of the function are polynomials. Therefore, they are continuous over their
domains. Let us see what happens at x = 2.

When f(x) = 4x — x*
f2)=4Q2)—22=8—4=4
flx) =3x—2
fl2y=32)—2=6—-2=4
xli}ng+ flx) =4and xli}n%f flx) =4
Therefore, xh_)rnz flx) =4

But the function is not defined at x = 2. This function is defined for x greater than
2 or less than 2.

Therefore, the function is discontinuous at x = 2.

Since lim2 f(x) exists, f(x) exhibits point discontinuity at x = 2.
x—
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EXAMPLE 25

SOLUTION

EXAMPLE 26

SOLUTION

EXAMPLE 27

SOLUTION

Calculate the value of a that makes f(x) continuous everywhere.
log(2a + 4x),x <3

fix) = log(x + 4a),x=3

Since the log function is continuous everywhere over its domain, we can make the
function continuous by forcing the left-hand and right-hand limits to be equal at x = 3.

Substituting x = 3 and equating gives:
log(2a + 12) = log (3 + 4a)
so2a+12=3+4a

9=2a
a=3

Hence, when a = %, f(x) is continuous everywhere.

Given the function f(x), determine the value(s) of x for which the function is discon-
tinuous and identify the type of discontinuity.

4x + 2, x>1
fO) =gy — g x<1

Since both parts of the function are linear, they are continuous over their respective
domains.

Let us see if the limit exists at x = 1. y
8 .
When f(x) = 4x + 2, /f(x) =4x+2
6 -
fi)y=41)+2=6
4 -

When f(x) = 8x — 4,
f1)=8(1)—4=8—4=4 2]
lin}+ flx) = 6and xli)n}f fix) = 4.

Therefore, lim f(x) does not exist. —2+

x—1 fix) =8x—4
Hence, f(x) is discontinuous at x = 1. -4
The discontinuity is jump discontinuity. -6 Z

(a) Given flx) = ﬁ i %, determine the value(s) of x for which f(x) is discontinuous.

(b) Is the discontinuity removable?

flx) = ;C i ; has an asymptote when x = —2.

Therefore, lim f(x) = eo.
x—=2
Hence, f(x) is discontinuous at x = —2.

Since the discontinuity is an infinite discontinuity, the discontinuity is non-removable.
P(x)
Q)

is

A polynomial function is continuous everywhere while a rational function
continuous for all x, except for which Q(x) = 0.



EXERCISE 12B

In questions 1 to 43, evaluate the following limits.

3
1 lim#&+> 2 lim(4x + 2)°
x>1Xx—3 x—0
3 limV4x+2 4 lim (x> — 2x + 1)°
x—2 x—1
N 3 2 (6x_2)3
5 xl_l)nll(4x +3)*Q2x + 1) 6 xl—I>n0—(3x e
x2—3 . 2x2+5x+2
7 Mim T3 8 lm SN
X —> 7
9 lim X x>+ 32 10 hmm
x—-2x+2 x=5x% — 10x + 25
11 hmx2+x—2 12 lim2x3+x—2x—1
x>-1 x2—1 x>1 3x2—2x—1
13 1 27 =1 14 hmﬂ
1 3x—1 x>3 Xx—3
9 —x . V5 —Vx—5
15 xhingw—.% 16 lim ==y —
17 lim2 % 18 limY3Fx—V5—x
x—>44— x—1 x2—1
. x2 . sin560
Yo P e
sin36 sin26
21 lim =5 22 Jim=3G
. sin36 . sin86
23 lim 56 24 Jim 4
. cos20—1 . 1 —cos26
25 lim =0 26 lim =9
. tan26 . tan66
27 Jim e 28 lim =5
. X . x
29 xhino sin 3x 30 l1_r>no tanx
31 lim 4x4+3x2+x—2 32 lim 3x2
X —> o0 xt—1 x—eox® — ]

33 (a) Given that li_>m2 (3f(x)) = 10, evaluate lil)nz(f(x) + 2x2).

(b) Determine the values of x € R for which the function Zx;z is not
. x°+7x+ 12
continuous.
Vx —6 —1 _ —1 . Vx—6—1
34 (a) Show that T—x  Vice+ 1l Hence, evaluate xhl)n777 —
. tan’0
(b) Evaluate 011210 0

35 Evaluate lim 281X * cosx — 1
x—0 4x

. 2 .
. sin“x + sinx(cosx — 1
36 FEvaluate lim ( ).
x—0 X

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Checklist
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Can you do these?

M Use graphs to determine the continuity or discontinuity of a function.
B Describe the behaviour of a function as x gets close to some fixed number.
B Use simple limit theorems.

B Identify and evaluate one-sided limits.

M Distinguish between the limit of a function and the value of a function.
B Use the limit theorems for specific cases.

Bl Show geometrically that J}1_)1110 % =1.

M Evaluate limits tending to infinity.

B Solve problems using limits.

M Identify the relationship between limits and continuity

B Identify the region over which a function is continuous.

M Identify the points where a function is discontinuous.

M Describe the discontinuity of a function.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o

Review Exercise 12

5.2 _

im4x + x*+ x 2.

— oo 4x3+ 5

7x3 — 2% + x
3x2—1

1  Evaluate xl
2 Find the value of xli%moo

2 _
3  Find lim w
x—>-1 x*+x+2

4 Evaluate the following limits.
34,2 —
(a) lim X +3X + x 14
x—2 x—x—6

(b) lim 12x2 + 23x + 10
%4x2 + 13x + 10

xX— =

5  Find lim 820,
6—0 sin O

6 Find lim <0860 —1
0—0 0

7 Evaluate lim w

x—0 7x2
8 Find lim Y3 = 5%

x>-3 x+1°



10

11
12
13

14

15
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2
(a) Find lim w
s % 2x+9x + 4
2
ind the real values of x tor which the function f(x) = ——=———1s
(b) Find th I val f x fa hich the fi i (x) 2+§+2'
continuous. X X
(a) Evaluate lim M.
0—0 0
etermine the real values of x tor which the function ——=——1s
(b) Determine the real values of x for which the functi |2x_4§|_5'
continuous.
Evaluate lim M.
6—>0
Find the value of lim 202X — 4X
x>0 8in3x — 7x
a ind the real values of x for which the function f(x) = ————1s
(a) Find th I val f x fa hich the fi i (x) 42_161_3'
continuous. X X
(b) Find lim sin4x Hence, evaluate lim sin4x
x>0 X x—0sin5x
Vx+4—3 _ 1 . Vx+4-—3
(a) Show that pa— Wy Y Hence, evaluate )}g)ns P
(b) Evaluate lim 1= cos2x
x—0 X
(c) Find the values of x for which the function W}ﬁ is continuous.
9x2 —3x — 2

Give all the x-values for which the function f(x) = is discontinu-

. . . T 33+ 13x + 4
ous, and classify each instance of discontinuity.
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CHAPTER 13
Differentiation 1

©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00

At the end of this chapter you should be able to:

B Demonstrate the concept of the derivative at x = ¢ as the gradient of the tangent
atx =c¢

B Define the derivative at a point as a limit

B Use the different notations for derivative i.e. f'(x), %, fO(x)

B Differentiate from first principles: f(x) = x", f(x) = k, f(x) = sinx
B Know and use the derivative of x"

B Know and use simple theorems about derivatives of y = ¢f(x), y = f(x) + g(x),
where c is a constant

M Calculate derivatives of
@ polynomials
[ ) trigonometric functions
B Know and use the product rule and quotient rule for differentiation

B Know and use the concept of the derivative as a rate of change
M Differentiate composite functions using the chain rule
M Find the second derivatives of functions

B Differentiation of parametric equations

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o

KEYWORDS/TERMS

scope » gradient « tangent e limit e first principles o
derivative  differentiation « rate of change o
product rule « quotient rule ¢ chain rule «
composite function e differentiation e first
derivative « second derivative
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Differentiation

Differential calculus is an important tool of N
mathematics that has applications in disciplines N

such as economics, engineering, and science. ,
Differential calculus deals with finding the rate at NN X
1 N\

which one variable changes at a particular instant 0 x=c N
with respect to another. In economics for example,
one of the basic rules is that individuals do the
best that they can, given the scarce resources
available to them. If we convert this concept to a
mathematical principle, we look at the problem as
one of constrained optimisation. If a consumer who has a restricted budget has utility
depending on consumption of two goods, we can form a set of equations and set

4

out to maximize utility subject to any constraints. This will make use of a technique
called the method of Lagrange Multipliers, which makes use of differential calculus.

Differential calculus is the study of the properties of the derivative of a function and
differentiation is the process of finding the derivative of a function. The derivative of
a function is the slope or steepness of the function. The steepness of a function at any
point x = c is the gradient of the tangent at that point.

The gradient of a curve changes along the curve. For the curve y = x? the gradient is
given at varying points on the table below.

Ay /
6 /
y::X2 / e
4- / -
/ ///
e
2 e
//
” X
S 2 0 2 a6
7 g _Z/L
P /
e i
// /
// /
s // -6
/
1
X 0 5 1 2 3
P 0 1 1 4 9
y 4
Slope: 2x 0 1 2 4 6

As the values of x increases, the curve gets steeper and the gradient at each point
increases.
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DEFINITION

The derivative of a

function f(x) at any
point x, is the slope
of the tangent line

to the function at x.
Itis defined as:

ooooooooooooooo

The difference quotient

y
. =f
Given the curve y = f(x), let us calculate the Y=t
gradient of the tangent line at point A, where B
x=c IV
|
We take another point, B, on the curve, which is | | X
L 1
closeto A. At B,x = ¢ + h. 0 ¢ c+h

We draw a line through the two points. We can
find the gradient of this line as:

gradient of the line AB = i z : z 11
_fe+ )= f©
(c+h) —c
_fler ) —f©
h

If we make / infinitely small, so small that it is close to 0, then the two points on the
graph will have the same gradient. Using the limit as / tends to 0, we can calculate
the slope or gradient of the tangent at A, using the gradient of the line AB. (The
gradient of the chord AB will approximate to the gradient of the tangent at A.)

This limit is called the difference quotient, and is the definition of the derivative of a
function:

Lo fe 1)~ (0

h—0 h

Existence of a derivative

There are three cases where the derivative of a function does not exist:
(i)

(ii) There is no derivative at a cusp on a function.

There is no derivative at any type of discontinuity.

(iii) There is no derivative at a vertical tangent line.
Notation for derivatives

The first derivative of y = f(x), has four different notations, each of which can be
used at your convenience:

f'x)

d

dx

!

y
f(l)( X)
These all represent the first derivative of the function y = f(x).

The second derivative can be represented by:
f//( x)

&y

dx?

”

y
F(x)

Similar notation can be used for the nth derivatives.



MODULE 3 e CHAPTER 13

EXAMPLE 1

SOLUTION

EXAMPLE 2

SOLUTION

EXAMPLE 3

SOLUTION

Interpretations of derivatives

The derivative is the gradient function at any point x or the gradient of the tangent to
the curve at any point x. A derivative is also a rate of change and it measures how one

variable changes with respect to another. 4 represents the rate of change of y with
respect to x. It is read as ‘d y by d x.

Finding derivatives using first principles

Let f(x) = c where c is a constant. Find f'(x), using first principles.

By first principles we mean ‘use the definition of f'(x)’
—+ —_
By definition, f'(x) = lim M
h—=0 h

Since f(x) = ¢, replacing x by x + h, we get:

flx+h)=c
N e (€ C
Therefore, f'(x) = hllgno( h )
= lim 0
h—0
=0

Therefore, when f(x) = ¢, f'(x) = 0.

Let f(x) = x. Find f'(x), using the definition of derivatives.

fx+h)—fx)
? .
Since f(x) = x, replacing x = x + h, we have:

fix+h)=x+h

Therefore, ' (x) = hlimo %
-

By definition, f'(x) = hlimo
-

= limh

=1

Let f(x) = x% Use first principles to find " (x).

By definition, f'(x) = hninow.

Since f(x) = x*
flx+h) = (x + h)?

= x2 + 2hx + K?
369



(2 + 2hx + h?) — %2

Therefore, f'(x) = hhino A

= Jim |2 B

lim (2x + h)
h—0

=2x+0
= 2x
Therefore, when f(x) = x2, f'(x) = 2x.

EXAMPLE 4 Use the definition of derivative to find f'(x) where f(x) = Vx.

+ —
SOLUTION By definition, f'(x) = hhmo w

Since f(x) = vx, f(x + h) = Vx + h.
Substituting this into the definition, we have:

F1x) = lim Yxth = V&
h—0 h

Now we simplify the fractional expression, using the conjugate of the numerator
(Vx + h + vx) to rationalise the numerator:

VT = e VT v VTR
h “Vrth 1w
_ (x+h) —x
h(Vx + h + vX)
— M
h(Vx+ h +vX)
=1
Vx +h + vx
Theref = 1
erefore, f'(x) = im (\/_+\/_)
= m (Substitute & = 0)
1
T 2Vx
Hence, when f(x) = Vx, f'(x) = L\/_ %x_i

EXAMPLE 5 Use first principles to find the derivative of f(x) = x°.

+ —
SOLUTION By definition, f'(x) = hlimo w

Since f(x) = x°
fx+h)=(x+ h)?
=(x+hx+hx+h=u*+2hx+ h)(x+ h)
= x>+ 3hx* + 3h’x + K
370
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3 2 2 3N 3
Therefore, f'(x) = lim (x> + 3x*h + 3xh* + I°) — x
h—0 h

lim 3x2h + 3h*x + W3
h—0 h

= lim (3x? + 3hx + h?)

h—0
= 3x% + 3x(0) + 02 (Substitute & = 0)
= 342

When f(x) = x2, f'(x) = 3x%

General results

Rule
If f(x) = x", then Function Derivative
f'0) = nx" 1. ¢, where cis a constant 0
(Bring down
the power and X 1
reduce the power 2 .
by 1.)
X3 3X2
1 1 -1
VX = X2 zx 2

EXAMPLE 6 Given that f(x) = x°, find ' (x).

SOLUTION Using f'(x) = nx" ~ 1, when f(x) = x" with n = 5.
fx) =

EXAMPLE 7  Given that f(x) = 7, find f(x).

SOLUTION Using f'(x) = nx" ~ 1, when f(x) = x".
4
flx) =7
4 3
f(x) = %ﬁ_l = %x_7
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EXAMPLE 8

SOLUTION

Try these 13.2

EXAMPLE 9

SOLUTION

EXAMPLE 10

SOLUTION

Given that f(x) = —, find f'(x).

Writing % in index form:

1
fx)=x"2

Using f'(x) = nx" ~ 1, where n = —%, we have:
ey 1 L.y 1 3

@) =—5x2 "=—-5x2

Find the derivatives of these.
(a) f(x)=x0
(b) f() =21
(©) f =%

Let f(x) = ag(x) where a is a constant. Show that f'(x) = ag’(x).

By definition, f'(x) = hliinow
Since f(x) = ag(x)
fx+ h) = ag(x + h)
ag(x + h) — ag(x)
h
_ i 280G+ h) — g(x))
h—0 h
= lim a X lim g+ h) = gbx)
h—0 h—0 h
=g X lim ‘w
h—0 h

Therefore, f'(x) = lim
h—0

gx + h) — g(x)

= ag'(x) Since ¢'(x) = hhino 2

Given that f(x) = 4x, find f'(x).

Using f(x) = ag(x), where a = 4, g(x) = x.
g =1
Therefore, f'(x) =4 X 1 =4
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EXAMPLE 11 Find the derivative of f(x) = 6x°.

SOLUTION f'(x) = 6 X 3x?

= 1842

EXAMPLE 12 Findf'(x) where f(x) = — .

SOLUTION flx) = —% = —4x7°
f'(x) = —4(—5x7%)

Try these 13.3 Find the derivatives of these.
(a) f(x)=10x°
(b) f» =%

(©) f) =3

EXAMPLE 13 Given that f(x) = g(x) + m(x), show that f'(x) = ¢g'(x) + m'(x).

et 1= ft9 "

SOLUTION By definition, f'(x) = hlimo
-

Since f(x) = g(x) + m(x)
flx+ h) =g(x+ h) + m(x + h)

Substituting into [1] gives:
(glx + h) + m(x + h)) — (g(x) + m(x))

)= fim, ;
_ i [EE D) — &) | mlx + h) — mx)
h—0 h h
_ 8N W) L met ) — m(x)
h—0 h h—0 h

=g'(x) + m'(x)

Try these 13.4  Given that f(x) = g(x) — m(x), prove that f'(x) = g'(x) — m'(x).
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EXAMPLE 14

SOLUTION

EXAMPLE 15

SOLUTION

EXAMPLE 16

SOLUTION

EXAMPLE 17

374

&
=

Given that y = 4x? + 3x, find

d
Recall that = simply means ‘differentiate y with respect to x’.

dx
Using the rules for addition:
dy _
P 4(2x) + 3(1)

=8x+3

Differentiate y = vx + %with respect to y.

Writing each term in index form:
1

y=x2+x"1
Using fD(x) = nx" ~ 1:
dy_l l*1 —-1-1
a—i 2 +(_1)x
:l 71— -2
X 2 x
-1 1
2Vx  x2

Differentiate the following with respect to x:

(a)y=6x5+4x3+%
(b) y=x2+ 5 —2vx

(a) Writing each term in index form:
y=6x" + 4x> + 3x7?

Using f((x) = nx" ~ ! where f(x) = x™
% =605~ +4Bx> " H+3(—2x27 1)

=30x* + 12x% — 6x73
(b) y=x+L -2z
Writing each term in index form gives:
y=x2+x_4—2x%
Using f'(x) = nx" ~ ! where f(x) = x™

dy a1 o111
a—Zx + (—4)x 2(§x2 )

Find the gradient function of these.

_4x* +3x—2
(@) y 3

(b) y= (4x +2)(6x — 1)
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SOLUTION (a) First we write each term in index form, using the rules of indices.
y=(4x>+3x —2) X x73
=4x? 34 3x1 73 —2x73
=4x 1 +3x72—2x3
Now we can differentiate each term, using f'(x) = nx" ~ ! where f(x) = x™

Therefore, d =4(—1)(x"2) +3(—2)x3— 2(—3)x ¢

dx
= —4x 2 —6x3+6x4
__4_6_6

2 G5

(b) y=(4x +2)(6x — 1)
We needed to write each term in the form x" before differentiating. We expand
the brackets:
y=24x> —4x + 12x — 2
=24x>+ 8x — 2
Q = 24(2x) + 8(1)

dx
=48x + 8

Try these 13.5  Find the derivatives of these.

3.2
(a) y:%

_4x+ 1
) y="7%

(c) y=(x—2)3x+4)
(d) y=(x+506Bx—1)

First principle and sums and differences
of functions of x

EXAMPLE 18 Given that f(x) = 4x — 6, show using first principles that f'(x) = 4.

+ —
SOLUTION By definition, f'(x) = h]imu

)
-0 h
Since f(x) = 4x — 6,
f(x+h)=4(x+h)—6
=4x+4h—6

Substituting into f’(x), we have:

Fix) = hhino(4x + 4h — 2) — (4x — 6)

_ i dx T 4h— 6 —4x +6
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EXAMPLE 19

SOLUTION

EXAMPLE 20

SOLUTION

Given that f(x) = x> — 2x + 3, show, using first principles, that f'(x) = 2x — 2.

By definition, f'(x) = hhmow

Since f(x) = x> — 2x + 3
fx+h) =x+h?—2kx+h)+3
=x>+2hx+h —2x—2h+3

Substituting into f'(x), we have:

(x> +2hx + h* —2x —2h + 3) — (x> — 2x + 3)

o= ;
— lm Xt 2hx+ W —2x—2h+3 x> +2x—3
h—0 h
_ i 2hx + B = 20
h—0 h

i 22t h=2)
h—0 h

= hliinO(Zx +h—2)
=2x+ (0) — 2
=2x—2

Therefore, f'(x) = 2x — 2.

Given that f(x) = ﬁ, show that f((x) = —m, using the definition of
X
D).

By definition, f((x) = hlimow.

. _ 1
Since f(x) TES
1
+h)=

Y e RS

S S

V2x +2h + 1
Substituting for f(V(x), we have:
1 _ 1

FO(x) = Tim V2x+2h+1  V2x+1 0

h—0 h

Let us work with the numerator of the fractional expression:

_ 1 _ 1
V2x +2h+1 V2x+1

_V2x+ 1 —V2x+2h+1
(V2x + 2h +1)(V2x + 1)

_Vax+1—-Vax+2h+1 V2x+ 1 +V2x+2h+1

C(V2x+ 2h+ D(V2Zx + 1) T+ Vit 2htl g{ic;)u ihztz(a_ blg

(LCMis (V2x + 2h + 1) (V2x + 1))
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_ 2x+1)—2x+2h+1)
(V2x+2h+1)(V2x + 1)(V2x + 1 + V2x +2h + 1)
_ —2h
x+1)V2x+2h+ 1)+ 2x+2h+ 1)(V2x + 1)

Substituting into [1]:

—2h
F(x) = lim x+1)(V2x+2h+ 1)+ 2x+2h + 1)(V2x + 1)
h—0 h
o AT DB T I D+ Gt i DT D)
_ -2
T 2x+ 1) (V2x+20) + 1)+ 2x +20) + 1) (V2x + 1)
_ -2
S 2x+ D(V2x F D)+ 2x+ D(V2x + 1)
_ -2

(Replacing h
by 0)

x4 D@x+ 1)+ Qx4 D)2x + 1)
_ —2

202x + 1)2x + 1)2
- =2

202x + 1)

Try these 13.6  Differentiate the following by using first principles.
(a) fx)=2x—4
(b) fx)=6x>+2x+1

Rate of change

A function is said to have a rate of change at a point g, if the derivative of the func-
tion exists at x = a.

EXAMPLE 21  Find the rate of change of y with respect to x, given that x = 1 and y = 4x*> — x> +

x + 2.
SOLUTION y=4x —x>+x—2

Q=12x2—2x+1

dx

Usex = 1:

dy 5

v 12(1)2 —2(1) + 1
=12—-2+1
=11

The rate of change, given that x = 1, is 11.
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EXERCISE 13A

1

Differentiate the following from first principles.

(@) flx)=4x—7
() fx) =x*+2x+5
(e) f(x)=5x>+2

_ 1
(g fx) = m

(b) fx)=3x+9
(d) f(x) =3x2—4x+1
) f)=x+3x+1

Differentiate the following with respect to x.

(@) 4x* +5x—6

(b) x> —3x*+2

(©) X5+ 78+ 2x+ 4 (d) 4x+3
(e) 6x2—% (f) %+%—%
_ 1
(g) 4x5+ 3\/73 21 (h) 6x+\/7 4
() 2x2 — 32+ 22 () 6x VX + 5Vx
2% — 3 3
(k) 6x2vx — 2 M 4+3

Differentiate the following with respect to x.

2 33,2
(a) X '; 3x (b) 4x j:(' + 2
X+ 6x 6x + 1
(c) 2 (d) VX
3xvx + 2 7x* — 4x + 5
© =% O
For each of the following functions find ay

(@ y=+2)(7x—1)
(0 y={x—1Dkx+2)

(b) y=(Bx+4)(2x +7)
(d) y=(6x+2)(vx + 3)

(8) y=(3\/f+4x%)x (h) y:3x\/;5

Find the gradients of the tangents to the curves at the given points.
(@) y=3x—4x*+2at(1,1)

(b) y=4x+ 3x%at(1,1)

() y=Q2x+ 1)(x—2)at(2,0)

(d) y=vx(x+4)atx =16

Find the coordinates of the points on the curve y = 4x* + x — 2 at which the
gradient is 17.

Find the coordinates of the points on the curve y = 4x> — 3x2 + 2x + 1 at
which the gradient is 8.

The gradient of the tangent to the curve y = ax® + bx at (1, 2) is 4. Find the
values of a and b.

Given that the gradient of the curve y = % + bx at the point (2, —13) is —8.
Find the value of a and the value of b.
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oooooooooooooooooooooo

EXAMPLE 22

SOLUTION

EXAMPLE 23

SOLUTION

10 The tangent to the curve y = ‘; + gx at (3, 13) is parallel to the line y = 13—1x + 4.
Calculate the value of p and of q.

11 The equation of a curveis y = 4x + %
(a) Find the gradient of the curve when x = 1.

(b) Find the coordinates of the points where the gradient is 0.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Chain rule

The chain rule is used to differentiate composite functions. This is the rule:
If y = gf(x) and u = f(x), then:
dy_dy du

dx du dx

When using the chain rule, we are differentiating a composite function. With this
composite function we have one function inside of the other. The rule above is read
as ‘the differential of the function outside multiplied by the differential of the func-
tion inside’ That is:

If y = g(f(x)), then % =g'(f(x)) X f'(x). (Recall that f(x) is inside)

Given that y = (4x + 3)8, find —=.

Letu =4x + 3,y = ub.
dy _dy, du

Since == = —= X =2, we have:

dx ~du” dx
Y

— 87 and 94 —
au 8uanddx 4

d
Therefore, a}/ =8u’ X 4

= 32u’
Replacing u = 4x + 3 gives:
dy

= 7
4 = 3204x +3)

outside
Short cut: /
y=(4x+3)°
inside
dy 7 7
a=8(4x+3) X 4 = 32(4x + 3)

Bring down the power; reduce the power by 1; and multiply by the differential of the
function inside.

. . . 1
Find the rate of change of y with respect to x, given that y = .
geory p g Y Vix—3
V= L
V7x — 3 1
=y=(Tx—3)2
Letu=7x—3
1
=Sy=u 2
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EXAMPLE 24

SOLUTION

EXAMPLE 25

SOLUTION

Substituting u=7x — 3 gives:

iyc Zi7x—3)"1
Short cut:
1
=(7x —3) 2
dy 1 3 .
o 2 (7x —3)2X7 (Bring down the power, reduce the power by 1 and
7 _ multiply by the differential of the inside of the brackets.)
=3 (7x — 3) 2
. . . _ 4
Find the gradient function of y =50
The gradient of the function is % . Writing in index form:
y=4(1—5x)"°
Letu =1 — 5x.
=y=4u S
d)/ _ —7 du _
Q- 24y~ and p 5
Q = Q x au du
de  du” dx
= —24u"’ X =5
= 120u~’
Replacing u = 1 — 5x gives:
Y 120(1 — 5x)77
du
_ 120
(1 — 5x)7
Short cut:
y=4(1—5x)"
Yy (—6) X (1 — 5x)77 X (=5)
dx
_ 120
(1 — 5x)7

2
Find the gradient of the curve y = (4x + 1)3, when x = 2.

We need to find Q when x = 2.

dx
Letu =4x+ 1.
2
=y=us
du _ dy_2,
dx  dand g = 5u
dy _dy du
Since == = d—><a

dx

1
3
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Substituting u = 4x + 1 gives:

2 =8+ )73

dy
Substituting x = 2, we havea = 8(4(2) +1)3 3 = 1.282

You can try the shortcut on this example.

EXAMPLE 26  Find the value ofﬂ atx = 1, when y = (4 — 5x)'°.

dx
SOLUTION Letu =4 — 5x.
=y=ulf
dy _ 9 du _
- 10u anda = -5
dy _dy  du
S1ncea = a X e
= 10u’ X (—5)
= —50u°
Replacing u = 4 — 5x gives:
d
2~ —50(4 — 5x)°
dx d
Whenx =1, ay = —50(4 — 5)°
= —50(—1)°
=50
. 5 1 dy
EXAMPLE 27 Given that y = (3x* + 2x + 1)2, ﬁnda.
SOLUTION Letu=3x>+2x+1
1
=y=u2
dy _ du _
au 2u 2anddx 6x + 2
Y _Ydu
S1ncedx TR
= L7 % (6x + 2)
Substituting u=3x>+2x+1 gives:
9 (6x +2)(3x% + 2x + 1) 7
dx 2

=0Bx+1)Bx*+2x+ 1) 2

Try these 13.7  (a) Find the derivative of these.
(i) y=(6x+2)
(i) y=(3— 203
(b) Find the gradient of the curve y = ﬁ atx = 6.
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EXAMPLE 28

SOLUTION

EXAMPLE 29

SOLUTION

Product rule

— . dy _ dv, du
If y = uv, where u and v are two functions of x, then I Yy + Vi

This is known as the product rule for differentiation. We use this rule to differentiate
functions that are multiplied by each other.

d
Given that y = (x + 2)%%, find ay
Since y consists of two functions of x multiplied by each other, we use the product
rule with:

u=(x+2>%4v=x>

To differentiate (x + 2)2, we use the chain rule:
d 2 —

dx[(x +2)?]=2(x+2) X (1)

=2(x+2)

du _ dv _ 3,2
We need dx 2(x + 2)and g 3x

Lo dy dy du . .
zubstltutmg into i ua + va gives:
Y _

5, = (@ + 2762 + 220 + 2))

= x2(x + 2)(3(x + 2) + 2x)
=x*(x + 2)(5x + 6)

Find the differential of y = 4x(x? + 2)°.

Using the product rule with:

u=4dx,v=(x*+2)°
du _

dx
To differentiate v = (x? + 2)°, use the chain rule.

Letw = x2 + 2.

=Sy=w

dv _ 5 aangdw —

aw 5w*and dc 2x

Therefore, % = :11—:; C}EW = 5wt X 2x = 10xw?

Substituting w = x? + 2 gives:

dv _ 2 4 o)
P 10x(x* + 2)

The short cut for the chain rule comes in very useful in this example:

d 12 51 — 5(x2 4
P [(x* + 2)°] = 5(x* + 2)* (2x)

= 10x(x? + 2)*
Bring down the power. Reduce the power by 1. Multiply by the differential of the
function inside.
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dy dv du

iubstituting into I Ydx + Vix gives:
a§=4mm@u¥+m4+u%+n%®
= 4(x% 4+ 2)*(10x% + x2 + 2) (Factorising)

=4(x% + 2)*¥(11x* + 2)

EXAMPLE 30
SOLUTION

Short cut

1
v = (2x + 5)2

dv _ 1 -1
a—z(ZX-l-S) 2

X 2
1
= (2x + 5)2

1
V2x + 5

Find the gradient of curve y = (x + 1)V2x + 5 at the point x = 2.

Letu=x+1,v=V2x+5

du _
dx 1
y= (2x + 5)2and let w = 2x + 5.

1
=y =w2
dv _ 1 -1 dw
—_ = — 2 — =
dw 2" a2

1 1

dv _dv o dw_ 1 39,7

Substituting w = 2x + 5 gives:
dv _ -1
=—==2x+5) 2

& & _ 4y, d

. . v _ dv u . .
Substituting into I Yy + vy, Bives:
dy _1 1
= (x4 1D2x+5) "2+ 2x + 5)2 (1)

dx
Substituting x = 2 gives:

Y s @t

dx
:i+\/§
9
-3
=3+3
=1+3
- d
when x 2,%24.

Try these 13.8

Differentiate the following functions with respect to x.

(a) y=x*(3x+2)
(b) y=(4x+ 1)(V6x — 2)

(c) y= (4 +6x+ 1)°(6x + 2)

Quotient rule

d
Ify = %, where u and v are two functions of x, then - dx

dx v?

This is the quotient rule for differentiation. We use this rule to differentiate functions

of x that are divided by each other.
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EXAMPLE 31

SOLUTION

EXAMPLE 32

SOLUTION

EXAMPLE 33

SOLUTION

Given that f(x) = 221 find f0 ().

2x +

Using the quotient rule with u = x + 1, v = 2x + 3 gives:
du _ 1 dv _ 2

, o =

dx dx

f(x) = % _dx  dx
_ 2x +3)(1) — (x + 1)(2)
(2x + 3)?

_2x+3—2x—2
(2x + 3)?

X
X2

Find the gradient of the curve y = T the point x = 1.

_ X
YT
Using the quotient rule with u = x and v = x* + 1 gives:

_ (P + D) — (0)2x)
(x? + 1)?
_ X241 —2x
(x*+1)2
_ 1—=x
(x* +1)2
dy  1-12

Whenx= l,a—m

d
.. whenx = 1,—y =0.

dx

4x + 5

Find the gradient function of y = VY
X

Letu = 4x + 5,v = 3x% + 2.

%: Q:
A 4’dx 6x

. . dy dx -
Quotient rule gives == = de
_ (3x% 4+ 2)4 — (4x + 5)(6x)

(3x% + 2)?
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12x% + 8 — 24x% — 30x
(3x% + 2)?

—12x*> — 30x + 8
(3x% + 2)?

EXAMPLE 34  Find the value of a for whichy =2 _ wherey= g;c i %

dx  (3x + 2)?

SOLUTION Using the quotient rule with u = 2x + 1 and v = 3x + 2 gives:

du _, dv _
dx 2’dx

. d}’ T dx N .
Substltutlng into a = T gives:
dy _ (Bx+2)(2) — 2x + 1)(3)

dx (3x + 2)?
_6x+4—-—6x—3
(3x + 2)?
-1
(3x + 2)?

Y a

Comparing with & Gri2?

a =

Try these 13.9  (a) Find the derivatives of these.

3x2— 2
x>+ 4

(i) y =

x+1
Vx — 2

(b) Find the gradient of the curve y =

EXAMPLE 35  Given that f(x) = sinx, show from first principles that f((x) = cosx.

+ —_
SOLUTION By definition fM(x) = hhmow
-
Since f(x) = sinx
f(x + h) =sin(x + h)
(1) _ 1 sin(x + h) — sinx
Therefore f'!(x) hhi)no ’
_ 1:., sinxcosh + cosxsinh — sinx L _
lim (Using sin(x + h)
h—>0 h

sinx cosh + cosx sinh)

sinxcosh — sinx + cosxsinh

h—0 h
— lim [$inX cosh — sinx | cosxsinh
h—0 h h
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EXAMPLE 36

SOLUTION

EXAMPLE 37

SOLUTION

386

— |im Sinxcosh —sinx | . cosxsinh

h—0 h h—0 h
— sinx(cosh — 1) + lim cosx(sinh)
h—0 h h—0 h
= sinx lim <Y~ 2 (h—1) + cosx lim sinh
h—0 h hso h

Recall that lim cosh— 1 _ 0 and lim sinh _ 1.
h—0 h h—0 h

Therefore, fV(x) = (sinx)(0) + (cosx)(1)
= cosx

Therefore, when f(x) = sinx, f(x) = cosx.

Prove that when y = cosx, == = —sinx.

d
Given that y = tanx, show that & secx.

dx

. _ sinx

Since tanx = Cosx
_ sinx
COSX

Using the quotient rule with # = sinx and v = cosx gives:

Q = Q = —gqj
o~ SOS% gy smxd
IR L4

Substituting into d—i = % gives:
Q _ (cosx)(cosx) — (sinx)(—sinx)
dx (cosx)?

_ cos’x + sin’x

cos?x
= 12 (Since cos?x + sin?x = 1)
cos?x
= sec’x

d
Given that y = secx, show that Y secxtanx.

dx

Since y = secx, y = ﬁ.
y = (cosx)~!

Using the chain rule, u = cosxand y = u™ L.

du_ b
& sinx, 7 u
_d du
dx du  dx
= —y %X —sinx
_ sinx
2
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Substituting u = cosx gives:

Q _ sinx
dx  cos?x
_ sinx 1

T COSX 7t CcoSXx
= tanxsecx

d
Try these 13.11 (a) Given that y = cotx, show that d—i = —cosecx.

d
(b) Given that y = cosecx, show that & =~ _cosecx cotx.

dx

Standard derivatives of
trigonometric functions

Function Derivative

sinx CcOoSX

cosx —sinx

tanx sec?x

secx secxtanx

cosecx —cosecxcotx

cotx —cosec?x

sin(ax + b) acos (ax + b), where a and b are constants

cos(ax + b) —asin (ax + b), where a and b are constants

tan(ax + b) asec?(ax + b), where a and b are constants

sec(ax + b) asec(ax + b)tan (ax + b), where a and b are constants
cosec(ax + b) | —acosec(ax + b)cot(ax + b), where a and b are constants
cot(ax + b) —acosec? (ax + b), where a and b are constants

EXAMPLE 38  Find the derivative of y = sin(Zx + 7—7).

4
SOLUTION This function is of the form sin (ax + b) wherea = 2 and b = 717
dy _ T
Therefore, F 2cos(2x + Z)

We can also use the chain rule.

Letu=2x+ T

4
=y =sinu q q
' - Y_Ydu

Using the chain rule, I du X i
=cosu X 2
= cos(2x + 727) X2 Replacing u = 2x + 727)
_ T
= 2cos(2x + Z)
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EXAMPLE 39

SOLUTION

EXAMPLE 40

SOLUTION

EXAMPLE 41

SOLUTION

Remember

x2tanxis the
product of two
functions of x.

EXAMPLE 42

SOLUTION

388

d
Given that y = cos(4x - %), find Ey

Letu = 4x —

e

=y =cosu q

Using the chain rule and du _ 4 2nd 2 = —sinu gives:
dx du

dy _dr, du

dx du dx
= —sinu X 4

= —4sinu

Find the gradient function of y = sin (4x? + 2).

This is a function of a function, so we use the chain rule.
Let u = 4x% + 2.

=y =sinu
du _ & _
g 8x and au cosu
dx du  dx

= cosu X 8x

=8xcosu  (Replacing u = 4x* + 2)
= 8x cos (4x% + 2)

Hence, the gradient function is 8x cos (4x? + 2)

Given that f(x) = x*tanx, find fV(x).

Use the product rule with u = x* and v = tanx.

du _ 2xandg = sec

dx dx

2x

Substituting into f((x) = u% + v% gives:

FO(x) = x?sec?x + 2xtanx

Find the gradient of curve y = ——=—
cos(x - Z)

Using the quotient rule with u = x + 2 and v = cos(x - 717) gives:

% =1 and% = —sin(x - 717)

Lo dy "% B ”% :
Substituting into i = - 2 gives:
dy cos(x—%) —(x+ 2)(—sin(x—%))
o (coslx =)



MODULE 3 e CHAPTER 13

EXAMPLE 43

SOLUTION

EXAMPLE 44

SOLUTION

EXAMPLE 45

SOLUTION

B cos(x - 717) + (x + 2)sin(x - ?ZT)
cosz(x — 717)

Substituting x = % gives:

dy _(cos( =9+ (T +2)sin(T—F)

4 4 4 4
dx 2T _ T
cos’ (=7
_ cos0
cos20
=1

The equation of a curve is given by y = 4x sin 2x. Find the gradient of the curve at x = a.

Using the product rule with u = 4x and v = sin 2x gives:

du _ dv _
d 4anddx 2 cos2x
Substituting into
dy _ dv . du
a = ua + Va

= 4x X (2 cos2x) + (sin2x) X 4

= 8xcos2x + 4 sin2x

dy )
When x = a,-%= = 8acos2a + 4 sin2a.

dx

If f(x) = cosx tan2x, find f(V)(x) and evaluatef(l)(g).

Using the product rule with u = cosx and v = tan2x gives:

Q = —gj Q = 2
P sinx and e 2 sec*2x
Substituting into f()(x) = u% + v% gives:

fW(x) = cosx X 2 sec?2x + tan2x X —sinx

= 2 cosx sec?2x — sinx tan 2x
When x = g,

fO[T)=2cosT x W — sin () tan2( 7
=0-0

Differentiate this with respect to x: y = sin’x.

y = (sinx)?
Let u = sinxand y = u>.
d
% = cosx,d—i = 3u?
dx du dx
= 3u’cosx
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Try these 13.12

EXAMPLE 46

SOLUTION

Short cut

y = tan*x

dy 5

ax 4(tan’x) X
sec2x

= 4 tan3x sec?x

EXAMPLE 47

SOLUTION

Short cut

v = cos? 3x
_V =
dx 2 (cos3x) X

(—3sin2x)
= —65in3x cos3x
If you use the
shortcut when
applying the
chain rule, you will
finish much faster.
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Substituting u = sinx gives:

dy

dx

3 sin®x cosx

Differentiate the following with respect to x.

(a) y = sin4x

(b) y = cos(4x + =)

(c) y= xzcos(?,x -

(d) y=xcotx

(e) y=x?secx

Given that y = tanx, find

Letu = tanxand y = u?.

dy _ 3 du _ 2
- 4u anda— sec’x
_d du
dx du’ dx

= 4u3 X sec®x

= 4(tanx)*sec’x

= 4tan3xsec’x

Find the gradient of the tangent to the curve y = x

2

dy
a.

Let u = x3, v = cos?3x and w = cos 3x.

3

cos? 3x.

First, we use the chain rule to find the differential of cos?3x:

=y = n?
du _ 5.2

P 3x

Q:

1 2w
dw _ 5
A 3sin3x
dv _ dv o dw
dx dw dx
dv _ —3 i
P 2w X —3sin3x

—6wsin 3x

—6 cos3x sin3x

Using the product rule:
dy _ dv  du
a = ua + Va

(Since w = cos 3x)
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ooooooooooooooooooooooooooo

= x3 X —6 cos3xsin3x + cos?3x X 3x2
= —6x3cos3xsin3x + 3x%cos?3x

= 3x?cos3x(—2xsin3x + cos3x)

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 13B

1

Differentiate the following functions with respect to x.

(a) y = (6x + 1)° (b) y=(4 —3x)°
_ _ 4
() = @Dr=ve+1
(e) y = (6x* + 3x + 1)* (f) y = (6x* + 5x)4

@ 7= (h) y = (4v% + 5)°

Q) y = (722 + 325 () y = (& — 5% + 2)i

Differentiate the following functions with respect to t.

(a) 6= (3t + 1)(4t + 2)® (b) 6=17£(7t+1)°

(c) =412t —1 (d) =062V + 2t

(e) 6= (52 +2)(7 — 3t)* (f) 0=£@AA + 32+ 1)i

1 1 3
0= (702 + 3t)| ———= h) 6= Vi(t+5)4

(@) 0=+ 30| ——| ( (t+5)

Find the rate of change of y with respect to x for each of the following.
_4x+2 _3x—=5

@y=5= ®)y =62
_x+1 _3x+2

© y=35+5 @Dy=v&—1
_x—2x+1 _ x*=2

©r="gss O r=TmeT
_ X h) y= X+ 2x

® 7= vy by ="2=7

i = M ; _7x+3

(1) )/ (zx _ 1)3 (J) y 5x _ 1

Find the gradient of the tangents to the curves at the given points.

(@) y=(2x—1)%at(1,1) (b) y=x*(x +1)*at (0,0)

(@ y=%FLat(2,5) (d) y = (& — 5x + 2)*at (0, 16)
Differentiate the following with respect to x.

(a) sindx (b) sin6x

(c) cos3x (d) cos7x

(e) cos9x (f) sin(3x + 717)

(¢) sin(% — 4x) (h) sin(%“ + 4x)

(i) sin(8x + 2) (j) cos(3x — )

(k) cos(5 — 7x) (1) cos(2m — 9x)
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10

Find the derivatives of the following functions.

(a) tan2x
(c) tan(2x + m)
(e) secdx
(g) cot(6x — m)

(i) cosec(x - %)

(b) tan5x
(d) tan(3x - 777)
(f) sec(4x + 3)

(h) cot(%x - 717)

(j) cosec(7x — 4)

Find the rate of change of each of the following.

(a) y = sinx?
(c) 6= cos(4x* + m)

(e) v=8tan(3x> — 4x + 5)

_ 1
(g))’—m

(i) x=\F =5

(k) y=5 cos(6x2 + %)

(b) 6=sin(#* + 3)
(d) y =tan(7x° — 8)
(f) y= (7x+ 5)1°

- 8
0y =TT e

(j) y = tan(5x + 1)°
() y=sec(x®+5)

Find the gradient function for each of the following.

(a) y = xsinx

(c) y = x*tanx

(e) y = (4x + 1)sin4x
(g) y =sin2xtan2x

(i) y= (%x3 — Zx) secx

(k) y= (% —3x+ 2)cosecx

(b) y = xcosx
(d) y = x*tan(3x + 2)
(f) y = xtanx?
(h) y = (3x* + 1)cosx
§) y = (% + 2x)cot 4x

Find & for the following functions of x.

dx
2
P
_ sinx
© y= cosx + 2
_ XCOSX
©y=27%5
_ x t+sinx
®) y= x + cosx
2
() y=22+2

(b)y= x3+4

X —6x+1
@ y-nst]
M) y =2
(h) y= COZ )(Cix++22)
0 y= xzxj 1

Find the first derivative of the following functions.

(a) y = cos®x
(c) y = tan*x

(e) y=sec®(x +2)

(b) y=sin’x
(d) y = x?cosx

(f) y = tan®’(3x + 2)
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(g) y= (2x + 1) cot’x (h) y = (4x* — x)sin®(x + 2)

X

_x N
cosec?x + 1 (j) y = tan*(3x)

(i) y=

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Higher derivatives

The second derivative is the derivative of the first derivative. The notation used for
2

d
the second derivative is f"(x), d_x); or f@)(x).
Let f(x) = 6x* + 4x — 2. Then the first derivative is f'(x) = 12x + 4.

Differentiating again we get f”(x) = 12, which is the second derivative of f(x) with

respect to x. We can also find the third derivative in the same way and the notation
3

used is f"(x), %,y”’ or f3(x).

EXAMPLE 48 Find the second derivative of the function f(x) = 4x> — 3x? + 2x + 5.

SOLUTION y=4x> —3x>+2x+5

Differentiating y with respect to x gives:
1o —6x+2
dx

d
Differentiating Ey with respect to x gives:

EXAMPLE 49 Given that y= x?cosx, find —y.

SOLUTION y = x*cosx

Using the product rule and u = x> and v = cosx gives:

du _ 2x andg = —sinx

" Yay a4
. . . _ v u .
(Sil;bstltutlng into dx u ] + v I’ we get:

o x2 (—sinx) + (cosx) X (2x)
= —x%sinx + 2xcosx

Differentiating again with respect to x, using the product rule on each term:

For —x%sinx, let u = —x% and v = sinx.
du _ _ dv _
P 2x anddx CcoSXx
d(=«*sinx) _ dy , du
- 000 7 = =2 + —
dx “de T Vdx
= —x%cosx + (sinx) X (—2x)

= —x2cosx — 2xsinx

For 2xcosx, let u = 2x and v = cosx.
du _ dv _

pia 2 anda = —sinx
d(xcosx) _ dv . du
I Y Vdx
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EXAMPLE 50

SOLUTION

EXAMPLE 51

SOLUTION

394

= 2x X (—sinx) + (cosx) X (2)

= —2xsinx + 2 cosx
2

Therefore, dx); (—x%cosx — 2xsinx) + (—2xsinx + 2 cosx)
= —x%cosx — 4xsinx + 2 cosx
d
Given that y = + T show that x>—= &y + (2x — 4);)&)/ =
d
Using the quotient rule to find a}” letu =xandv=x+ 2:
vy gpgdu
dx dx
du dv
dy _ Vax T M
dx V2
_ (e F2) X1 —xX1
(x +2)?
_xt2—x
(x +2)?
_ 2
(x + 2)?
Using the chain rule, let w = x + 2.
dy
d%y _
L
d?y B
= @ = —4(x + 2) 3
_ 4
(x +2)°
Hence, x* e (Multiplying both sides by x?)
T w2 Y

Now, (2x — 4)’)% = (2x N x%ﬁcZ)((x f 2)2)

_(2x(x +2) — 4x 2
(x+2) ((x + 2)2)
_ dx(x +2) — 8
(x+2)3
_ 4x?
(x + 2)
,d%y CanY L —ax? 4 _
Therefore, x>—2 + (2x 4y) ( T o) + x+2) 0.

2

Find the value of 4y at the point x =

T .
> Where y = xsinx.
dx? ’

2

Using the product rule, u = x and v = sinx, gives:

du _ dv _
e =1and 1 CcosXx
dy _ dv du
W Y + Vix

= xcosx + sinx
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Using the product rule to differentiate x cosx, and let u = x and v = cosx, gives:
dv

a— la da— —sinx
&y _ dv, du
dx? e T Vdx
=x X —sinx + cosx X 1 + cosx
= —xsinx+2cosx
When, x = 2,
dZy T
T Ui
@ 2><sm2+2><cosi
i

_ _T
2><1+2><0— )

Try these 13.13 (a) Find jxyz where y = (2x + 1) cosx%.

&2
(b) Given thaty = x + 2 , find a); when x = 0.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 13C

2
In questions 1 to 10, find — for each of these functions.

a2
1 =Vix + 7 2 y=Q2x+3)0
1 .
- = (x+
3y Gr—3) 4 y (3; 2)sinx
— 2 _xt2
5 y=cosx 6 =T
7  y=sin(2x* +5x + 1) 8 y=x%cos’x
9  y=cos3x + sindx 10 y= x—42
2 2
11 Ify= 3Lx82x, prove thatx% + % + 4xy = 0.
oo dy dy /o2
12 Find, in terms of x, bothaand@wheny= X2+ 1.
2d2y
13 Ify=2x*+ prove that e 2y.
_ 3d% (dy)2 _
14 Ify= dx2—2(x—1)a =0.
: _ : dy
15 Given that y = cosx + sinx, show that@ +y=0.
%y
16 Ify = x*cos’x, find 2 when x = %T
2
17 leenthaty—i + 1 , fin d%whenx— 0.
dzy dy _ oy 2x
18 Prove that (x + 4)— +2-= i =0,ify = e
1 d
19 Ify = =1 show that@ 1s—when x=2.
42
-1 14y dy —
= + x2)=2 + 3x= + y = 0.
20 Ify gy prove that (1 + x )dx2 3xd.x y=0

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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SUMMARY

Differentiation

e~

Notation for differentiation

Definition:
£00 = lim fix + h) — fix)
h—0 h

p

dx

a

d%(ax“) = anx""', where a is a constant

pe

%((ax + b)" = an(ax+ b)", where a is a constant

«

A (ginx) =
dX(smx) co

wn

X

«

d - i
dx(cosx) sin x

qn

(tan x) = sec2x

d
dx

@

d
—(secx) = secxtanx
dx 58X

pe

%( (cosec x) = —cosec x cot x

a@

d 2
—(cot x) = —cosec? x
dx( )

Checklist

~

Standard results

Chain rule:

d — 7 7
&(fg(x)) =f(g'x) X g'(x)

Product rule:
y =uv, where u and v are functions of x
ﬂ =y ﬂ +v ﬂ

= dx dx dx

Quotient rule:
y= %, where u and v are functions of x

dx v2

©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00

Can you do these?

Il Demonstrate the concept of the derivative at x = ¢ as the gradient of the tangent

atx = c.

B Define the derivative at a point as a limit.

B Use the different notations for derivative i.e. f'(x), %, FO(x).

B Differentiate from first principles: f(x) = x", f(x) = k, f(x) = sinx.
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B Use the derivative of x".

B Calculate derivatives of polynomials.

B Calculate derivatives of trigonometric functions.

B Use the product rule and quotient rule for differentiation.
B Differentiate composite functions using the chain rule.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Review Exercise 13

In questions 1 to 6, differentiate each function from first principles.

1 f(x)=x+% 2 f(x)—2x—5x+2
— 3 _
3 fx)=x—2x+1 4 f(x)= 2x+3
5  f(x) =sin2x 6  f(x) = cos2x
d%y
7 Ify= + %, find @ in its simplest form.
42
8  Given that y = A cos5x + Bsin 5x, show that dx)z/ + 25y = 0.
9  Differentiate with respect to x.

(a) x?sin5x
(b) cos*4x

1 — 2x\?
© (53
10 Find the first derivative of the following.
(a) y = (2x + )tan (4x + 5) (b) y = sin(2x + 3) + xtan4x

= sin®(x2 — 1+ cos26
(c) y=sin’(x* + 4x + 2) (d) y sin20
(e) t=tan’0sin%0 (f) r = sin®x + 2cos’x

11 Find the gradient of the curve y = x*>cos (2x* + ) at x = 0.

12 Given that y = V4x — 3, show that &y __ %

vy
. dy 32
13 Giventhaty = —%*— show that = = —
YTVt 32 dx (2 + 32y
dy
cosx _m
14 Ify=1=5— show that 72 =2 + V2 when x = 7.
15 Ify= Lzﬁfx show that% =2(9 + 5V3) when x = %T
_ X
16 y= 1 —5x
(a) Find % 5
(b) Show that 2 <2 = 2.
dx d? 10
(c¢) Hence, show that x? dx}; x)’ .
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17

18
19

20

21

(a) Find %

(b) Show that (x + 1) % = —2)%

d%y
(c) Hence, show that (x + 1)? w2
— x? 39 — A2
Ify g show that x i 4y°.
y = cos’xsinx
(a) Find % ;
(b) Show that ay = —%, when x = %

Differentiate the following with respect to t.
(a) 6=sinV2t— 7

(b) 6=1tV4r2 —3t+2

_ 1+ cos2t
© 0=1—Gnas

&y dy
Ify=v1+ cosx,showthatZy@+ 214 +y2 =1

dx

+2x+2y+1)
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CHAPTER 14
Applications of Differentiation

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

At the end of this chapter you should be able to:

B Find the gradient of the tangent to a curve

B Find the gradient of the normal to a curve

B Find the equation of a tangent

B Find the equation of a normal

B Find the region for which a function is increasing or decreasing
B Identify stationary points

M Identify maximum points, minimum points, points of inflexion

B Use the first derivative to classify maximum points, minimum points and
points of inflexion

B Use the second derivative test to identify maximum, minimum points
B Solve practical problems involving maximum and minimum

B Sketch the graphs of polynominals

B Solve graphically flx) = g(x), flx) < g(x), flx) = g(x)

B Sketch the graphs of y = secx, y = cosecx and y = cotx

B Sketch the graphs of y = sinkx, y = coskx and y = tankx, k € Q

B Identify the periodicity, symmetry and amplitude of y = sinkx, y = coskx and
y = tankx

B Solve rate of change problems.

B Identify the properties of a curve and sketch the curve

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

KEYWORDS/TERMS

differentiation « gradient « tangent « normal e
increasing « decreasing e stationary points e
maximum  minimum e points of inflexion o
rate of change

399



400

EXAMPLE 1

SOLUTION

EXAMPLE 2

SOLUTION

EXAMPLE 3

SOLUTION

Tangents and normals

Consider the function y = f(x) with a point (x, y) lying on the graph of the function.
The tangent line to the function at (x, y) is a line that touches the curve at one point.

Both the graph of y = f(x) and the tangent line pass through this point. The gradient
of the tangent line and the gradient of the N y = f(x)

function have the same value at this point. Tangent at P

The gradient of the tangent at

. P(x,y)
x = a is the value of—y when x = a. Y Normal at P

dx

The normal is perpendicular to the

tangent. If the gradient of the tangent 0
Ay
is 1o

is — dly since the product of the gradients

then the gradient of the normal

of the perpendicular lines is —1.

Find the gradient of the tangent to the curve y = x* — 3x + 2 at the point x = 0.

d
The gradient of the tangent is d—i at this point.

y=x*—3x+2

Differentiating with respect to x gives:

dy _
E—Zx 3d
When x = 0,—y= —3.

dx
Therefore, the gradient of the tangent at x = 0 is — 3.

Find the gradient of the tangent to the curve y = V4x + 1 at the point x = 2.

1
Since y = V4x + 1 = (4x + 1)2, we use the chain rule.

Letu = 4x + 1.
1
=y=u2
dx du dx
_1-1
= U 2X 4 1
=204x+1)72
Substituting x = 2 gives:
dy -1 _1 5
T =M@+ DI=2972=5

Find the gradient of the normal to the curve y = 4x* — 3x*> + x + 1 at the point x = 1.

d
We find the gradient of the tangent first, that is ay, when x = 1.
y=4x> —3x2 +x + 1



MODULE 3 e CHAPTER 14

EXAMPLE 4

SOLUTION

EXAMPLE 5

SOLUTION

Y-t 1
I 12 X
When x = 1,
dy )
o 12(1)* —6(1) + 1
=7
Since the gradient of the tangent = 7,
. _ 1
gradient of the normal = aradient of tangent
_1
7

Given that y = 4x° — %, find the gradient of the tangent to the curve at x = 2.
x

d
We need to find ay when x = 2.
Since y = 4x° — %
y =4x> — 6x2
d
Now, d_i}c = 12x* — 6(—2)x 3
=122 + 12
x
dy 2, 12
When x = Z,a =12(2)* + >3
= 12
=48 + 38
— 40l
= 492

Equations of tangents and normals

Let m be the gradient of the tangent at the point (x,, y,). Using the equation of a
straight line, we have the equation of the tangent is (y — y,) = m(x — x,).

Since the tangent and normal are perpendicular to each other, the gradient of the

normal is —% and the equation of the normalisy — y, = — %(x - x,)

For the curve y = 2x? — 3x + 1, find the equation of the tangent to the curve and the
equation of the normal to the curve at the point x = 2.

Find the gradient of the tangent:
y=2x>—3x+1

%:4)6—3
When x = 2,
Y40 -3
dx
=8—3
=5
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EXAMPLE 6

SOLUTION

To find the equation of the tangent, we need the value of y when x = 2.

x=2
:y=2(2)2—3(2)+1
=8—-—6+1
=3

We have m = 2 and the point (2, 3).

Hence, the equation of the tangent is:
y—3=5kx—2)

y—3=5x—10

y=5x—7

Now we find the equation of the normal.
The gradient of the tangent at x = 2 is 5.
Therefore, the gradient of the normal = —%, since 5 X —% =—1.

Hence, the equation of the normal at (2, 3) is:

y—3=—%(x—2)

__1 .2
y= ?x+5+3
-1 .17
y= 5x+5

For the curve y = x*cosx, find the equation of the tangent and the equation of the

normal to the curve when x = %T

We find the gradient of the curve at x = 777 by differentiating y = x?cos x, using
product rule:

Let u = x> and v = cosx.

% = 2x, % = —sinx

Ey = u% + v%

dy 5 .

i —x-sinx + 2xcosx

When x = %T,

&= (3 sn (3] 2F)eos(3)
~-[3f X1+ 2g)xe

Whenx=g, y=(%)2 cosg=0

We have m = — % and the point (2, 0).

Hence, the equation of the tangent is:

>
y=0=="lx=73]
77'2 U

Therefore, y = — gXx + R
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EXAMPLE 7

SOLUTION

Since the gradient of the tangent is — ?, the gradient of the normal is 4

77.2

Hence, the equation of the normal is:
y—0= 4 ( x — 7_7')

2x +1

Find the gradient of the tangent to the curve y = at the point where y = 3.
Hence, find the equation of the normal to the curve at this point.

d
Find —y, using the quotient rule.

dx
Letu=2x+landv=x — 2.
du _, dv _
& P !
du dv
dy _ Vax  Max
dx V2
dy _(x—2)@)—@x+1) _2x—4—-2x—1_ -5
dx (x —2)? (x — 2)? (x — 2)?
When y = 3,
2t 3 3y —6=02x+1
x—2
x=7

Therefore, =5 _—5_ —_

The gradient of the tangent = _Tl

Hence, the gradient of the normal = 5.
Whenx=7,y=3

Hence, the equation of the normal at (7, 3) is:
y—3=5x-7)

y—3=5x—35

y =5x—32

x—1
x+1

(b) Find the equation of the normal to the curve y = x?sin x at the point x = 0.

(a) Find the equation of the tangent to the curve y = at the point x = 2.

Increasing and decreasing functions

A function f(x) is increasing over an interval, where f'(x) > 0.

A function f(x) is decreasing over an interval, where f'(x) < 0.

When f'(x) > 0 the graph rises as you move from left to right and the graph falls when
f'(x) <O0.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Let f(x) be a differentiable function over the interval (a, b).

If f'(x) > 0 over the interval a < x < b, then f(x) is increasing over the interval
a=x=b
403
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EXAMPLE 8

SOLUTION

EXAMPLE 9

SOLUTION

EXAMPLE 10

SOLUTION

If f'(x) < 0 over the interval a < x < b, then f(x) is decreasing over the interval a = x = b.

If f(x) = 0 for every x over some interval, then f(x) is constant over the interval.

Find the range of values of x for which the function f(x) = x?> + 2x — 1 is increasing.

For an increasing function, f'(x) > 0.
fx)=x*+2x—1

ffx)=2x+2

f'(x)>0

=2x+2>0

x> —1

-~ f(x) is increasing for x = —1.

Given that f(x) = x° — 5x, find the following.
(@) f'()

(b) The range of values of x for which f(x) is decreasing

(a) f(x) =x° —5x
f'(x) =5x*—5

(b) For a decreasing function, f’(x) < 0
=5x*—-5<0 Ay
=x'—-1<0
S0+ Dx—-Dkx+1)<0

Since x*> + 1 is always positive, we identify
where (x — 1)(x + 1) is negative: X

S>-1=x=1

We can use a graph.
For the sign of (x — 1)(x + 1):

(x — 1)(x + 1) is negative for -1 = x = 1.

Hence, f(x) is decreasing in the region —1 = x = 1.

Find the range of values of x for which f(x) = 6x — 2x? is an increasing function.

flx) = 6x — 2x°

f'(x)=6—6x?

For an increasing function, f'(x) > 0.
=6—6x2>0

=(1-x)>0

=>x2-1<0

x—1Dx+1)<0
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From the example above the solution setis —1 = x = 1.

Therefore, f'(x) is increasing for —1 = x = 1.

EXAMPLE 11 (a) Solve the inequality x> — x> — 2x > 0.
(b) Hence, find:
(i) the interval for which f(x) = 3x* — 4x> — 12x? + 5 is increasing

(ii) the region for which f(x) is decreasing.

SOLUTION (a) ¥ —x2—2x>0
=x(x*—x—2)>0
=x(x—2)(x+1)>0

The critical values of x*> — x2 — 2x are —1, 0, 2.

Sign table:
X x—2 x+1 x(x —2)(x+ 1)
x<—1 —ve —ve —ve —ve
—-1<x<0 —ve —ve +ve +ve
0<x<2 +ve —ve +ve —ve
xX>2 +ve +ve +ve +ve

Therefore, the solution set is:
fx—1=x=0U {x:x=2}
(b) f(x) =3x* —4x> — 124> + 5
f'(x) = 12x° — 12x? — 24x
(i)  For an increasing function, f'(x) > 0.
= 12x3 — 12x* — 24x >0
=S —-x2-2x>0
=x(x*—x—2)>0
=x(x—2)(x+1)>0
From (a) {x: "1 =x=0} U {x: x =2}
(ii) For a decreasing function, f'(x) < 0.
Sx(x—2)x+1)<0

S{xx=-11U{x0=x=2}

Try these 14.2 (a) Find the interval for which the following functions are increasing.
(i) flx)=x*+2x+3
(i) flx)=x>—2x*+5
(iii) f(x) =x*—x
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(b) Find the interval for which each of the following functions is decreasing.

(i) flx) =42 +6x+2
(i) fe) =221

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o

EXERCISE 14A

G R W N =

Find the range of values of x for which the function y = 6x* — 2x is increasing.
In what interval must ¢ lie if the function x = #* — #* is decreasing?

Find the range of values of x for which the function y = lx +2 % Is increasing.
For what values of ¢ is the function s = 2 — 3¢ + £ decreasmg?

Find the interval in which x lies if the function y = 2x> + 3x* — 12x + 4 is
increasing.

In questions 6 to 10, find the equation of the tangent to the curve at the given point.

6
7

8
9
10

y = 4x? + 3x + 1 at the point where x = 1

_ 4 ; —
Y=ozt the point where x = 2
y=1= 4 57 at the point where x = 1
y = % at the point where y = 1
y = xcosx at the point where x = %T

In questions 11 to 15, find the equation of the normal to the curve at the given point.

11
12

13
14
15
16

17

18

19

20

y = sin(2x — m) at the point where x = 7

y = xtanx at the point where x = 7

4
—2x+1 + L at the point where x %T
sin’x
y= Zx _|_2 at the point where y = 1
y= \/172 at the point where x = 1
The tangent to the curve y = x? — 4x + 5 at a certain point is parallel to the line

with equation y + 3x = 4. Find the equation of the tangent.
4
(2x — 1)?
and the y-axis at B. Find the length of AB.

The normal to the curve y = at the point (1, 4) meets the x-axis at A

Show that the normal to the curve y = 2x — ng’x’ where x = 2, meets the
curve again at (4, 9).

The normal to the curve y = 3 + 4x — % 2 at (2, 9) meets the curve again at the
point A.

(a) Find the equation of the normal.

(b) Find the coordinates of A.

(c) Find the equation of the tangent at A.

The equation of a curve is y = 4x*cos (2x). Find the equation of the tangent to
the curve at the point x =

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o
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Stationary points/second derivatives

Maximum and minimum values

The slope of the curve at point A is 0. Just before A, the slope of the curve is positive.
Just after A, the slope of the curve is negative. Point A is a stationary point and is
called a maximum point and the curve has a maximum value at A.

Just before P, f(x) is curved downwards and f(x) is said to be concave down in that
region. Just after P, f(x) is curved upwards and f(x) is said to be concave upwards in
that region. P is called a point of inflexion.

Point B is another stationary point since the slope of the curve is 0. Just before B, the
gradient of the curve is negative. Just after B, the gradient of the curve is positive.
Point B is called a minimum point and the curve has a minimum value at B.

Point C is a maximum point, since the gradient just before C is positive and the
gradient of the curve just after C is negative while the gradient at C is zero.

Points A, B and C are called turning points of the curve. A and C are maximum
points and B is a minimum value. Point P is a point of inflexion.

Stationary points
dy

Let y = f(x). Stationary points of y occur at I 0.

EXAMPLE 12  Find the stationary point of y = x> + 2x — 1.

SOLUTION y=x2+2x—1
Differentiating with respect to x:
Y e 42
o
Since stationary points exist when d—i =0:
=2x+2=0
x=-1

Whenx = —1,y= (=12 +2(-1) — 1
=1-2-1=—2

Therefore, the coordinates of the stationary point are (—1, —2).
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EXAMPLE 13

SOLUTION

EXAMPLE 14

SOLUTION

EXAMPLE 15

SOLUTION

Find the coordinates of the stationary points of y = x*> — 3x + 1.

y=x—3x+1

Differentiating with respect to x:
dy
dx

d
Since stationary points exist when <

dx

=3x2—-3

=3x*-3=0

Whenx =1,y = (1) — 3(1) + 1
=1-3+1
=1

Whenx = —1,y=(—1)> = 3(-1) + 1
= —1+3+1
=3

Therefore, the coordinates of the stationary points are (1, —1) and (—1, 3).

Find the coordinates of the stationary point of y = cosx for 0 = x = g

y = Cosx
d
- —sinx

dx d
. : Y
At stationary points = = 0.

dx
= —sinx =0
=x=sin"10
=0
When x =0, y = cos0 = 1.

Therefore, the coordinates of the stationary point are (0, 1).

Find the coordinates of the stationary points of the curve y = 2cos26 + sin26,
0=6=7.

y =2co0s20+ sin20
d

=

= —4sin260 + 2 cos26

&

d
At stationary points oAl 0.

dx
= —4c0s20+ 2sin260 =0

2sin260 = 4 cos20
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tan26 =2
20 = tan" 12
= l -1
0 2tatn 2
= 0.554 radians
When 6 = 0.554¢, y = 1.79

Therefore, the coordinates of the stationary point are (0.554¢, 1.79).

Classification of turning points

First derivative test
Let x = a be a turning point of y = f(x).
We can classify a turning point as a maximum or a minimum point by using the sign

of < before and after the turning point.

dx
Maximum point Minimum point Point of inflexion
dy
Forx<a,if== <0
Forx<a,if%>0 Forx<a,if%<0 3)(
Forx>a, if—y <0
dx
dy
Forx<a,if== >0
Forx>a,if%<0 Forx>a,if%>0 g;
Forx>a,if== >0
dx
: y
= X = ais a maximum point = x = @is a minimum point Since dx does not change
0 sign as it passes through
the turning point, then the
point is a point of inflexion.

EXAMPLE 16

SOLUTION

Find and classify the stationary point of y = 3x? + 2x — 1.

y=3x>+2x—1

d
P = 6x+2
dx dy
Al i ints == = 0.
t stationary points I 0
=6x+2=0
__2
T 76
1
3
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EXAMPLE 17

SOLUTION

4

. . o1 _)
There is a statlonary p01nt at ( 3 3)

Let us classify this point using the first derivative test:
. . 1
Since the pointisatx = — 3
| _ 1
Forx < —3,usingx = —5:

dy (1
dx (-3)+2

=—-3+2

= -1

—-1<0
For x > —%, using x = 0:
dy
dx =6(0) + 2 —ve +ve
=2

o

w|—=

2>0

Since there is a negative gradient followed by a positive gradient, the stationary point
is a minimum point.

Hence, (—%, %) is a minimum point.

Find and classify the turning points of y = 2x> + 7x* + 4x — 3.

y=2x>+7x2+4x—3

d
=6+ 1x +4
dy
At stationary points == = 0.

dx
6x2+ 14x+4=0

3x2+7x+2=0
Gx+ 1D(x+2)=0

=X = —%,x= -2
whens = 4y =f~4 A4 + o)
-8
27

Whenx = =2,y = 2(—=2)° + 7(=2)*> + 4(=2) — 3
=—-16+28—8—3
=1

The turning points are at ( — %, — %) and (—2, 1). w w —

-3 @—1T

o

To classify the turning points:

o)
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EXAMPLE 18

SOLUTION

We can check the sign of & within the region as follows:

dx
Start with x = —2.
dy
dx

our next turning point occurs at -1
gPp 3"

When checking the sign of == for x > —2, we use a value between —2 and —%, since

For x < —2,usingx = —3:
dy _

== =6(—3)+ 14(-3) + 4
1o = 6(=37 + 14(-3)

=54—42+4

=16

16>0
Forx > —2,usingx = —1:
Q =6(—1)* +14(—1) + 4
dx 0

=6—-14+4

+ve —ve
=—4
—4<0
. dy . iy . . . ,
Since e changes sign from positive to negative, the point at x = —2 is a maximum
point.
Now, we look at x = — %
d

(Forx < —%, we could use the same sign that was used for x > — 2, i.e. ay <0.)
Forx < — %, using — %:
dy _ (_1y 1
ax o3 +14-3)+4

-3_

=3 7+ 4

-3

2

3
—5<0
1 .
ljlorx > —3, usingx = 0
Y _ 2 —ve +ve

- = + +
P 6(0)* + 14(0) + 4

=4 0

4>0

d

Since d—i changes sign from negative to positive, the point at x = — % is a minimum
point.
Find and classify the stationary point(s) of y = 8x + Zixz

y=8x-|—%x_2
d
&g 3

dx

: oy
At the stationary points, I 0.
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There is a stationary point at (%, 6).

Forx<%,usingx=i,%=8—ﬁ
4

=8—64

= —56

—56 <0
Forx>%,usingx= 1,%28—%

=8—1

=7

7>0

Therefore, (— 6) is a minimum point.

+ve

EXAMPLE 19

SOLUTION

Find the coordinates of the stationary points of y = x + sinx for 0 = x = 7.

y=x+sinx

b
P CcosXx
dy

hen -~ =0,

Wendx 0

1+ cosx=0

=cosx = —1

X =1

When x = 7, y=a+sinw
=7m7+0
=1

The stationary point is at (7, ).
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Second derivative test

We can classify turning points by using the second derivative test. Let the point at

x = a be a stationary point of y = f(x).
2

(i) 1t a); > 0 when x = g, then there is a minimum point at x = a.

d?
(i) 1f a)z/ < 0 when x = a, then there is a maximum point at x = a.

ooy o d?
(iii) 1f a); = 0, you must test further (in this case you can go back to the first

derivative test).

EXAMPLE 20 Find and classify the stationary points of y = 4x* — 3x + 2.

SOLUTION y=4x>—3x+2

d

ay =8x—3

At stationary points d_i =0.

=8 —-3=0

x=3

To classify:

dy

e

8§>0

Therefore, there is a minimum point when x = %

=3 43733

Whenx—8,y 4(8) 3(8)+2
_23
16

There is a minimum point at (% %)

EXAMPLE 21 Find and classify the stationary points of y = —3x? + 2x + 5.

SOLUTION y= =3+ 2+ 5

d

a’vz—@c—kz

When ¥ =0, —6x + 2= 0
endx— X
—2_1

—XT673

d?y

_2=—6
—6<0
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EXAMPLE 22

SOLUTION

EXAMPLE 23

SOLUTION

Therefore, when x = % there is a maximum point.

When x = %,y = —3(%)2 + 2(%) +5

1.2
3+5+5
16

3

There is a maximum point at ( 1 ?)

5)

Determine the nature of the turning points of the curve y = 7x> — 4x? — 5x + 6.

Turning points occur when d—i =0.
d
=212 -8 -5
=21x*—=8x—5=0
= 0Bx+1)(7x—5)=0
-1 _5
Using the second derivative test:
d%y
2 =42x—8
dx Ep
Whenx = —3, % = 42— 3| — 8
enx = 3 @ = 3
=—-14-38
=-22
—22<0
%y 1 1
Since —= < 0Oatx = — 3 there is a maximum point at x = — 3
_s5dy_ 5
Whenx =327 = 2[2) -8
=30—38
=22
22>0

2
Since LAY Oatx = %, there is a minimum point at x = %

dx?

y=4cos20+ 3sin6

Differentiate with respect to 6:

d

& _85in26 + 3 cosd
de d

At stationary points D —o.

do

= —8sin20+ 3cosf =0
Since sin260 = 2 sin O cos 0, we have:
—16sinfOcosf + 3cosf =0
cosf(—16sinf+ 3) =0

0 sing— 3
= cosf =0,sin0O 16
=0= 777, 0 = 0.19 radians
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Using the second derivative test:

dy )
a0 8sin260 + 3 cos O
42
d—G); = —16cos260 — 3sin0
When 6 = 7 d_zy = —16cosa — 3sin &
2 A 2
= —16(—1) — 3(1)
=13
13>0
Therefore, there is a minimum point when 6 = %T
42
When 6 = 0.195, é = —16 cos (2)(0.19°) — 3 sin0.19°
= —154
—154 <0

Therefore, there is a maximum point when 6 = 0.19¢.

. . . _ 3x
EXAMPLE 24  Classify the stationary points of y G- =9
_ 3x
SOLUTION ey Sy
_ 3x
x> —5x+4

Using the quotient rule with u = 3x and v = x? — 5x + 4
Q = 3’ Q =2x—5

dx dx
du dv
dy_ Yde Mdx
dx v
_ (& —5x+4)(3) — (Bx)(2x — 5)
(x% — 5x + 4)?
_ 3x* — 15x + 12 — 6x> + 15x
(x? — 5x + 4)?
_ =32+ 12
(x? — 5x + 4)?
. o dy
At stationary points I 0.
—3x*+12 _
(x? — 5x + 4)?
=-3x*+12=0
=3xr =12
xr=4
=>x=*2

Use the second derivative test to classify the turning points.

dy 32412

dx  (x? — 5x + 4)?
Letu = —3x>+ 12and v = (x> — 5x + 4)2
415



du _ 6 dv 50 — 5y — 5x + 4)

dx dx
&y —6x(x® — 5x + 4)? — (=3x% + 12)(2)(2x — 5)(x* — 5x + 4)
dx? [(x* — 5x + 4)?]?
_ (x*> — 5x + 4)[—6x(x* — 5x + 4) — (—3x> + 12)(4x — 10)]
[(x* — 5x + 4)?]?
_ (% = 5x + 4)(—6x° + 30x* — 24x + 12x° — 48x — 30x* + 120)
(x> — 5x + 4)4
_ (¥ = 5x + 4)(6x° — 72x + 120)
(x> — 5x + 4)*
_ 6x> — 72x + 120
(x? — 5x + 4)3
d>y  6(2)° — 72(2) + 120
Wh =2,—5=
Mo T (22 —50) + 47
_ 48 — 144 + 120
—8
_ 24
—8
=-3
—3<0
Therefore, there is a maximum point at x = 2.
&y
Whenx— _Z,w—2—7
1>y
27
Therefore, there is a minimum point at x = —2.

Inflexion points

Inflexion points occur where the curve changes
concavity. A positive second derivative cor-
responds to concave up and a negative second
derivative corresponds to concave down. When
the function changes from concave up to concave
down or vice versa, f"(x) = 0 at this point. For a
point to be an inflexion point, the second deriva-
tive must be 0 at this point. This is not a necessary
condition for a point of inflexion and therefore we
must check the concavity of the function to verity
that there is an inflexion point.

/ Concave up

Point of

/ inflexion

Concave down
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EXAMPLE 25 Find the point of inflexion on the curve f(x) = x> + 1.

SOLUTION We first find the values of x where f"(x) = 0.
fl)=x+1
f(x) = 3x2
f'(x) = 6x
ff/(x) =0
=6x=0
=x=0

We now verity that f”(x) changes sign as it passes through x = 0.

Let us choose a value of x just before 0, say x = —1.

When x = —1, f"(—1) = —6 and the function is concave down at x = —1.
Next we choose a value of x just after 0, say x = 1.

When x = 1, f"(1) = 6 and the function is concave up at x = 1.

Since the function has different concavities on either side of x = 0, there is a point of
inflexion at x = 0.

EXAMPLE 26  Find and classify the stationary points and points of inflexion of y = 3x> — 20x°.

SOLUTION y=3x> —20x°
Differentiating with respect to x:

&

Pl 15x* — 60x2

Differentiating again with respect to x:

&y

2 60x3 — 120x

d
When ay =0, we get:
15x* — 60x2 =0

15X (P —4) =0
=x2=0,x2—4=0
=x=0,2,—-2

2

d
When a}zj =0, we get:

60x°> — 120x = 0

60x(x>—2)=0
=x=0,x2—-2=0
=x=0,V2, —V2

We can classify the turning points by using the second derivative test.
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When x = 2:

% _ 6002y’ _

Froi 60(2)° — 120(2) =240 >0

= there is a minimum point at x = 2.
When x = —2:

&y 3

12 = 60(=2)° — 120(=2) = 240 <0
= there is a maximum point at x = —2.
When x = 0:

2
ay.
For x < 0, —= is negative.
dx? &

%
For x > 0, —5 is positive

dx? '
42
Since there is a sign change of E)z/ as x passes through 0, there is a point of inflexion
atx = 0.
When x = \/5 :

For x < \/_ 1s negative.

x> \/— —= 1s positive.
2

2 25 % passes through V2, there is a point of inflexion

Since there is a sign change of —%

atx = V2.

When x = —V2:
dzy
Forx < \/_ - 1s negative.

x> \/— 1s positive.

2
Since there is a sign change of €Y asx passes through —V?2, there is a point of

a2
inflexion at x = —V2.

Hence, there is a maximum point when x = —2, a minimum point when x = 2, and
points of inflexion when x = 0, V2, —V2.

EXAMPLE 27 Find and classify the nature of the stationary points and points of inflexion on the
curve y = cos2x — 2 sinx, where 0° < x = 90°.

SOLUTION y = cos2x — 2sinx

Differentiating with respect to x gives:

dy )
—— = —2sin2x — 2 cosx

dx

Differentiating again gives:
&y _

pre i —4 cos2x + 2sinx

d
At stationary points, d_i =0.
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EXAMPLE 28

SOLUTION

= —2sin2x —2cosx =0
Replacing sin2x = 2 sinxcosx
= —4sinxcosx — 2 cosx =0
= —2cosx(2sinx+1)=0
socosx=0,2sinx+1=0
= cosx = 0, sinx = —%

= x = 90° within the interval.

d?y .
@=0, —4cos2x + 2sinx =0
Replacing cos2x = 1 — 2 sinx gives:
—4(1 — 2 sin’x) + 2sinx =0

= 8sin’x + 2sinx —4=0

= 4sin’x + sinx —2 =10

Using the quadratic formula:

_ 2
sinx = —0* V2l; 4ac
smxz_ligﬁﬁzz_liﬁgzaw&—ams

Hence, x = 36.4° in the given range.

Now we classify the turning points.

When x = 90°:
d’y _ o ono
Frh —4¢c0s180° + 2sin90° =6 >0
Hence, there is a minimum point at = 90°.
When x = 36.4°:

d?y

For x < 36.4, @ is negative.

-
For x > 36.4°, @ is positive.
2
Since there is a sign change of Eyz as x passes through 36.4°, there is a point of
inflexion at x = 36.4°.

A rectangular area is to be fenced using 36 metres of wire. Find the length and
breadth of the rectangle if it is to enclose the maximum area.

Let the sides of the rectangle be I and w.

Perimeter of the rectangle = 2/ + 2w
S22+ 2w =36
=Il+w=18 (1]
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Area of the rectangle:

A=1Iw
I=18—w
A= (18 —w)w

= A = 18w — w?

Rearranging [1]
Substituting [1] into [2]

Now that we have the area in terms of one variable, we can differentiate:

dA

When 44 = o.

dw
=18—-2w=20
Lw=18_on
Classify the turning point:
d?A
A _ 5
dw?
—2<0

Therefore, the area is at its maximum.

Since [ = 18 — wx

whenw=9,I=18—9=9

Therefore, the length and width giving a maximum area are / = 9mand w = 9m.

EXAMPLE 29

SOLUTION

Rajeev has a cone of height 15cm and base radius 7.5 cm. Rajeev wishes to cut a
cylinder of radius r cm and height & cm from this cone. What is the height of the
cylinder of maximum volume which Rajeev can cut from this cone?

We use the fact that the ratio of the corresponding sides in similar triangles are equal.

r _15—h
7.5 15

_15—h
r= 15 X 7.5
_15_h

2 2
V = mr*h

_ (15 _h\?
vea(B -5
=g(225—30h+h2)h

= 727 (225h — 30h% + h3)
dv _ =«

av @ — 2
I 4(225 60h + 3h*)
At stationary points, (cll_‘h/ =0.

=225 — 60k + 32 =0
h?—20h +75=0
(h—=15)(h—5)=0
h=5,15

A
|
|
|
|
15cm:
|
|
|
|
v

7.5¢cm

15cm
15— hcm

7.5¢cm rcm
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L
W_Z( 60 + 6h)

e &V _ 7w . .
When h = 5, Tz Z( 60 + 30) < 0 = maximum point

— 15 &V _m ini ;
When h = 15, ar 4( 60 + 90) > 0 = minimum point

Therefore, the height of the cylinder with the maximum volume is 5cm.

EXAMPLE 30 A circular cylinder, open at one end, is constructed of a thin sheet of metal, whose
surface area is 60077 cm?. The height of the cylinder is hcm and the radius of the
cylinder is rcm.

(a) Show that the volume, V cm?, contained by the cylinder is V = Z(600 — 72)
y the cy 2

(b) Evaluate the value of V, and determine whether this value is a maximum or
minimum.

SOLUTION (a) Surface area of the cylinder = 72 + 27rrh

6007 = 7 + 27rh
600 — 2 = 2rh

_ 600 — 12
h= 2r

V = mr*h

_ 600 — r2
—m’z( 2r )
=%(6oo—r2)

(b) V=300 —

At stationary points, ‘(11—‘; =0.

= 3007 — 3 = 0
= 3007 = % 72
Therefore, > = 200
r=V200 cm
Since V = %(600 —r2):
when r = V200, V = @(600 — 200)
= 2007200
=2000V2 7 cm?® (Since V200 = V2 X 100 = 10V2)

d*v _ m

= ' = _X i

KPS 5 6r 2

When r = V200, ‘é—r‘z’ = T(~6V200) < 0

Hence, the stationary value of V is a maximum.
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EXAMPLE 31 Tristan has 150 cm? of paper to make an open rectangular box of length 2xcm,
width xcm and height h cm. Express h in terms of x. Find the value of x which will
make the volume of the box a maximum. Hence, find the volume.

SOLUTION Surface area of the box = (2x X x) + (2xh)(2) + 2(hx)
= 6xh + 2x?
6xh + 2x* = 150

3xh + x2 =75
_ 75— x*

h= 3x

V=2xXxXh

— a2 75—x2)
2x( 3x

= 50x — %x3

4V — 50 — 212

At turning points, v _

dx
=50—2x2=0
50
2
=x2=25

=x=1V25
=5

=% =

2
When x = 5, Ccllx—‘; = —4(5) = —20 < 0 = maximum point
Therefore, the volume is maximum.

When x = 5, V = 50(5) — %(5)3

— 1662 cm3
1663 cm

EXAMPLE 32  The volume of a right-solid cylinder of radius rcm is 50077 cm?, find the value of r for
which the total surface area of the solid is a minimum.

SOLUTION Volume of cylinder = 7r?h
= 7r*h = 5007
5007
p=2007
;)
— 500
2

Total surface area A = 27rrh + 272
A= ZW(@) + 2772 (Substitutingh _ 500

7 7
dA _ 10007
ar 2 + 47r
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At minimum points, da _ 0.

1000 dr
= —Tﬂ- +4mr=20

_ 10007
2

47r® = 10007

_ 10007

r= 41

r =250

r= V250

r = 6.3cm

d?A _ 20007

’
_ d?A _ 20007 _
When r = 6.3, Fri (63)° + 47 =127>0

Therefore, the surface area is a minimum when r = 6.3 cm.

= 47r

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 14B

In questions 1 to 7, find and classify the points of inflexion of each function.

1 y=x*-2x+1 2 y=x*-3x+1

3 y=23-32—-12x+1 4 y=x*—-6x>+9x—2
— 44 2 + — X

5 y=x*-2x*+3 6 y 211
_x’—4

R

8 A factory wishes to make a large number of cylindrical

containers using a thin metal, each to hold 20 cm?. The surface /\
area of each container is Acm? Find A as a function of r,the [\
radius of the cylinder. Hence, find the radius and height of the

cylinder so that the total area of the metal used is a minimum.

9 A window is in the shape of a rectangle surmounted by a
semicircle whose diameter is the width of the window (see
diagram). The perimeter is 15m. Find the width of the
window when the area is a maximum.

2x

10 The dimensions of a rectangular sheet of cardboard are 16 m by 10 m. Equal
squares of length xm are cut away from the four corners of the cardboard; the
remaining edges are folded to form a rectangular open box of volume Vem?. Find
the volume V in terms of x and hence, find the maximum volume of the box.

11 The diagram shows the cross-section of a hollow
cone and a circular cylinder. The cone has radius
8cm and height 16 cm. The cylinder just fits
inside the cone as shown.

(a) Express h in terms of r and hence, show that

the volume, Vem?, of the cylinder is given
by V =38 — 1).

—
(o)}
3
e — >

(b) Given that r varies, find the value of V.
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EXAMPLE 33

SOLUTION

12 A wire 120 cm long, is cut into two pieces. one piece is bent to form a square of
side ycm and the other is bent to form a circle of radius x cm. The total area of

the square and the circle is A cm?.
(4 + m)y* + 3600 — 240y

(a) Show that A =

™
(b) Given that x and y can vary, show that A has a maximum value when

_ 120
YT i+
13 A solid rectangular block has a base which measures 3xcm by 2xcm. The height
of the block is 4 cm and the volume of the block is 144 cm?.

(a) Express h in terms of x and show that the total surface area A cm?, of the

block is given by A = 12x? + =~ 240
(b) Given that x can vary, find the following.
(i) Find the value of x for which A has a value.
(ii) Find the value and determine whether it is a maximum or a minimum.

14 A box with a square base and open top must have a volume of 64000 cm?. Find
the dimensions of the box that minimise the amount of material used.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Parametric differentiation

d
Let x = f(t), y = g(t). We can find s using the chain rule as follows.

dx
. ﬂﬂ
D_dt _?" _ drldx
dx  dx and by extension 2 ax
dt dt

The equation of a curve is defined by x = 6¢> + 5,y = > + 2¢ +1. Find the gradient
2

of the tangent to the curve at t = 1 and the value of a)zl att = 1.

We need to find Q when t = 1.

dx
dy
dy a
NOW,&—E
dt
dx _ 15, o0
=12t =30 +2
S o)
T dx 12t
_ o dy _3(1’+2 _ 5
i
&y _ dildx
2 dx
dt

Qﬁq d[3+2]_ [ wzl 1
del 12t | drl4 6t 4 682
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1.1
&y _4 6

2 12¢

A B |
Whent= 1,92 =4 6 L

EXAMPLE 34 The equation of a curve is defined by x = sin4t, y = 2 cos4t — 1. Show that
2

d
= —2tan4t and find t = 1, a}; in terms of ¢.

dy

SOLUTION —— = —8sin4t

dy _ —8sindt _
a = —4 Cosdt = —2 tan4t

, 4
&y _ dildx
A dx
dt
_d

dy _ _ 2
i —a[ 2 tan4t] = —8 sec?4t

d%y  _gsecat 2
Bl g - _ - _ 3
R I cosdt oSt 2 sec’4t

Now

d
dt

Try these 14.3  (a) Given the parametric equations of a curveasx = £ + 4t — 1,y = 2 + 7t + 9,
2

Y ond 2
find P and 52 terms of t.
: dy %y T : . .
(b) Find the value of e and 2 att =7 for the curve with parametric equations
x = tant, y = 2 sint + 1.

Rate of change

d
Given three variables x, y and t: hd represents the rate of change of y with respect to

dx

X, % represents the rate of change of x with respect to t and d_}; represents the rate of

change of y with respect to t. The connected rate of change for the three variables are:
dy _dy . dx dy_dr, dx

dx dt ~ dt dr dx " dt
When solving problems involving rate of change, follow these steps.

(i)  Identify all variables clearly.
(ii) State any rates that are given.
(iii) State clearly what needs to be found.

(iv) Identify the connection among the three variables.



EXAMPLE 35

SOLUTION

Note the
connections:

dA _dA ., dx

de dx de
Ais connected to
x by the surface
area of the cube.

EXAMPLE 36

SOLUTION

426

A cube is expanding in such a way that its sides are changing at a rate of 4cms™".
Find the rate of change of the total surface area of the cube when its volume is

216cm?.

Let us identify our variables:

Let x be the length of one side of the cube
A be the total surface area
V be the volume of the cube
f time

What do we need to find?

dA _ Late of change of the surface area.

dt
We need to find % when V = 216 cm?.
What is given?

We have dx _ 4cms!

dt

Our connection:
dA _ dA > dx

dt  dx dt

To find da we need a connection between A and x.

dt
Since A is the surface area of the cube:

A=6XxXx=6x

dA _

dx
We have not used the volume of the cube.

SinceV=xXx X x=x3

When V = 216cm?

x> =216
x = V216
=6cm
Therefore, when x = 6cm, % = 12(6) = 72.
dt dx dt
=72 X4
=288 cm?s™!

Two variables x and y are connected by the equation y = 4x(x + 2). If x is increasing at
a rate of 2 units per second, find the rate of change of y at the instant when x = 6 units.

We need to find % when x = 6.
We are given dx _ 2.

dt
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EXAMPLE 37

SOLUTION

EXAMPLE 38

SOLUTION

Rate of change connection:
dy _dy o dx

dt  dx " dt
Since y = 4x(x + 2)
y = 4x* + 8x

When x = 6,%2 8(6) + 8 = 56.

Hence, ¥ = 56 x 2
ence, dt =

= 112 units per second.

A spherical ball is being inflated at a rate of 40 cm®s~!. Find the rate of increase of its

radius given that the surface area is 20077 cm?.

Let r be the radius at time ¢
A be the surface area at time ¢
V be the volume of the sphere

We need to find % when A = 2007

We are given 4V _ 4oem3s!

dt

Connected rate of change:

AV _dv, dr
dt  dr  dt
Since we are dealing with a sphere:
V= %ﬂ'ﬁ
ﬂ = i
dr 3 377r2
AV — 42
dr
When A = 2007, ((11_‘1’/ = 2007 (Since surface area of a sphere = 471?)
dv _dv dr
Now“ar = "ar  ar
= 40 = 2007 x 4
dt
dr _ 40
dt 2007
=L ms!
5

A gas in a container changes its volume according to the law PV = ¢, where P is the
number of units of pressure, V is the number of units of volume and c is a constant.
Given that P is increasing at a rate of 40 units per second at the instant when P = 80,
calculate in terms of ¢ the rate of change of the volume at this instant.

dv
We need to find i

We are given % = 40 when P = 80.
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Connected rate of change: dv._dv., dp

dt dP ~ dt’
PV =c¢
=<
P
dav_ ¢
dp pde
_ __ ¢
Therefore,@ = T80
- __C
d T 6400
V_ ¢
dr =~ 6400 X 40
_ __C
160

EXAMPLE 39 A sector of a circle of radius r and centre O has an angle
of T radians. Given that r increases at a constant rate of

8cm s}, calculate, the rate of increase of the area of the

sector when r = 4cm. ﬂ
SOLUTION Let A be the area of sector.

We need to find % when r = 4cm.

We are given dr _ gcms.

dt

Connected rate of change:

dA _dA  dr

dt  dr dt

Since we are dealing with the area of a sector:
— 1o

A =310

_ T _ T
Whenﬂ—g,A —ETZ

dA _,ym _ ™
Whenr=4cm,E=?.

dA _dA  dr

dt dr "~ dt

_ 4w

=3 X 8

=—32 26—
3’7TCITIS

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 14C

1 The variables x and y are related by the equation x’y = 10. If x increases at a rate
of 0.5 units per second, find the rate of change of y when:

(a) x=5
(b) y=2.
2 The variables x and y are related by iz = 5—10 - % if x increases at a rate of

5cms !, calculate the rate of increase change of y when x = 10cm.
428
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3 Airis being pumped into a spherical balloon at a rate of 0.04 cm?/s. Find the
rate of increase of the surface area of the balloon when the volume is 1507 cm?.

4 A tank, initially empty; is being filled with water. The depth of the tank is xcm and
its volume Vem? is given by V = x5(x? + 4). Given that the depth of the water
increases at a rate of 4cms ™1, find the rate of increase of the volume when x = 1cm.

5  The radius of a circle is increasing at a rate of 2cms™ 1. Find the rate of increase

of the circumference of the circle when the area of the circle is 477cm?.

6 A cube is expanding in such a way that its sides are changing at a rate of
0.05cms L. Find the rate of change of the total surface area of the cube when its
volume is 64 cm?.

7 'The circumference of a circle is increasing at a rate of 4cms™ L.
(a) Find the rate of increase of the radius.
(b) Find the rate of increase of the area, at the instant when the radius is 64 cm.

8  The surface area of a sphere is increasing at a constant rate of 10cm?s™~!. Find
the rate of increase of the following.

(a) The radius

(b) The volume, at the instant when the radius is 4 cm

9 Variablesdx and y are related by y = 4;_:_ 12 Given that x and y are functions of ¢
and that d_); = 0.3. Find the corresponding rate of change of x when y = 5.

10 A metal cube is being expanded by heat. At the instant when the length of an
edge is 4 cm, the volume of the cube is increasing at the rate of 0.024 cm3s™ 1. At
what rate is one length of the edge increasing at this instant?

11 A certain gas, under varying pressure, changes its volume according to the law
PV = 600, where P is the number of units of pressure and V is the number of
units of volume.

(a) Find the rate at which P increases with V.
d
(b) Whatis d—i when V = 20cm?3?

12 Qis a fixed point on the circumference of a circle, centre O, radius 6 cm. A vari-
able point P moves round the circumference such that 6 increases at a constant
rate of %T radians per second.

(a) Find the rate of change of the arc length from P to Q.
(b) Find the rate of change of the area of the sector POQ.

13 Liquid is poured into a container at a rate of 16 cm?®s~!. The volume of liquid in
the container is Vcm?, where V = Z(x2 - %x) and xcm is the height of liquid in

the container. Find the following, when V = 4.
(a) The value of x

(b) The rate at which x is increasing

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0

429



EXAMPLE 40

SOLUTION

Remember

e f"(x) can be
positive and/or
negative.

e Inflexion points
occur when
the curve has a
concavity.
2

If % is posi-
tive, concave
upwards.

d?y
e |[f—=is nega-
dx? E
tive, concave
downwards.

430

Curve sketching

Polynomials, rational functions, trigonometric functions

Polynomials

When sketching a curve, we gather as much information as possible about the
function and then sketch the graph.

For a polynomial we can find
(i) 'The stationary points
(ii) The points where the curve cuts the axes

(iii) The intervals on which the function is increasing or decreasing

Sketch the graph of y = x* — x.

In order to sketch the graph, we need to do the following.
Identify the domain of the function.
Find the x and y intercepts where possible.
Identify maximum and minimum points.

Identify concavity and points of inflexion.

First we find the intercepts.

Whenx =0,y = 0.

Therefore, (0, 0) lies on the graph.

Wheny =0,x* — x = 0.

=x(x>*—1)=0

=2x=0x=1,—-1

Therefore, (1, 0) and (—1, 0) also lie on the graph.

Now we find the turning points of the curve.
3

y=x —x
d
ay =3x2—1

. . dy
At the turning points, == = 0.

dx

=3x*-1=0
=1



EXAMPLE 41

SOLUTION

MODULE 3 e CHAPTER 14

Classify the turning points:

d%y < ‘ X
@ = 6x =1 0
_\V3dy_ 3
Whenx—T,@— 6?>O:>
The turning point is a minimum. ( N3 2_\/5)
3" 9
42
When x = — g, 5)21 = 6( — g) < 0 = The turning point is a maximum.

Sketch the graph of y = 4x®> — 15x* + 12x — 8.

When x = 0, y = —8, the graph passes through (0, —8).

Stationary points:

dy

F i 12x* — 30x + 12

d
At stationary points ay =0.

=12x2—30x+12=0
2x2 —5x+2=0
2x—1x—2)=0
:>x=%,x=2

1 1) gL 1) o _21
Whenx =2,y =43 = 15(3] + 12(3] -8 = -5
When x = 2,y = 4(2)° — 15(2)> + 12(2) — 8 = —12

Classify the stationary points:

d’y
1 &y 1
When x = > 24(5) — 30 =12 — 30 = —18 < 0 = There is maximum point
when x = %
d?y
When x = 2, Fpe = 24(2) — 30 = 48 — 30 = 18 > 0 = There is a minimum point
when x = 2.
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=24x—30=0

30 _ 5
=Sx=5,=7

24
=i - i+
2

Y.
dx* 7%

When x = 12(%) —g=-9

rPlU‘I

Sign change of —5

For x < > 5 is negative.

4 dx?

2 _21 ]

For x > L2 is positive. 8
2
dxz
through é, when x = 1 there is a point of

inflexion.

Since the concavity of —5 changes as x passes

dy 0

Point of
inflexion

EXAMPLE 42

SOLUTION

Let y = 3x* — 4x* — 12x> + 8.

(a) Find %.

(b) Find the coordinate of the stationary points of the curve.

(c) Classify the stationary points.

2
(d) Find the points for which

dx); 0 and classify these points.

(e) Sketch the graph of y.

(a) y=3x*—4x®* — 1242+ 8

dy _ 5 2
. 12x 12x° — 24x
. . dy
(b) At stationary points == = 0.

dx
=12x — 12x* —24x =0
I2x(x>* —x—2)=0
12x(x = 2)(x +1)=0
=>x=0x=2,x=—1
When x =0,y =8 (0, 8)

Whenx = —1,y = 3(—1)* — 4(—1)3 — 12(—1)> + 8

=3+4—-12+8

=3

(_1r3)
x=2,y=3(2)*—4(2)° - 12(2)* + 8

=48 —32—48+8

= —24

(2, —24)

The stationary points are at (—1, 3), (0, 8) and (2, —24).
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(c) Using the second derivative test gives:

42
gyz — 36x2 — 24x — 24
d?y . . .
When x = 0, 2 —24 < 0 = There is a maximum point at (0, 8).
dy » S
When x = —1,@ =36(—1)* — 24(—1) — 24 = 36 > 0 = There is a mini-
mum point at (—1, 3).
&%y ) o .
When x = 2, Fpe = 36(2)* — 24(2) — 24 = 72 > 0 = There is minimum point
at (2, —24).
42
(@ =0

=36x2—24x—24=0

32 —2x—2=0

_ 2 =+ \/22 —4(3)(—2)
2(3)

_2+1V28
6

2+ 27
6

1 +V7
3

=X

N

1+
Whenx = =5,y = —10.4

When x = %

These are the points of inflexion.

,y =153

(e) y 4

©,8) y=3x"-4x3-12x2 + 8

(-1,3) X
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Graph of a polynomial

Both linear functions and quadratic functions are polynomial. The graph of a linear
function y = mx + c is a straight line with gradient m and y-intercept c. The graph
of a quadratic y = ax? + bx + ¢, where a # 0, is a parabola with a minimum turning
point if a > 0 and a maximum turning point if a < 0. These two graphs are smooth
and continuous. The graph of every polynomial is both smooth and continuous.
There are no sharp corners or holes or gaps on a polynomial graph. We can draw one
continuous curve without lifting the pencil when drawing the graph of a polynomial.

This is a graph of a polynomial since the curve is smooth and continuous.

This graph cannot be the graph of a polynomial, since there is a hole.

y

/_
5|

\jl-{ole

Graphs of functions of the form f(x) = x" where n is an even integer

y=x
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When 7 is even, the graphs of y = x%, y = x*, y = x5, y = x8... each have a minimum
turning point at the origin but increase rapidly as the power of x increases. All the
curves will touch the x-axis at (0, 0) and pass through the points (—1, 1) and (1, 1).
The graphs are all symmetric about the y-axis.

Graphs of functions of the form f(x) = x" where n is an odd integer
greater than 1

All the curves will pass through the points (0, 0) and pass through the points (—1, —1)
and (1, 1). The graphs are symmetric with respect to the origin. The graph increases or
decreases rapidly as n increases.

Graphs of polynomials

The graph of a polynomial will depend on the sign of the leading term in the poly-
nomial and the degree of the polynomial. Recall that the degree of a polynomial is
the highest power of x in the polynomial. The behaviour of the graph depends on
whether the polynomial is of odd degree or even degree.

Polynomials of odd degree

For a polynomial with a degree that is an odd number, the behaviour of the end
points of the polynomial can be deduced as follows.

With a positive leading coefficient, the graph falls to the left and rises to the right as
seen below.

4 e
\
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With a negative leading coeflicient, the graph rises to the left and falls to the right as
shown below.

EXAMPLE 43  Which of the following could be the graph of a polynomial whose leading term is —4x°?

A y B x4

A\

SOLUTION Since the leading polynomial is of odd degree and the coefficient of the lead-
ing polynomial is negative, the graph rises to the left and falls to the right. The
answer is A.

Polynomials of even degree

With a positive leading coefficient and a polynomial of even degree, the graph will

rise on both ends as shown below.
436
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With a negative leading coefficient and a polynomial of even degree, the graph falls
on both ends as shown later.

A y B (34

EXAMPLE 44  Which of the following functions could be the graph of y = 2x* — 4x?

A y B y

T~
\

437
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SOLUTION

DEFINITION

If fix)isa
polynomial in x
and f(a) = 0, then
ais a zero of f(x).

ooooooooooooooo

EXAMPLE 45

SOLUTION

The degree of the polynomial is even and the coefficient of the leading term is posi-
tive. With a positive coefficient and even degree, the graph rises on both ends. The
answer is C.

Zeros of a polynomial

Note

(i) Ifaisazeroof flx) =0, then x — ais a factor of f(x).

(i) All the zeros of a polynomial are the x-intercept of the graph of f(x).

(iii) If the factor (x — a) occurs more than once, a is called a repeated zero or a
repeated root of the polynomial equation.

If we can locate all the zeros of a polynomial, then the graph will cut the x-axis at
these points. The curve will either be above the x-axis or below the x-axis between
each zero.

Sketch the graph of y = x(x — 1)(x — 2).

Let us find the zero of the function.

Wheny =0,x(x — 1)(x —2) =0

=2x=0x—1=0x—2=0

=x=0x=1x=2

The zero of the polynomial will split the x-axis into the following intervals:
[—o0, 0], [0, 1], [1, 2] and [2, o]

As the graph passes through the zeros, it will be either above the x-axis or below the
x-axis. We can make a decision by looking at points within each interval.

Whenx =—1, y=(—1)(—-1-1)(—-1-2)=—6, (—1,—6)
b B
3 o-@R-R--BRH-S 6D
x=3 y=33-1)(3-2)=6 (3,6)

. 1 —a) (L 3)(3 3
Points on the curve are (—1, — 6), (2, 8)’ (2, 8)’ (3, 6).
For x < 0 the graph is below the x-axis.
For 0 < x < 1 the curve is above the x-axis.

For 1 < x < 2 the curve is below the x-axis and for x > 2, the curve is above the x-axis.

Draw a smooth curve passing through the points. The graph must turn and either go
up or down to pass through the x-axis. We have two turning points, one maximum
and one minimum.
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y=xx—1)x—2)

EXAMPLE 46  (a) Find the values of x for which 2x> + x> — 8x = 4.
(b) Sketch the graph of flx) = 2x* + x> — 8x — 4.

SOLUTION (a) flwy=22+x>—8x—4

x =2, fl2) =22 +(2)>—8(2) — 4
=16+4—-16—4

=0
Since f(2) = 0, x — 2 is a factor of f(x).
2x*+ 5x—2
x—2)2x>+ x*— 8x— 4
—(2x* — 4x?)
5x> — 8x
—(5x%* — 10x)
2x — 4
—(2x+4)

0
s flx) = (x — 2)(2x% + 5x + 2)
=(x—2)(x+2)2x+ 1)
Now
(x—2)x+2)2x+1)=0
x—2=0, x+2=0, 2x+1=0
X =2, x==2, X =-1
(b) Since flx) =0whenx = —2,x = —% and x = 2, the graph of f(x) cuts the
x-axis at (=2, 0), (—%, 0) and (2, 0).

We can divide the x-axis into these intervals.

(=, =2),[ -2, — 1] [ 3, 2]and [2, ]

[—oo, —2] [_2’ [_% Zl [2, ]
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We next find the sign of f(x) in each region.

When:

x==3, flx)=2(=3°+(-3)>—8(-3)—4=-54+9+24—4=-25
x=—1, f(x)=2(—1P3+ (-1 —8(-1)—4=-2+1+8—4=23
x=0, f(x)=2(0)+ (02— 8(0)—4=—4

x=3, f(3)=203)°+(3)?—8(3)—4=235

We can now draw the graph of y = 2x% + x> — 8x — 4.

y
4 -

| y=23+x>—8x—4
X

Graphing functions

Graphing functions with a table of values

EXAMPLE 47  Letf(x) = x* — 4x + 3. Complete the table of values and draw the graph of f(x)
using the table of values.

X -2 —1 0 1 2 3 4 5 6

f(x) 15

SOLUTION
X fix) =x2—4x+3

-2 | f(=2)=(-22—4(-2)+3=15
1| f=1)=(-1)2—4-1)+3=8
0 f(0) = (02 — 4(0) + 3 =3
1 i) =01)2%—-41+3=0
2 | f2)=(22—-4Q2) +3=—1
3 f3)=03B2—-43)+3=0
4 | flH)=42—-44)+3=3
5

f(5)=(52—4(5)+3=38
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EXAMPLE 48 Given that f(x) = x? — 4, complete the table of values.

f(x)

Hence, draw the graph of f(x) using the table of values.

SOLUTION y
X | fix)=x*—4 ®]
3| f-3)=(-32-4=9-4=5 4 y=x-a
-2 | f(=2)=(-2?-4=4-4=0 2]
X
— — =(—=12—-4=1—4= — I e T T T
1] f-1)=(-12-4=1-4=-3 T P
0 fl0)=02—-4=—4
1 f1)=12—-4=-3
2 f2)=(2)2—-4=0 6
3 f3)=(3B2—-4=5
X -3 -2 —1 0 1 2 3
f(x) 5 0 -3 —4 -3 0 5
EXAMPLE 49 Graph the function y = x* by using a table of values. Identify the domain and range
of the function.
SOLUTION Ay
¢ fix) = x3 6
—3 | f(=3)=(-3P=-27 4 fy=
-2 f(—2) =(-23= -8 21
-1 f(_1)=(_1)3=_1 T T T T T T T T \X
6 -4 240 2 4 &6
0 fl0)=03=0 2
1| fy=13=1 4]
2 | f=2=8 6

3 f(3) =33=27

Domain and range are the set of real numbers x eR, y € R.
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EXAMPLE 50

SOLUTION

Graph the function f(x) = x* — x, using a table of values.

x fix) =x3—x
3| f-3)=(-3P—(-3)= 24
-2 | f=2)=(-2—-(-2)=—-6
-1 f=)=(=1)P-(-1)=0

0 fl0)=03-0=0

1 i=03-1=0

2 f2)=23-2=6

3 f3) =33 —-3=24

y
6,
1 [y=ex
2,
7 X
T T T T T T T T T
-6 4 2 4 6

EXAMPLE 51

SOLUTION

Fill out the following table for f(x) = x> — 2x?> — x + 2 and graph the

function f(x).
X -3 -2 | -1 0 3
f(x)
X fix) =x3—2x?2—x+ 2 o1
=3 | f(=3)=(-3°—-2(-32—-(-3)+2 4
= —40
—2 | f=)=(-2-2(-2 - (-2 +2 7\ .
- 12 S 4 2| a6
1| f=1)=(=13-2(-1)2—(=1)+2 2]
-0 »
0 f(0) = (0)* — 2(0)2— (0) + 2 =2 y=x-22+2| |
T fi=03-202-1N+2=0
2 | 2=Q23-222-@2)+2=0
3 33=0BP-232-(3)+2=8
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EXAMPLE 52  Graph the function g(x) = %, using a table of values. Identify the domain and range of g(x).

SOLUTION The function g(x) is undefined at x = 0.
¢ —4 -3 -2 -1 0 1 2 3 4
1 _1 | 1 _1 | _ i 1 1 1
fix) = 2 3 > 1 | undefined | 1 > 3 1

The domain of g(x), x € R, x # 0.
The range of g(x), y € R, y # 0.

EXAMPLE 53  The function g(x) = é identify the value of x for which f(x) is undefined. Complete
the table for f(x). Using the table of f(x), draw the graph of f(x).

X -3 -2 -1 0 1 2 3
fix)
SOLUTION The function is undefined at x = 0.

x fx) =
= | -
= |
S|
0 undefined
e
L e
A
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EXAMPLE 54

SOLUTION

EXAMPLE 55

SOLUTION

444

Solving simultaneous equations graphically

By sketching the graphs of y = 2x + 1 and 2y = 3x — 5, find the solution of the
simultaneous equations y = 2x + 1 and 2y = 3x — 5.

To draw a straight-line graph we need two points on the line.

Fory = 2x + 1:
X 0 | —o05
y 1 0
For 2y = 3x — 5:
X 0 %
5
y ) 0

Plot the points on the same graph and draw each line. Where the two lines intersect
will be the solution to the equations.

Draw the graphs of y = 2x*> — 3x + 1 and y = 2x — 1. Hence, write down the
solutions of the simultaneous equation.

Fory=2x—1:
X 0 0.5
y =1 0
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Fory=2x*—3x+ 1:

X -1 0 0.5 1 1.5 2 25 3
2x? 2 0 0.5 2 4.5 8 125 18
—3x 3 0 —15 -3 —45 —6 —75 -9

1 1 1 1 1 1 1 1 1

y 6 1 0 0 1 3 6 10

The graphs intersect at (%, 0) and (2, 3).
The solutions of the equations are x = %, y=0,andx =2,y =3.

EXAMPLE 56  Solve graphically for x the simultaneous equations y = x> — 2x + 4 and y = 3x — 2.

SOLUTION Sketch the two graphs on the same axes.
Fory=3x—2:
2
X 0 3
y -2 0

X -1 0 0.5 1 15 2 25 3 35
X2 1 0 0.25 1 225 | 4 625 9 | 1225
—2x 2 0 | -1 -2 | -3 -4 | -5 -6 | -7
+4 4 4 4 4 4 4 4 4 4
y 7 4 3.25 3 325 | 4 5.25 7 9.25
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EXAMPLE 57

SOLUTION

446

y=x*-

(a) Fill in the following table.

(b) Draw the graph of y = x> — x?, using the table of values.
(c) On the same axes draw the graph of y = 8x — 12.
(d) Hence, solve the equation x> — x> — 8x + 12 = 0.

(a) X 3 | -2 | -1 0 1 2 3
X3 —27 -8 -1 0 1 8 27
—x? -9 | -4 | -1 0 -1 —-4 | -9
y=X3—X2 —36 —12 -2 0 0 4 18
(b) and (¢) Ay
201 y=8x-12
10+
7 (2,4) %
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(d) x¥*—x2—8x+12=0
=xX-x=8—12

The solutions of the equation are the points of intersection of the two graphs
y=x>—x*andy = 8x — 12
Read off the points of intersection: (2, 4) and (—3, —36)

The solution of the equation is x = 2, —3.

Solving inequalities graphically

To solve the inequality f(x) = g(x), we first sketch the graphs of y = f(x) and
y = g(x). We then shade the region for which f(x) = g(x). We can read off f the
solution set from the graph.

EXAMPLE 58 Solve the inequality f(x) = g(x), where f(x) = 2x + 4 and g(x) = 3x + 3.

SOLUTION Sketch on the same axes the graphs of f(x) = 2x + 4 and g(x) = 3x + 3.

From the graph, the solution set is {x: x = 1}.

EXAMPLE 59 Solve the inequalities f(x) = g(x) where f(x) = x> — 2x, g(x) = —x + 6.

SOLUTION Draw the graph of y = x> — 2x by using a table of values.
X -2 —1 0 1 2 3 4
5 4 1 0 1 4 9 16
—2x 4 2 0 -2 | -4 | -6 | -8
y 8 3 0 —1 0 3 8

Draw the graph of g(x) = —x + 6.
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Note that the curve is below the line for {x: —2 = x = 3} and hence, this becomes the
solution set.

EXAMPLE 60 Find the solution set to f(x) = g(x) when f(x) = x*> + 2x — 8, g(x) = 3x + 4.

SOLUTION Draw the graph of y = x> + 2x — 8 and y = 3x + 4 on the same axes.

Fory = x* + 2x — 8:

X -3 -2 -1 0 1 2 3 4
5& 9 4 1 0 1 4 9 16
2x -6 -4 -2 0 2 4 6 8
-8 | -8 -8 -8 -8 -8 -8 -8 -8
y -5 -8 -9 -8 -5 0 7 16

The solution set is {x: x =< —3} U {x: x = 4}.
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Review of trigonometry

Trigonometry has a variety of applications in different aspects of our lives. Some of
the fields that make use of trigonometry are architecture, astronomy, engineering,
economics and computer graphics.

How do engineers make an exact structure or a blueprint? How do we measure the
distance of the stars? How does the computer recognise music? How do pilots find
their way in the sky?

The simplest sound — a pure tone — is represented by f(t) = A sin (27wt). This equa-
tion represents that of a sinusoidal wave. Whenever you listen to music on an iPod,
you are listening to sound waves. These waves take the shape of sine waves. As the
period of the sine wave changes, the sound changes. When since functions for differ-
ent notes are added together, you will hear more than one note at a time. Next time
you listen to music, think of the sine curves at work.

Did you know that ‘noise reducing’ headphones also make use of since curves?

Let us review some of the work you have previously done on trigonometry.

r=\x*+y?% Pythagoras’ theorem Ay

Also, tan 6 = sin 0 and cot 0 = C.O—SQ.
cos 0 sin 0

Sine, cosine and tangent of 45°, 30° and 60°

o 1 _ V2
sin45° = — = —=*—
V2o 2
o_ 1 _\V2
cos45” = —=—+
V2 o 2
tan45° =1
n30° = L o_ V3 o1 _V3
sin30” = > cos 30 5 , tan 30 3 3
sin 60° = ?, cos60° = %, tan60° = V3
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EXAMPLE 61

SOLUTION

Express cot30° + cos30° in terms of V3, without the use of a calculator.

—_

cot30° =

tan 30°

I
ol S G

cos30° =

Therefore, cot 30° + cos30° = V3 + g

_2V3+V3
2
_3V3
2

Graph of y = sinx

Sinx is periodic with period 27 radians.
The maximum value of sinx is 1, and the
minimum value is —1. The graph is sym-
metric with respect to the origin (0, 0).

Since tan30° =

L
V3

Graph of y = cosx

Cosx is periodic with period 27 radians.
The maximum value of cosx is 1, and the
minimum value is —1. The graph is sym-
metric with respect to the y-axis.

Graph of y = tanx

Tanx is periodic with period 7 radians. The
range of tan x is all real numbers. The graph

VT

NI8-

X
3w I 57 3
2 2

is symmetric about the origin (0, 0). Tanx has
_ 4@ 37 5T

asymptotes at x = £5, £ 57
Graph of cosecx

Since cosecx = L we can look at the
sinx

properties of cosecx using the graph of sinx.

(i) When sinx is positive, cosec x is also positive
and when sin x is negative, cosecx is also
negative.

(ii) Since cosecx = — L \hen sinx is maxi-
mum, cosecx is minimum and when sin x is
minimum cosec x is maximum.

(iii) As x — 0, sinx — 0 and cosecx — oo,

As x — 1, sinx — 0 and cosecx — oo.

w 2w 5

\ /\ |
T 3
2 2 2

13
———————Hﬁ'-———————————

s = e
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<

3 {NA N{\ﬂ

B (3

The graph of cosec x will repeat itself every 27 radians along the x-axis.

Graph of secx

Using the graph of cosx we can derive the graph of secx since secx = <555

(i) Whenever cosx is positive, sec x is positive and whenever cos x is negative,
cosecx is negative.

(ii) When cos x is maximum, sec x is minimum and when cos x is minimum, secx is
maximum.

(ii1) As x > I, cosx — 0 and cosecx — oo.

Asx — 3777, cosx — 0 and cosecx — oo,

X ==3m X =2
x=—3ﬂ-lx=—7-r X=1 X =3

I
1
1
1
Jll—y=secx

(=m 1) (m, 1)

The graph repeats itself every 27 radians along the x-axis.

Graph of cotx

Since cotx = ﬁ we can derive the graph of cotx using the properties of tan x.

(i) When tanx is positive, cot x is positive and when tan x is negative, cotx is negative.

.. 1
(ii) Asx—0,tanx =0 andmé oo,

As x — m, tanx — 0 and NN

tanx
i 1
Asx — 2,tanx—> oo and anx
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DEFINITION

A function f(x) is
said to be periodic
with period k if
and only if fix) =
fix + k). The period
kis the x-distance
between any point
and the next point
at which the same
pattern of y-values
repeats itself.

0000000000000

EXAMPLE 62

SOLUTION

EXAMPLE 63

SOLUTION

y = cotx

1
1
1
1
1
1
1
1
1
1
1
T
-
1
1
1
1
1
1
1
1
1

|
NS

(SIE]

_—_—_—_—_q_—_—_—_—_—_—

Properties and graphs of trigonometric functions

The graph of y = sinx is periodic and it is this periodicity that makes the trigonomet-
ric functions important in the study of electric currents, sound waves, fluid motion,

x

vibration of a spring and so on. The graph of sinx reaches up to 1 and down to —1

and we say that the amplitude of y = sinx is 1. The amplitude of the curve represents
the maximum y-value of the curve.

The graphs of functions of the form y = a sin (bx) or y = a cos (bx) are called

sinusoidal graphs.

Show that f(x) = sinx is periodic with period 2.

Since f(x) = sinx:

flx + 2m) = sin(x + 2m)

Recall that sin (x + 277) = sinx.

Therefore, flx + 2m) = sin(x + 27) = sinx.

Hence, f(x + 2m) = flx).

By definition, f(x) is periodic with period 2.

Periodic functions are functions that repeat a particular pattern or cycle. The sine

function and cosine function are two trigonometric functions which can be used to

model the repetitive behaviour of tidal waves and blood pressure.

Graph of y = asinxand y = acosx

The amplitude of y = asinx or y = acosx is |a| and the period of these functions is 27r.

Plot the graph of y = 2 sinx.

Draw up a table of values.

@m | @ | @ | 2m | 5w Im| 4m | 3w | S5m |17
X 0l g3 2|3 % 6| 3 |2 3 |6 |27
y | ol 1 173 2 173 1 1173 =2 =173 =1 0




MODULE 3 e CHAPTER 14

Note

y = 2sinxis
also a stretch of
y = sinxalong
the y-axis by 0 w
scale factor 2.

The amplitude of the function is 2 and the graph of y = 2 sinx has the same shape as
y = sinx except the maximum and minimum of y = 2 sinx is twice that of y = sinx.
The period of the function is 2.

EXAMPLE 64  Plot the graph of y = —2 cosux. State the period and amplitude of the function.

SOLUTION Draw up a table of values.
m | @™ | @m| 2w 5T 7w | A | 3w | 57 | 1=
x 01 ¢ 312 3% |5 3|23 |6 |°"
y |2 -173| -1 0 1 1.73 | 2 | 173 ] 1 0 | —1|-173| =2

y
2,
o \E\\;T\
2
_2,
Note

y = —2cosx s also a stretch of y = cosx along the y-axis by scale factor 2, followed by
a reflection in the x-axis.

Try these 14.4  Find the period and amplitude of the following functions and plot the graph of each
for the interval 0 = x = 2.

(a) y = 4sinx
(b) y=3cosx
453
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EXAMPLE 65

SOLUTION

Graph of y = asinbx and y = acos bx

The graphs of y = asinbx and y = a cos bx both have amplitude |a| and period 2,
We can sketch graphs of this form using the amplitude and period of the functions.

Sketch y = 2 sin4x for 0 = x = 2.

The amplitude of the function is 2 and the period Y
is ZTW = g The graph repeats itself every g units
along the x-axis.

This graph will lie between 2 and —2 on the
y-axis and one cycle will lie between 0 and %T <

IER
|
oo“ﬁt
ISIE)

The interval [0, g] can be divided into four
a —2-

2_m to obtain the

subintervals each of length -3

following x- and y-values.

077773_7777

8 4 8 2
y: 0 2 0 -2 0

X:

We can draw the graph for one cycle and then repeat this cycle.

The diagram shows one cycle of y = 2 sin4x.

Note

y = 2sin4x s a stretch of y = sinx along the x-axis by scale factor 1 followed by a
stretch along the y-axis by scale factor 2. We get four cycles of sinx within the interval
O=x=2m

y=2sin4x

NANND
NRVATAIAY

[=}

Graph of y = asin (bx + ¢) and y = a cos (bx + ¢)
In the function y = asin (bx + ¢) and y = acos(bx + ¢) the value of c is called the phase
angle. The quantity —% is called the displacement (or phase shift). Recall, the curve

mMHomdﬁﬁ—%<0mdmeQME—%>Q
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EXAMPLE 66 Find the amplitude, period and displacement of y = cos(2x + 717) Hence, sketch the
graph of y = cos(Zx + 7—7) for0=x=2m.

4
SOLUTION Amplitude = 1
Period = 2777 =1

y

17ﬁ y=cos(2x+%)
2

0 Lw A
8\ 8 /8

_‘I -

EXAMPLE 67 Sketch one cycle of the acoustical intensity I of the sound wave for which
I = acos (480t — B) given that ¢ is in seconds, « = 0.027 W cm ™2, B = 0.80.

SOLUTION Amplitude = 0.027
iod = 27T _ T
Perlod = m = 240
/
0.027 I=acos (480t —)

0.019 7
\ t

0 0.0017

—0.027 A

Try these 14.5  Determine the amplitude, period, and displacement for each of the following.

(a) y= cos(3x - %)
(b) y=140 cos(277x — %)
(c) y=2 sin(x — %T)
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Transformations of trigonometric functions

Like other functions, we can use transformations such as translation, stretch,
etc. on the graphs of trigonometric functions. You should be able to identity
the amplitude, period and symmetries related to these graphs, and so be able to

sketch them.

EXAMPLE 68

SOLUTION

Sketch the graph of y = sin2x for 0 = x = 2.

Using f(x) = sinx gives:

f(2x) = sin2x is a stretch along the x-axis by

1
factor o

There will be two complete sine curves within the
interval 0 to 2.

Amplitude = 1
Period = 7
x-values obtained by intervals of 7 (period
divided by 4). One cycle can be drawn by looking
at the values of x and y:

T w 37
% 27
1 0 -1 0

X: w

y: 0
Amplitude =1

Period = 7

y =sin 2x

EXAMPLE 69

SOLUTION

Sketch the graph of f(x) = 2 + sinx for 0° = x = 360°. Identify the periodicity and

the amplitude of the function.

Using f(x) = sinx, f(x) = 2 + sinx is a shift upwards of f(x) by 2 units.

Amplitude =1

Period = 360° 51
4 .
31 y=2+sinx
2 4
‘I .
_ X
0 90°  180° 270°  360°
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EXAMPLE 70

SOLUTION

EXAMPLE 71

SOLUTION

Sketch the graph of f(x) = 3 + 2 sinx for 0° = x = 360°.

The graph of f(x) can be sketched using the graph y
of y = sinx. >
y=3+2sinx
The graph of sin x is stretched along the y-axis by 4
factor 2 and shifted upwards by 3 units. 3
Whensinx =1,f(x) =3+2=5 5
When sinx = —1,f(lx) =3 -2 =1 .
. maximum of f(x) is 5, minimum is 1. X
Amplitude = 2 0 90°  180° 270°  360°
Period = 360°

Sketch the graph of f{x) = 2 — cos 2x for 0 = x = 2.

We can go through a sequence of transformations to sketch the graph, starting with
y=cosxfor0=x=2m

Amplitude =1
2

Period = =~ = 7
2
Ay
3,
2,
1 _
y=cosx
\ / )
0 T T T T T T
T T ST 2
1] 2 2
_2,
_3,

y = cos 2x is a stretch along the x-axis by factor % We get two complete cycles within
the same interval.

N

y = cos 2x
@




EXAMPLE 72

SOLUTION

For y = —cos 2x we reflect y = cos 2x along the x-axis.

y
3,
2,
- y=—cos 2x

/\ /\ .

of /' = \ =/ 3z \on
—14 2 2
_2,
_3,

Shift y = —cos 2x up the y-axis by 2 units and we get y = 2 — cos 2x.

Ay y=2-cos2x

X
T T T
270°  360°

T T T
0 90°  180°

Describe the sequence of transformations which maps the graph of f(x) = sinx onto
the graph of g(x) = 3 + 2 sin %x.

Let f{x) = sinx.
:f(%x) = sin(%x)

f (%x) is a stretch of f(x) along the x-axis by scale factor 2.

2f(%x) = 2sin (%x)
2f] (%x) is a stretch of f( %x) along the y-axis by scale factor 2.

34 2f(3x] = 3 + 25sin(1x)

3+ 2f(%x) moves the graph of 2f(%x) up the y-axis by 3 units.

(a) Sketch one cycle of y = sin 3x.

(b) Describe the sequence of transformations which maps the graph of y = sinx
onto the graph of y = 2 — sinx. Hence, sketch y = 2 — sinx for 0 = x = 2.

(c) Sketch the graph of y = |cos 2x| for 0 = x = 2.
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EXAMPLE 73

SOLUTION

y=asin(bx) + cand y = a cos (bx) + ¢
We can sketch these graphs by using two methods:
(i) Using transformations of graphs

(ii) Using key points on the graph
Using transformations

We start with the graph of y = sinx. We stretch it along the x-axis by factor 1 and
then stretch it along the y-axis by factor a. Finally, we move this graph up the y-axis
by c units if ¢ is positive or down the y-axis by ¢ units if c is negative. The resulting
graph is y = a sin(bx) + c. We use a similar procedure for sketching y = a cos (bx) + ¢,
but starting with the graph of y = cosx.

Using key points

We start first sketch the graph y = a sinbx or y = a cos bx, and then shift it along the
y-axis by ¢ units. We use the amplitude of the function to identify the maximum
and minimum y-values. Use the period 2777 and divide the interval | 0, 2777 into four
equal subintervals. Find the end points of the cycle (or the curve) and then draw the
sinusoidal graph by connecting the points.

The current i, in amperes, flowing through an alternating circuit at time ¢ seconds is:
i = 120 sin (307¢) fort=0.
(a) Identify the following.
(i) The period of the function
(ii) The amplitude of the function
(b) Draw the graph of this function for one period.
(a) (i) The period = 320—7;_ = 1—15
(ii) The amplitude = 120

(b) The graph will lie between —120 and 120 along the y-axis. One cycle begins at
t=0andendsatt=-L

15°
1
We divide the interval [O, %} into four subintervals of length 14—5 = 6_10
. 1 1 1 1
Therefore, t: 0 0 30 20 15
i: 0 120 0 —120 0
i
120-
o0 1
60
—120
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EXAMPLE 74

SOLUTION

EXAMPLE 75

SOLUTION

EXAMPLE 76

SOLUTION

Find an equation for the curve below.

34

0=
ENEE
)
RN
|0

4

The graph is similar to a cosine function. The amplitude of the function is 2 and the
period is 5.

2

Since period = 2777
l_2m
=3=%
=>b=A4mw

The function is of the form y = a cos (bx), where a = 2, b = 4.

Hence, the graph represents the function y = 2 cos (4mx).

Write the equation of a function with amplitude 2 and period 3.

Since period =2—b77

= 2m
=3 A
=2m
0=
=a=2
Therefore, y = 2 cos (%’Tx) ory = 2sin (zTﬂ-x)

y =atan(bx) + ¢

Since the range of tan x is [ —2, =], there is no concept of amplitude. To sketch

y = atan(bx) + ¢, we can use transformations of graphs. The value of a will identify
the vertical stretch, b identifies the horizontal compression (factor %) and the period
is 7. The value of ¢ indicates the vertical shift.

b

Sketch the graph of f(x) = 3 tanx —2for0 = x = %T

Let us look at the transformations.
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EXAMPLE 77

SOLUTION

y=3tanx : y :
1 i
! | |
134 |
1
1 (l, 3) : :
: N Sk (%)
) | ARE oS
1 . . X
: X EXE:
1 2 ) 2
1 1 1
1 =2 1
Next multipl ! ! !
tanx by 3 o | Shift the - |
_ 8 1 1 1
s 1) which is ! (—%, -3) graph of (_ T 5) N A
a vertical I y=tanx 4’ —ul |
stretch by a : down by 2 : :
factor of 3. 1 units. :

Sketch the graph of y = 2 tan (2x).

We start with the graph of y = tanx, indicating (g, 1) and ( —%, - 1) on the curve. We
can use these points as a guide for each transformation. For y = tan (2x), we have a
horizontal stretch by factor % Therefore, (717, 1 ) maps onto (%T, 1) and ( —717, - 1) onto
=50

8’ ’

When tan (2x) is multiplied by 2, we have a vertical stretch by factor 2 units.
g T _m _T _
Therefore, (§’ 1) maps onto (§’ 2) and ( 3 1) onto ( 3 2).
Graph of tan x

Y

y=2tan (2x)

I y :

2

Al

RO

Graphs of rational functions ,

When sketching graphs of rational functions we
first identify the following as far as possible.

(i) Intercepts on the x-axis and y-axis X

(ii) Points on the graph classifying as maximum
and minimum

(iii) Asymptotes (horizontal or vertical asymptotes)

461



DEFINITION In the graph, the x-axis is an asymptote to the curve. The graph cuts the x-axis at
(0, 0) but as x approaches infinity the curve moves along the x-axis.

An asymptote
is a line which
approaches a
curve, becomes For a rational function f(x) =
atangent to the
line as x or y tends
to infinity but

does not touch

the curve asxory
approaches infinity.

Vertical asymptotes

P(x)
Qxy

when the denominator is zero. Set Q(x) = 0.

the vertical asymptotes of the function occur

eee0c0cccc0ccns

x+1
EXAMPLE 78 Identify the vertical asymptote of y = P
SOLUTION Vertical asymptotes occur when the denominator is zero.
=>x+2=0
=>x= -2
Therefore, x = —2 is a vertical asymptote.
EXAMPLE 79 Find the vertical asymptote of y = ﬁ
— 3x
SOLUTION The denominator becomes zero at x> — 3x + 2 = 0.
x—1x—2)=0
=>x=12

Therefore, x = 1 and x = 2 are vertical asymptotes.

Horizontal asymptotes
Lety = flx). If xli_r)nw y = a, then y = a is a horizontal asymptote to the curve y = f(x).

EXAMPLE 80  Find the horizontal asymptote of y = 2x + 21
SOLUTION We need to find xli_l)nmy.
— 2x+ 1
xhl)nmy Xhi)nm( x—2 )
2x +1

lim % (Dividing the numerator and denominator by the highest
X0 E — % term in x.)

2+ 1
_xh_r>n_

1 =%
_2+40
1—-0

Therefore, y = 2 is a horizontal asymptote.
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EXAMPLE 81

SOLUTION

EXAMPLE 82

SOLUTION

x> —3x—4

Find the horizontal tote of y = .
ind the horizontal asymptote of y = Z5——"—

We need to find xhl}lw .

2
lim y = lim 9237x4
xX— o0 x> xs — 7x + 10
X _3x_ 4
. X2 x2 x?2 C g .
= lim =5 (Dividing the numerator and denominator by x?)
xoext  7x 4 10
¥ X K
3_4
li T 2
57 10
x T2
_1-0-0
1-0+0
=1

Find the horizontal and vertical asymptotes of

2x + 3 + 1 242
(a))’=4§_1 (b)y=§_3 (C))’zm

_x+t1
x+ 2

Sketch the graph of y

We find the intercepts first.

o _0+1_1
Whenx—O,y—0+2 5
Wheny=0,0=2T1oxt1=0=x=-1

Therefore, (0, %) and (—1, 0) are on the curve.
Now we find the asymptotes.

Vertical asymptote:

x+2=0

x=—2

This would make the denominator zero.

Horizontal asymptote:

Il
g

|
g

Therefore, y = 1 is the horizontal asymptote.
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EXAMPLE 83

SOLUTION

Now we find the stationary points.
dy _ (x+2)(1) — (x+ 1)(1)

dx (x +2)?
_x+2—x—-1__ 1
(x +2)? (x + 2)?
At statllonary points dx 0.
= =0
(x + 2)?
=1=0

This is inconsistent. Therefore, there are no stationary points.
This is the information we gathered and will use to
sketch the graph:

(0, %), (—1, 0) are on the curve.

No stationary points
Horizontal asymptote: y = 1

Vertical asymptote: x = —2

_x+1
x+2 3
e _=3+1_ —2_
Whenx = =3,y =333 - -1 2

The curve must pass through (—3, 2) and move

along the two asymptotes. We have spanned the whole x-axis when drawing the

graph, since the domain of this functionis x € R, x # —2.

. 2 —
Given that y =

(a) Find the horizontal asymptote and vertical asymptote of y.
(b) Find the stationary points of y.
(c) Sketch the graph of y.

(a) For horizontal asymptote:

2 _
lim y = lim & =22 24x+3
X —> oo X — oo xc—4

=1
Therefore, y = 1 is a horizontal asymptote.

For vertical asymptotes:

x2—4=0

S>kx—-2)(x+2)=0

=>x=2,—2

Therefore, the vertical asymptotes are x = 2 and x = —2.
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2 _
(b)y=x x24x+3

—4
dy (o —4)2x — 4) — (¥ — 4x + 3)(2x)
dx (x? — 4)?
_2x> —4x* — 8x + 16 — 2x> + 8x* — 6x
(x* — 4)?
_4x* —14x + 16
(x* — 4)?
d
At stationary points ay =0.
4’ — 14x +16 _
(x* — 4)?

=4x?— 14x+16=0

Since b* — 4ac = (—14)> — (4)4(16) = —60, there are no real roots. Hence,
there are no stationary points.

()

o
! Ix=2
1 1
1 1
1 1
1 1
[} [}
________ Ll i y=t
: e
2 9 2 4 s
i i
1 1
x=-2! !
1 1
: ly = x>—4x+3
1 I x>—4
: :
EXAMPLE 84  The equation of a curve C is given by y = g ’i T
(a) Find the equations of the asymptotes of C.
(b) Show that C has no stationary points.
(c) Sketch C.
SOLUTION (a) Vertical asymptotes exist when x> — 1 = 0.
=>xr=1
=x=1,—-1
There are vertical asymptotes at x = 1 and x = —1.
Horizontal asymptotes exist at lim y = lim —*
X —> o0 X —> o xe —
1
= lim
X —> o0 1— _1
2
_0
1
=0

Therefore, y = 0 is a horizontal asymptote.
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(b) y=

x2—1
dy _ (2 — (1) — x(2x)
dx (x2 - 1)2 : y :
_xr—1-—2x x=-1 i
(x* — 1) i |
1 1
_ —x*—1 | |
(x* — 1)? i |
} }
For stationary points - 0 10 !
yponts g =0 1\
=-—x2—1=0 ! !
1 Ix=1
=x2=-1 ! !
1 1

Therefore, there are no stationary points.
(c) We now find the intercepts.
When x =0,y =0 (0, 0)

We find other points.
1
1.2 _ 2
Whenx—i,y—l—_l——g
4
1
__1,__2 _2
When x = —3,y T,
4
= -2 _2
Whenx =2,y ==+ 5
—2 2

When x = —2y=7"7="%

These values give an indication of where the graph lies.

Shape of a curve for large values
of the independent variable

In Module 1 we looked at the shape of polynomials for large values of x and we can
summarise the results like this.

(i) For a polynomial with a degree that is odd, the behavior of the end points of the
polynomial can be deduced as follows.

© With a positive leading coefficient the graph falls to the left and rises to the
right.

© With a negative leading coefficient the graph rises to the right and falls to the
left.

(ii) For a polynomial with an even degree.
© With a positive leading coeflicient the graphs will rise on both ends.

@ With a negative leading coefficient the graph falls on both ends.
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For a rational function we can see that if y = ax"+a, _x" BRI R a,
a
1. .4%1 i
thena x"(1+a, x"" '+ + a x| that as |x| — 0, ax 1.

. y = a x, and we say that y behaves like a x, as [x| — o.

EXAMPLE 85 Discuss the shape at infinity of the curve y = 1 ‘Zbi T
X

y=22-1

—1eU/1
NSRRI

_ 4xt
SOLUTION Y=

Whenx =0,y = 0.

.. (0, 0) is on the graph.

1

By long division, y = 2x* — 1 + T

We have y = 2x2 — 1 as |x| — oo

The curve is therefore asymptotic to y = 2x*> — 1 and can be drawn as shown.
ry

44

Y e

EXERCISE 14D

1 Given that y = x2 + 2x + 1. Find and classify the points of y. Sketch the graph
of the function.

2 Find the maximum and minimum points on the curve y = 12x — x*. Hence,
sketch the graph of y = 12x — x°.
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3 Find and classify the turning points of f(x) = x* — 6x%.

Sketch the graph of y = f(x).

4 A cricketer hits a ball that follows the path given by y = — %xz + x, where the

distances are measured in metres. Sketch the graph of the path of the ball.

5  The angle 0 that a robot arm makes with the horizontal as a function of time
is given by = —2£> + 12#* + 10. 0 is measured in radians and ¢ in seconds.
Sketch the graph of 0 against t for 0 = t < 6.

2x + 1
x—3"

6 A curve C has equation y =
(a) Show C has no points.
(b) Find the equation of the asymptotes of C.

(c) Sketch C.

2
x4+ 4
8  The equation of a curve Cis givenby y = x + %

7 Sketch the curve of y =

(a) Show that C has two stationary points.
(b) Find the equation of the asymptotes of C.

(c) Sketch C.

9  Giventhaty = 2;;%—21,

2
10 The equation of a curve c is given by y = x-;fo;—S’ sketch the
graph of C.

sketch the graph of y.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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SUMMARY

-

Tangents and normals
. dy
a Gradient of atangent = -~
dx
b  Gradient of a normal = i
dy
dx
Rate of change
dy _dy . dx
dx dt ~dt
Curve sketching
Look for:

e intercepts
e turning points
e asymptotes

\ 4

Asymptotes occur on rational
. P(x)

functions f(x) = ——

unctions f(x) Q(x)
Vertical asymptotes occur at
Qk)=0

Horizontal asymptotes occur
atlim f(x) =/

X—>o0

= y = lis a horizontal
asymptote.

) 4

Graph of a polynomial

(i) Find where the curve cuts the
x- and y-axis if possible.

(i) Find values of y for values of x
between the points where the graph
cut the x-axis.

(iif) Draw a smooth, continuous curve.

Applications of differentiation

O

Increasing and decreasing
functions

A function is increasing over
. .d

an interval if d—i > 0 over

the interval

A function is decreasing over

an interval if ﬂ < 0over
dx

the interval

MODULE 3 e CHAPTER 14

~

Stationary points

Stationary points exist at d_ 0.

dx
First derivative test for classification of x = a

If%<0forx<aorﬂ>0forx>a,

dx
then there is a minimum point when x = a.
d d
f<Y > 0forx<aor <L <0forx>a,
dx dx
then there is a maximum point when x = a.

d
If % does not change sign as it passes

through g, then there is a point of inflexion
when x = a.

||
Second derivative test for classification of x = a
d?y ) -
If d_2 > 0 when x = g, then there is a minimum

pointatx = a.

d2y
If —5< 0 whenx = g, then thereis a
dx

maximum point at x = a.

2
If % = 0, you must test further (in this case
X

you can go back to the first derivative test).

. . : d?

Points of inflexion occur atd—);: 0. (You must
X

check concavity since this is not a necessary

condition.)
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Checklist

©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00

Can you do these?

B Find the gradient of the tangent to a curve.

M Find the gradient of the normal to a curve.

B Find the equation of a tangent.

B Find the equation of a normal.

M Find the region for which a function is increasing or decreasing.
M Identify points.

B Identify maximum points, minimum points, points of inflexion.

B Use the first derivative to classify maximum points, minimum points and
points of inflexion.

B Use the second derivative test to identify maximum, minimum points.
B Solve practical problems involving maximum and minimum.

B Sketch the graph of polynomials.

B Solve graphically flx) = g(x), flx) = g(x), flx) = g(x)

B Sketch the graphs of sec x, cosec x, cot x.

M Sketch the graphs of sin kx, cos kx, tan kx.

B Identify the periodicity, symmetry and amplitude of sec x, cosec x, cot x, sin kx,
cos kx, tan kx.

B Solve rate of change problems.

M Identify the properties of a curve and sketch the curve.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o

Review Exercise 14

X
_x3

1 The equation of a curveis y = I Find the equation of the normal to the
curve at the point where x = 2.

2 Oilis poured into a container at a rate of 40 cm®s~!. The volume, Vcm?®s ™1,
of the oil in the container, when the depth of the oil is # cm, is given by

V = 0.02h* + 0.4h* + 400h. Find the following.
(a) The rate of increase in the depth of oil when h = 10cm
(b) The depth of oil when the rate of increase in the depth is 0.04 cm?s™!

3 Find the coordinates of the point at which the tangent to the curve
y = cosx + sinx, where, 0 = x = g is perpendicular to the line y + x = 3.
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A curve has equation y = %_17 Find the equation of the following.
(a) The tangent to the curve at the point P(3, —4)
(b) The normal to the curve at the point P(3, —4)

The tangent to the curve at the point P meets the x-axis at A. The normal to the
curve meets the y-axis at B.

(c) Find the area of triangle APB.

A spherical balloon is being inflated and, at the same instant when its radius is
4m, its surface area is increasing at a rate of 3m?s™ L. Find the rate of increase,
at the same instant, of the radius and the volume.

A circular cylinder is expanding in such a way that, at time ¢ seconds, the length
of the cylinder is hcm and the area of the cross-section is 20 h cm?. Given that,
when h = 4 cm, the area of the cross-section is increasing at a rate of .05cm?s ™1,

find the rate of increase of the volume at this instant.

(a) Find the coordinates of the stationary points on the curve.
y=ix4—2x3+12—1x2—6x+ L.

(b) Determine the nature of each of these points.

(c) Find the coordinates of the points of inflexion on the curve.

(d) Sketch the curve.

(a) A curve has the equation y = x*> + 3x* — 24x + 10. Find the x-coordinates
of the turning points on the curve and determine the nature of these turn-
ing points. Find also the coordinates of the point of inflexion on the curve.

Cos2x
1 + sin2x
at the point P. Find the exact coordinates of P.

at the point x = T meets the x-axis

(b) The normal to the curve y = >

An open metal container, with a square base of side xm and a height of ym,

is to be made from 96 m? of a thin sheet of metal. The volume of the container
is Vm?3.

(a) Show that V = 24x — ix?

(b) Given that x can vary, show that the maximum volume is 64V2m?.

A curve has the equation y = 4x> — 24x2 + 36x.

(a) Find the coordinates of the stationary points on the curve.

(b) Find the coordinates of any points of inflexion on the curve.

(c) Sketch the curve.

A circular cylinder, open at one end, has radius rcm and external surface area
2437rcm?.

(a) Show that the volume of the cylinder, Vem?, is given by V = 757'(243r — ).

(b) Given that r can vary, find the value of V for which % = 0 and determine
whether this value is a maximum or a minimum.

471



472

12

13

14

15

16
17

18

19

4
(5x — 2)%
a rate of 0.25 units per second, find the rate of change of y when

The variables x and y are related by the equation y = If x increases at
(a) x=1

(b) y=09.

A curve has the equation y = x> + 3x? + 3x + 2.

(a) Find the coordinates of the turning points on the curve.

(b) Sketch the curve.

36R
R*+2R+1
resistance in the circuit. Sketch the graph of P against R.

The power P produced by a source is given by P = , where R is the

Find the equation of the tangent to the curve y = cos®2x + sin*2x at the point

=7
>
Sketch the curve y = ngjf 5 Show all turning points and asymptotes.

A vessel is in the shape of an inverted cone.
The radius of the top is 16 cm and the height
is 24 cm. If the height of water in the vessel

4.3

27

Given that water is poured into the container
at a rate of 0.05cm s, find the rate at which
the volume is increasing when the height is
12 cm.

«~—16cm—>

is xcm, show that V =
24 cm

If 2400 cm? of material is available to make a box with a square base and an
open top, find the largest possible volume of the box.

A cylindrical can is to be made to hold 2000 cm? of water. Find the dimensions
that will minimise the cost of the metal to manufacture the can.
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CHAPTER 15
Integration

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

At the end of this chapter you should be able to:

B Define integration as the reverse of differentiation

B Understand and use J fix)dx

B Show that the indefinite integral represents a family of functions

B Know and use the integration theorems:

o J cflx)dx = CJ f(x) dx, where c is a constant

® [(f1n) T gl dx = [fix)dr = [gx) dv

B Find integrals using the integration theorems
B Find integrals of polynomials
B Find integrals of trigonometric functions
B Find integrals by substitution
B Find definite integrals
B Know and use be(x) dx = Jf(t) dt
a a

a

[ | Knowandusejf(x)dx=ff(a—x)dx,a>0
0 0

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

KEYWORDS/TERMS

integration « anti-derivative « indefinite integral
definite integral « polynomials e trigonometric
functions « substitution
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DEFINITION

The indefinite
integral of g(x) is
defined as

jg(x) dx=G(x) + ¢

where G(x) is the
anti-derivative

of g(x) and cis an
arbitrary constant.

(i) We increase
the power
of xby 1. That
is, x" is raised
tox"t1,

(ii) Divide the
new power

of xbyn + 1.
+1

'd
That is, T

Anti-derivatives (integrations)

Anti-derivative or integration is the name given to the process of reversing differenti-
ation. Given the derivative of a function we can work backwards to find the function
from which it is derived.

In differentiation, if f(x) = x°, then f'(x) = 3x2. It follows that the integral of 3x? is x°.

The symbol used for integration is an elongated s that is J, which represents the
‘integral of . Together with the integration symbol we usé dx to represent that we are
integrating with respect to x. Therefore, for the integral of 3x* we write:

J?ﬁxzdx =3

The constant of integration

Look at these examples of functions and their derivatives.

y=x
dy _
:E—Zx
y=x*+6
dy _
2&-2)&'
y=d2+200
Y _
:dx 2x

Whenever we add a constant to x* and differentiate we get the same result of 2x. If we
differentiate y = x*> + ¢, where ¢ is any constant, we get 2x.

Hence, fory = x> + ¢
dy _
=

Therefore, JZxdx = x2 + ¢, where c is called the
constant of integration.
If %F(x) = f(x), then F(x) + ¢ = J f(x) dx, where ¢

is the constant of integration and f(x) is called
the integrand. This integral is called an indefi-
nite integral since ¢ has an indefinite value. The

indefinite integral of a function is the family of

all antiderivatives of the function. The family of
curves representing the antiderivative of 2x, which
is x2 + ¢, has an infinite number of curves. We can

represent the family of curves like this.

Integrals of the form ax"

Recall i(x”) =nx"" 1,

dx
For integration we reverse the process as follows:
x" +1
x"dx = + ¢, where n # —1.
n+1
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EXAMPLE 1 Findjx‘ldx.

SOLUTION Jx“dx =X

EXAMPLE 2 Findjx7dx.

1
SOLUTION Jx7dx =X + ¢ (raise the power by 1 and divide by the new power)

EXAMPLE 3 Findjx/fdx.

SOLUTION We write vx in index form.

1
Therefore, VX = x2.

I pojwolig,, 9
_|._
O

W

EXAMPLE 4 Find Jldx.

SOLUTION We write%as x 3.
x

de= fx—%lx
X

Integration theorems

Theorem 1

Since ic = 0, where c is a constant

dx
= Jde =c
Theorem 2
Since d%c(x +o=1

:>j1dx=x+c
475



EXAMPLE 5

SOLUTION

EXAMPLE 6

SOLUTION

EXAMPLE 7

SOLUTION

Theorem 3

Since dx(ax +c¢)=a

= Jadx = ax + ¢, where a is a constant and c is the constant of integration.

Find J7x2 dx.

We can take the 7 out of the integral and then integrate each term.

J7x2dx = 7Jx2dx

Theorem 5
J(f(x) + o)) dx = Jf(x)dx + Jg(x) dx

The integral of a sum is equal to the sum of the integrals.

Given that fix) = 3x° + 2, find J fx) dx.

J3x5+%=J3x5dx+J%dx
X X

= BJdex + ZJx_de

Il
w

+c

(x5+1) (x—2+1
5+1 —2+1

— 3.6 _ 51
6x 2x '+ ¢
=%x6—%+c

Theorem 6
j (fix) — g(x)) dx = Jf(x) dx — j g(x) dx

The integral of a difference is equal to the difference of the integrals.



MODULE 3 e CHAPTER 15

EXAMPLE 8 FindJ(3\/7 — 8 dx.

SOLUTION J(3\/9_c — 8x%)dx = 3JW dx — 8Jx3dx

3Jx% dx — 8Jx3dx

1+1 3+1

— 3| X2 _glx

—31 83+1+c
§+1

=20 — 24+ ¢

EXAMPLE 9 FindJ2x7dx.
SOLUTION J2x7dx = 2Jx7dx

. x7+1)
_2(7+1 te

EXAMPLE 10 FindJ6x6

dx
SOLUTION J6x6dx = Jxédx

EXAMPLE 11 FindJ(6x2—4x3+x)dx.

SOLUTION J(6x2 4+ ) dx = J6x2dx = J4x3dx + dex, using Jf(x) + o(x)dx = Jf(x)dx
ijg(x)dx.
. x2+l _ x3+1 x1+1
BV VA EES TR s
_ 6 _dxt X
R
=2x3—x4+%x2+c

EXAMPLE 12 Find the integral ofJ(’:’»x3 + 4x% — 2x + 1) dx.

SOLUTION J(3x3 + 4x* — 2x + 1) dx



EXAMPLE 13

SOLUTION

EXAMPLE 14

SOLUTION

EXAMPLE 15

SOLUTION

EXAMPLE 16

SOLUTION

EXAMPLE 17

SOLUTION

Given that f(x) = 6x° — 3x> + 4x + 12, find J flx) dx.

pumxzjmﬁ—3ﬁ+4w+umx
~66_3 4.0
e X 3x3+2x + 12x + ¢

=x0— 3+ 22+ 12x + ¢

Find J (2x — 3)2dx.

Expanding (2x — 3)? gives:

®
w
|
[*))
=
[3S)
+
Ne)
x
+
a

J(Zx— 3)2dx=J4x2— 12x + 9dx
=%x3—12—2x2+9x+c
4
3

Given that g, b and c are constants, integrate with respect to x
(a) ax + bx” — cx1©

(b) 4ax* + bx® + 2¢

(a) J(ax +bx’ —cx)dx =22+ 35 b x’s x"' + d (where d is a constant)

(b)J(4ax4 + bx? + 20)dx = ax5 +b x3 + 2cx + d (where d is a constant)

Find J (322 — 2)( + 5)dx

At this stage, we have no rules for integrating a product. We expand the brackets and
integrate. Expanding the brackets gives:

(Bx2 —2)(x*+5) =3x>+ 15x2 — 2x> — 10
N J(3x2 — )3 + 5)dx = J(3x5 +15% — 20 — 10)dx
=§x6+13—5x3—%x4— 10x + ¢

1 4_
2x 10x + ¢

Integrate the expression J(6x4 + VX — 3x§) dx.

J(6x4 +vx — 3x)dx = J (6x* + x — 3x%) dx
6

(4+1) ol ot N
= — c
4+1 1 2

2+1 3+1
65,82 95

5x+3x 5x+c
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2
EXAMPLE 18  Integrate the expression J t ;; Lar.

SOLUTION We have no rules at this stage for integrating quotients. We rewrite the function and
then integrate. We can write this function as the sum of two terms as follows:
t+1_£_ 1
L = 4 =
tt tt

+

R

1
t2
t 4

[ 8]
+
7

2
Therefore, jtt—tl dt = Jt‘z + 744

_pHl gt
—2+1 " —4+1 " ¢
_r
=—+ = 3 +c
—1 1
=—1- 1 +4¢
t 38
[Pt
EXAMPLE 19 Find | ——dt.
Vit
SOLUTION We need to rewrite the equation before integrating, as follows:
P+t _B+t
Vi 4
o
£ B
=P+ (Using rules of indices)
=th+0p
£+t 1
dt==Jﬂz+—hdt
5
_ 5t§+1 1tz +1 L.
S+1 S+l
£, b
2 2
z + 5 +c
2 2
=26+ 26+

EXAMPLE 20  Integrate the expression f (4 — Vx)dx.

SOLUTION Since we have no laws for integrating products at this point, we expand the brackets
and then integrate.

Multiplying out the bracket, we get:
B34 — VX) = 234 — x)
3+1

=4x3 — x

7
=43 — x2
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EXAMPLE 21

SOLUTION

EXAMPLE 22

SOLUTION

EXAMPLE 23

SOLUTION

Nowjx3(4 —VXx)dx = J4x3 — %dx

Rewriting the function:
X —4x0 _ xB 4x®

e R
= x° — 4x3

8 _ 446

Jix 34xdx=Jx5—4x3dx

X
L 431
=5F¥1 3+1 ¢
=16y,

Find J x(x + 2)%dx.

Expanding the brackets, we get:
x(x +2)% = x(x> + 4x + 4)
= x>+ 4x* + 4x
Therefore, Jx(x +2)2dx = j (%3 + 4x% + 4x)dx

_xt 44X
=% + 3 + > +c
14,43 2
i + 3 +2x*+c
. , Y.
Given that the rate of change of y with respect to t is T 2t* + 3t —2and thaty = 4

when t = 0, find y in terms of ¢.

dy ., _
E—Zt +3t—2

Integrating both sides with respect to t:
y=JQﬂ+%—2Mt

_ 23, 38
y=3ty

y=2f+30-at+c

—2t+c¢

Whent =0,y = 4.
Therefore, 4 = %(0)3 + %(O)2 —2(0) + ¢
4=c
3

Hence, y = %F + Etz — 2t + 4.
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d
EXAMPLE 24  Given thatay = 4x> — 2x + 5. Find y in terms of x given that y = 1 when x = 1.

dy 5

SOLUTION ax 4x’ —2x + 5
Integrating both sides with respect to x, we get:
y= J(4x3 —2x + 5)dx

_4x3+1 2x1+1
T3+1 1+1

=xt—x>+5x+¢

Whenx =1,y = 1.

Therefore, 1 = 1* — 12 + 5(1) + ¢
1=1—-1+5+¢
c=1-5
= —4

+5x + ¢

Therefore, y = x* — x* + 5x — 4.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 15A

In questions 1 to 15, integrate each function with respect to x.

| 2 5x°
3 % X 4 8x°
5 x;gl 6 (4x+ 12 +2)
VX — 2 x* — 6x2
7 Vi 8 e
(VX + 1)
2 2
9 (2x*+1) 10 T
11 (x— 3vx)? 12 %
13 ¥ 14 14 40— 2
x3 x?
15 (x° +2)?
In questions 16 to 25, find the following integrals.
16 J4x5dx 17 f7x3 - dx
18 J(4+2x)3dx 19 J(x—1)3dx
20 (X5 ax 20 [0 - 3x P ds
X
22 |4+ 60+ 10vEds 23 [ax + 30 - Sax
X X
x% + 4x 3+ 2t
24 Jde 25 det

26 Given that the gradient of a curve is 4x> — 8x + 2 and that the curve passes

through (1, 0), determine the equation of the curve.
481



oooooooooooooooooooooo

EXAMPLE 25

SOLUTION

EXAMPLE 26

SOLUTION

27 Find the equation of the curve which has a gradient of 4x + 3 and passes
through the point (2, 1).

28 'The rate of change of y with respect to ¢ is given by % = 4t; 3 Find y in terms
of t, given that y = 1 when t = 2.

dy _

e

through (1, 1), find the equation of the curve.

29 The gradient of a curve is given by X’ =6+ % Given that the curve passes

d
30 The rate of change of u with respect to t is given by d_fc = 4f> — Vt. Find u in
terms of ¢, given that u = 1 when t = 1.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Integration of a function involving a linear factor

Let a and b be constants.
d(ax+b)"*! _ (n+1)XaX(ax+b)
dx a(n+1) a(n+1)

= (ax + b)"

(ax + b)" 1

RS +c=J(ax+b) dx,n # —1anda # 0.

Integrate J(Zx + 1)°dx.

Comparing (2x + 1)® with (ax + b)", wehavea = 2,b = 1 and n = 6.
. nqe  (ax + byr+1
Usng(ax+ b)"dx CEE
(2x + 1)6+1
26 + 1)
_ @x+1y
n 14

+ ¢, we get:
J(Zx +1)odx = +e

+c

Integrate the expression J(6x47+3

( 4 )2 _ 16
6x + 3 (6x + 3)?
= 16(6x + 3)72

Therefore J(ﬁ)zdx = J16(6x + 3)72dx

=16J(6x+3)’2dx
n+1
Usinga = 6,b =3 andn = —2inj(ax+b)”dx=w

+ :
atn + 1) ¢, we get

((6x +3)72*1)

6(—2+1) €

J16(6x +3)"2dx = 16




MODULE 3 e CHAPTER 15

EXAMPLE 27

SOLUTION

EXAMPLE 28

SOLUTION

Try these 15.1

sinxdx = —cosx
+c
cosxdx = sinx
+c
secZxdx = tanx
+c

— e =

EXAMPLE 29

SOLUTION

Find J V3 —2tdt

jm dt = j(:«} — 26)2dt

, o 1. w1, (ax+bntl .
Using a = 2,b—3andn—21ntof(ax+b) dx_—a(n+1) , we get:
9+l
[-miar=C2E
~2(1+1)
:(3—2t)5+c
23
2
—%(3—2t)%+c
_(ax+b)"t!

2 5 i "
Can we ﬁndj(x + 1)2dx by using the result[(ax + b)'dx FCES)

In the function (ax + b)", ax + b is a linear flélnction, while x? + 1 is a quadratic
function. Hence, we cannot integrate (x> + 1) by using this result.

(a) Find the integral of the following.
) f (4x + 2)8dx
(i) f VAX T 5 dx
(iii) J V2x + 1dx

d
(b) Given that ay = (3x — 1)%, find y as a function of x given that y = 1 when x = 1.

Integration of trigonometric functions

d
dx
cosx +c= J —sinxdx

Since —(cosx) = —sinx, integrating both sides with respect to x, we get:

jsinxdx = —cosx + ¢

Since i(sin X) = cosx, integrating both sides with respect to x:

dx
sinx + ¢ = Jcosxdx
Since %(tan x) = sec?x, integrating both sides with respect to x:

tanx + ¢ = Jseczxd.x

Find J(sinx + 3 cosx)dx.

J(sinx + 3 cosx)dx = [sinxdx + 3Jcosxdx

= —cosx + 3sinx + ¢
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EXAMPLE 30 FindJ(4sinx—2cosx)dx.

SOLUTION J(4 sinx — 2 cosx)dx = —4 cosx — 2sinx + ¢

EXAMPLE 31 FindJ(xz—i-Gcosx—Zsinx)dx.

SOLUTION J(x2 + 6 cosx — 2sinx)dx = szdx + 6Jcosxdx — ZJsinxdx

x3 .
=3 + 6sinx — 2(—cosx) + ¢

=%x3+6sinx+2cosx+c

Let us move onto trigonometric functions of multiple angles.

d(1

—( =sin ax) = cosax, where a is a constant.

dx\a
Jsinaxdx 1
1 :Jcosaxdx=asinax+ c
= —gcosax +c

d(1 .
2l2cosax| = —sinax
Jcos axdx dx( a )

Lsinax + ¢ = —%Cosax +c= fsinaxdx
d(1

a
afi — 2
Jsecz axdx dx(atan ax) sec”ax

_ 1
=gtanax+c :%tanax+ c= Jseczaxdx

EXAMPLE 32 FindJsin4xdx.

SOLUTION Jsin4xdx = - %coszlx +c (Using jsinax dx = _Tlcosax + c)

EXAMPLE 33 FindJZ cos 3xdx.

SOLUTION J2 cos3xdx = %sin3x +c (Usingjcosax dx = %sinax + c)

EXAMPLE 34  Integrate sec’6x.

SOLUTION Jsecz6xdx=%tan6x+ c

EXAMPLE 35 FindJsecZ%Cdx.

2X 3, = 1 X
SOLUTION Jsec g dx ltan(8)+c

8
=8tan(%)+c

Let us move on to trigonometric functions of sums of angles.

Since i(écos (ax + b)) = —sin (ax + b) where a, b and ¢ are constants.

dx
:Jsin(ax + b)dx = —écos(ax +b)+c
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(%sin (ax + b)) = cos(ax + b)

cos(ax + b)dx = %sin(ax +b)+c

—

4
dx
=
%(%tan (ax + b)) =sec?(ax + b)
=

Jsecz(ax + b)dx = %tan(ax +b)+c

EXAMPLE 36  Integrate the expression J cos (3x + g ) dx.

SOLUTION Using Jcos (ax + b)dx = %sin (ax + b) + ¢, wherea = 3,b = 7?7:

Jcos(3x + 7%)dx = %sin(?)x + %T) +c

EXAMPLE 37  Find Jsin(4x — %T)dx

SOLUTION Jsin(4x - %T)dx = - %cos(élx - %T) +c

EXAMPLE 38 FindJS sec2(6x + g)dx

2 6 2

SOLUTION JS sec?(6x + ) dx = étan(éx + )+

Table of integrals for

Note trigonometric functions

a,band care

constants. Function Integral
sinx —cosx + ¢
sinax - %cosax +c
sin(ax + b) — %cos (ax+b) + ¢
(oo} 7' sinx + ¢
cosax %sin ax +c
cos (ax + b) %sin(ax +b)+c
tanx In|secx| + ¢
tanax %In|secax| +c
secx In|secx + tanx| + ¢
cosecx In‘tan(%)‘ +c
cotx In|sinx| + ¢
sec?x tanx + ¢
cosec®x —cotx+ ¢

Let us use the table above to find some integrals.
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EXAMPLE 39

SOLUTION

EXAMPLE 40

SOLUTION

Find Jtan 4xdx.

Jtanaxdx = éln|secax| +c
Using a = 4, we have:

Jtan (4x)dx = %ln |sec 4x| + ¢

Find JScot(4x + g

J3 cot(4x + T dx = %ln |sin(4x + 777')| + ¢

7)

Find the integrals of the following functions with respect to x.
. T T _
() J4 sm(x + 5)d.x (b) Jcos(j 3x)dx

(c) J4 tan(3x+7—7)dx (d) J3 cot (5x) dx

EXERCISE 15B

1 Integrate the following with respect to x:

(a) sin6x (b) cos3x

(c) 4cos2x (d) 2sec?3x

(e) 2 cos6x — sindx (f) cos4x + 12
cos”3x

(g) sin4x + cos5x + 3 cosx (h) x* + 6tan2x

(i) % — sec?(VZx) (j) 4 sec?(6x + 9)

2 Find the following indefinite integrals.

(a) J sin (3x — 1)dx (b) Jcos (2x + 3)dx

(c) Jtan(% - 4x)dx Js

©) J 7 cos (6x + 9) dx () J6 sin (4x — 6) dx

(g) JS sec? (8x — m) dx (h) Jcosqxdx

(i) Jsin (px + m)dx §)) Jtan(4 —rx)dx

3 Integrate the following with respect to t.
(a) (3t+1)° (b) (1 — 4¢)° (c) (2t +7)7*

4
-1
(d) Vet © 5= O
# 2 ‘ _ )8
4 Find the equation of the curve which passes through the point (0, 2) and for
dy_ 1
which g = Ga+ o
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5  Find x as a function of t when t = %T, given that % = cos (2t — %) and that x = 1.

6 Given that the gradient of a curve is x(3 + 4x) and that the curve passes through
(1, 2) and (—2, a), find the value of a.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Integration of more trigonometric functions

Integration of trigonometric functions makes use of the trigonometric identities
to convert the more complicated functions to standard integrals. At this stage you
should review trigonometric identities. The standard integrals are:

jsinxdx = —cosx + ¢

cosxdx = sinx + ¢

Jtanxdx + In|secx| + ¢
jseczxdx = tanx + ¢

EXAMPLE 41 Determinerin(6x — g)dx

SOLUTION Jsin(éx — T)dx = —gcos(6x = 2| + ¢

EXAMPLE 42 ..... D etermme Jsecz(Zx - %) dx ............................................................
SOLUTION Jsecz(Zx —T)dx = Jtan(2x — T) + ¢

EXAMPLE 43 ..... Fmd JCOS (8x+%)dx ....................................................................
SOLUTION Jcos(Sx—i—%)dx:%sin(Sx—i-g) +c

If an integral is of the form J f'(0)(f(x))" dx the integral becomes

Jf’(x)(f(x))”dx = % + ¢, wheren # —1

EXAMPLE 44 FindJsinxcoszxdx.

SOLUTION sinxcos?x is of the form f" (x)(f(x))".
Let f{x) = cosx.
= f'(x) = —sinx
Jf’(x)(f(x))"dx = —J—sinx cos?x dx
_ —cos’x
==+



EXAMPLE 45 FindJsinxcossxdx.

SOLUTION The integral is of the form J f(0)(f(x))" dx.
flx) = cosx

f'(x) = —sinx,n =26

Jf’(x)(f(x))“dx - j ~ sinx cosSxdx

EXAMPLE 46 FindJsinx cos"xdx, n # —1.

SOLUTION The integral is of the form J fo0)(f(x))" dx.

flx) = cosx

fix) = —sinx, n=n

Jf'(x)(f(x))“dx = —J—Sinx cos"xdx

_ _cos"tlx _

| + ¢, n+—1

Jsinx cos"xdx = — cos" " 1x + ¢, n#+—1
n+1

EXAMPLE 47 Jcosx sinxdx, n # —1

SOLUTION The integral is of the form J f(0)(f(x))" dx.
flx) = sinx
f'(x) = cosx,

[Freouaydx = [cosx sinxa = S L

EXAMPLE 48 Determine Jtan”xseczxdx, n+ —1.

SOLUTION Jtan”xseczxdx = tanni

(Since d tanx = sec? x.)

dx

EXAMPLE 49 FindJsinzxdx.

SOLUTION Recall: cos2x = 1 — 2sin%x
2sin?x = 1 — cos2x
sinZy = 1 — cos2x

2
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Use sin2y = 1. = €082x COS 2X
Therefore, J sin xdx = J% — %cos 2xdx
= %x %sian + c.

sin X

Did you consider using | sin?x dx = sw; X 4+ ¢2This is incorrect. If you differentiate >3-

you will not get sin?x.

EXAMPLE 50 FindJcoszxdx.

SOLUTION Recall: cos2x = 2cos*x — 1

cosx = cosZazc + 1

Use cos?x = 1 + 1cost.

22
Therefore, f cos?xdx = J% + %cos 2xdx

-1 1.
—2x+4sm2x+c.

EXAMPLE 51 FindJsin3xdx.

SOLUTION sin®x = sinxsin?x
Jsin3xdx = Jsinxsinzxdx
Use sin?x = 1 — cos2x.

Jsin3xdx = Jsinx(l — cos?x)dx

=j(sinx — sinxcos?x) dx
3
= —cosx + % +c

EXAMPLE 52 FindJcos3xdx.

.3
SOLUTION Recall that J cosx sin” x dx can be used to integrate Jsinzx cosx dx = % +c

The procedure is the same as that of integrating sin’x.

2

Write cos®x = cosxcos?x.

Use cos?x = 1 — sin?x.

3

Therefore cos®x = cosx (1 — sin®x)

Jcos3xdx = Jcosx (1 — sin?x)dx

in3
51nx+c

= J(cosx — cosxsin®x)dx = sinx — 3

We can integrate sin®x, cos’ x, sin’ x, cos x, etc. using the same procedure as for sin®x
and cos® x. We split them into sin x sin""'x and replace sin?x with 1 — cos?x.

489



EXAMPLE 53 FindJsin‘*xdx.

SOLUTION We use sin’x = % — %cos 2x, and write:
ity = (sin2x)2 = (L — 1 )2
sin*x = (sin’x) (2 2cost
Therefore, Jsin“xdx = j(% — %cos 2x + icos2 2x) dx. (Since cos’x = % + %cos 2x
Use the double angle formula cos?2x = é +5¢c052(2x)
1.1
=3 + 2cos4x.
.4 —(1_ l(l 1 )
Therefore,Jsm xdx J 1 cost k) + 2cos4x dx
_ 1 1 1.1
—J I 2c052x+ 3 + 8cos4x)dx
= § _1 1 )
J 3 2cost+ 8cos4x dx
= i — lsm2x + —sm4x +c
8 4 32
We can integrate cos*x, sin®x, cos®x etc. in a similar manner.

Try these 15.3  (a) jsmsxdx
(b) JcosSxdx

(c) J cos*xdx

Let us look at tan x.

EXAMPLE 54 Finthanzxdx.

SOLUTION tanZx = sec?x — 1.
Jtanzxdx = J(seczx —1)dx

=tanx — x + c.

EXAMPLE 55 Determine Jtan3xdx.

SOLUTION tan®x = tanxtan?x
= tanx (sec’x — 1)
= tanx sec’x — tanx

Therefore, Jtan3xdx = j (tanx sec?x — tanx) dx

n+1
Recall that Jtan"xseczxdx = ta;Tlx +con#F —1.
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2
Therefore, .-. J tanx sec?xdx = tanTx +c.

2

Try these 15.4  Find these.
(a) Jtan‘*xdx (b) Jtan5xdx

2
Therefore, j tan3xdx = X |y |secx| + ¢

Integration of products of sines and cosines

Recall these.

2sinPcosQ =sin(P + Q) + sin(P — Q)

2 cosPsinQ =sin(P + Q) —sin(P — Q)

2 cosPcosQ = cos(P + Q) + cos(P — Q)
—2sinPsinQ = cos(P + Q) — cos(P — Q)
Let us use these to integrate the following.

EXAMPLE 56 FindJ(cos4xsin2x) dx.

SOLUTION Use 2 cosPsinQ = sin(P + Q) — sin(P — Q).
2 cos4xsin2x = sin (4x + 2x) — sin (4x — 2x)
2 cos4xsin2x = sin6x — sin2x

. cosdxsin2x = 1 sin6x — %sin 2x

2

Jcos4xsin2x dx =J(%sin6x - %sin2x dx
__1 1
=12 Ccos6x + 1 cos2x + ¢

EXAMPLE 57 FindJ(cos 5x cos 3x) dx.

SOLUTION Use 2 cosPcosQ = cos(P + Q) + cos(P — Q).
2 cos5xcos3x = cos(5x + 3x) + cos(5x — 3x)

2 cos5xcos3x = cos8x + cos2x
1 1

cos5xcos3x = zcos 8x + jcos 2x
Jcoschos?}xdx = J(%cosSx + %cost dx
= LsinSx + lsin2x + ¢
16 4

Try these 15.5  Find the following.
(a) J (cos6xsin 3x) dx (b) J' (cos 8xcos2x) dx

(c) J (sin 10xsin x) dx
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EXAMPLE 58

SOLUTION

EXAMPLE 59

SOLUTION

The definite integral

If J flx)dx = F(x) + ¢, then the definite integral of f(x) between the limits x = a and

x= b is given by

J ) dx = [F(x)
! = F(b) — F(a)
We evaluate F(x) when x = b and F(x) when x = a and subtract.

Some results of integration

1 rf(x)dx -0

2 f(x) dx = J flx)dx We can switch the limits and change the sign of f(x).

a

W

jf(x )dx + Jf(x ch(x)dx

a

S

4 J cflx)dx = CJ Sflx) dx

a a b b
J flx) = glx)dx = J flx)dx = J g(x)dx  The integral of the sum or difference
i ¢ “ is the sum or difference of the integral.

19) |
S

b
6 jf(x Lf(t)dt
7 Lf(x)deLaf(a—x)dx,a>0.

1
Find the value of j (x* + 2x + 1)dx.
o

Jl(x2 +2x+ 1dx = [x_3 + x2 + x}l

o 3 o
13 0? .

= (— + (1) + (1)) — ((?) + (0)% + (O)) (Substitute x =1 and x = 0, and subtract.)
+ 1+1

2
EvaluateJ (4x3 — 2x?) dx.
1

2

3 a2 A — | At 2,3]?
L4x 2x*dx [x 3 ]1
= ((2)4 = %(2)3) - ((1)4 — %(1)3) (Substituting x = 2, x = 1, and
6 5 subtracting)
S6=5 3
43 17
3 3
= ﬂ
3
=10l
= 103
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EXAMPLE 60 Find the value ofJ
1

4

SOLUTION J (\/Y + %) dx
1 X

Il
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=

+1
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|
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|
w
[

+
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8 She »

o —=|Ur = O\
+

SIS Sla S
—
[\

I3

3
EXAMPLE 61 Find the exact value ofJ (sinx + 4)dx.
o

s
3

SOLUTION J (sinx + 4)dx = [—cosx + 4x]3
0

= (—cosg + 4(%7)) — (—cos0 + 4(0))

SIE]

EXAMPLE 62 FindJ 4 sin 6x sin 2x dx.
o

SOLUTION Use 2 sinP sinQ = cos(P — Q) — cos(P + Q).
2 sin6xsin2x = cos (6x — 2x) — cos(6x + 2x)
2 sin6xsin2x = cos4x — cos8x
4 sin6xsin2x = 2 cos4x — 2 cos8x

ju ju

2 2
J 4 sin6xsin2xdx = J (2 cos4x — 2 cos8x)dx
o o

1. _ 1. H
2sm4x 4sm8x]0

sin4(g) - %sinS(%) - [%sin4(0) - %sinS(O)]

—

k]

EXAMPLE 63 Evaluate J sin 2x cos 2x dx.
o

SOLUTION sindx = 2 sin2x cos2x

1 sin4x = sin2xcos2x
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EXAMPLE 64

SOLUTION

EXAMPLE 65

SOLUTION

J sin2xcos2xdx =

Bl = = N~ N~ N~ D=

[55]

Find the value of J 4

1 (3x + 2)?

2 2
J74 dx=J4(3x+2)_2dx
1

1 (3x + 2)?

_[4Bx+2)7'P

3(—1)

1

-]

___4
3(6 +2)

_(_

cos 7 + =cos0

1050}

4

33+2)

3
Given that J g(x)dx = 12, evaluate:

(a) J 2g(x) dx
3

(b) L () + 1)dx

(© [ gdx.

3

@ |
(0) [ (g0 + 1

0

(c) J gx)dx =

3

3

S

2g(x)dx = 2 j g0 dx = 2(12) = 24

77) + icos 4(0))

|

3
fg(x)dx+J1dx:12+[x]g=12+[3—0]=12+3=15

Since Lf(x) dx = —L
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EXAMPLE 66

SOLUTION

EXAMPLE 67

SOLUTION

: _x+1 dy__ 5 1
Given that y = PRy show that F m Hence, find L mdx

_xt1
YT 2=«
Letu=x+1,v=2—3x
@ = Q =
P 1, e 3
Use the quotient rule:

du _, dv
youn Y Ta e
V7 dx 2
_ 2 =39@1) = (x + 1)(=3)
(2 — 3x)?
_2—3x+3x+3
(2 — 3x)?
-5
(2 — 3x)?

o d[x+1]_ 5 . . . . 1
Since ix [ PR T e integrating both sides with respect to x from 0 to >
we get:

[2x—+31x]%>= L(z —53x)2dx

L :
:>§+1_o+1=J 1 4
2
1
1 1
=3 —-—==5 ————dx
2 J()(Z-?yx)2
5.1 : 1
_X—:
25 L(2—3x)2
3
lzf 1
2 Jh(2—3x)?
............................................................................}g .................
Given that y = —SI02X_ ohow thatﬂ =— 2 __ Hencefind 44
YT T+ coszx’ dx 1+ cos2x’ b 1 + cos2x

dy (1 + cos2x) (2cos2x) — (sin2x)(—2sin2x)
dx (1 + cos2x)?
_ 2c0s2x + 2cos?2x + 2sin?2x
(1 + cos2x)?
_ 2c0s2x + 2 (cos?2x + sin?2x)
B (1 + cos2x)?
_ 2cos2x + 2
(1 + cos2x)?
_ 2(1 + cos2x)
(1 + cos2x)?

= 2
(1 + cos2x)
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EXAMPLE 68

SOLUTION

oooooooooooooooooooooo

Since % [ i _SFiIZ(Z)QCZx] =1F gos 55 » integrating both sides with respect to x from
0to 7?7 gives:
a
4
sin 2x ]% _ ( 2 ) dx
1 + cos2xlo b \1 + cos2x
o
sin 4

™

2 _ sin0  _ 1

:>1+cos777 1+ cos0 2J0(1+c032x)dx
o

Y

:%:JO(Tloszx)dx

x+1

d 1
Given that y = xV2x + 3, find —y. Hence, ﬁndj
o V2x + 3

dx

We use the product rule and chain rule to differentiate this function.

d 1 _1
dorrap-Lan+s z><2)

%x\&x T3=\Vaxt3+ x(%)(Z)(Zx +3)+

=\2x +3 + =%
V2x + 3
_2x+3+x
V2x + 3
_3x+3
V2x + 3
) d C3(x+1) . . . .
Since ax V2x +3 = T 3,1ntegrat1ng both sides with respect to x, gives:
V2x
1
[z 73] =3[ AL
o V2x + 3
1
[Jwzs] = [ L
3 0 JV2x +3
1
1 x+ 1
=>\5 = J =
3 o V2x + 3
1
Hence,J' x+1 dx=ﬁ
0V2x +3 3

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 15C

4
1  Given that J f(x)dx = 8, calculate:
1

1 4 3 4
(a) J fde () j 5(x) dx © j () + 4x) dx + J F(x) dx
4 6 1 1 3
2 Given thatJ g(x)dx = 12, calculate:
1

6

6 1
(@) 2[1 gdx () j Bg(x) + 5}dx (O j g(x) dx

1 6

6
(d) Find the value of k for which J {g(x) + kx} = 47.
1
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4 4
3  Given that J flx)dx = 10 and J g(x) dx = 6, state which of the following
o o

integrals cannot be evaluated, and evaluate the others.
4

(a) L{f(x) + 3g(x)} dx
4
©) [ 1) firyax

4 0

© [fordx+ | g
04 4

(d) L 2g(x) + 3dx
5

(©) Lg(x)dx

) d 2 1 2
4 Given that y = x(1 + x?)?, show that d—y = 12X Hence, find J 36X 4y,
XA+ 0 (1 + %)
3 d 1 ! 1
5  Given that y = (1 + 4x)z, show that ) 6(1 + 4x)2. Hence, ﬁndj (1 + 4x)2dx.

dx 0
6 Giventhaty = _sinx show that Q =1 Hence, show that
B V=TT cosx’ dx 1+ cosx’ i
1 1 3 B
Ll-i—cosxdx_\/5 L
7 Given that y = X% 1 show thatﬂ =3 Hence, find Eédx
VT2 =3y de (2 -3x)% S YOI P Pt

T

8  Evaluate J 2 sin50cos 0d6.
o
9  Find the value of J 2 sin70cos360d6.
o

s
2

10 Evaluate J,, cos66cos26d6.

4

m

11 Evaluate J 2 sin50sin 6d6.
o

12 Evaluate % 2 sin30sin50d0.

12

13 Evaluate J cos70cos30d0.
o

In questions 14 to 19, evaluate the definite integrals.

™ 3m

14 Jsinxdx 15 f sin 3xdx
o 0

16 J(l + cosx)dx 17 jcostdx
o 0

18 Jcos4xdx 19 fcos(7x+g)dx
o 0

In questions 20 to 30, find the exact value of the definite integral.
20 J sin?2xdx 21 f cos?4xdx
0 0
497



498

oooooooooooooooooooooo

EXAMPLE 69

SOLUTION

s
2

22 J cos?6xdx 23 J sinzgdx
o o
24 ktan2 2xdx
25 Evaluate these.
4 4
_ _4
(a) L 4x — 6vEdx (b) sz 4 dx
26 Evaluate these.
0 2
(a) J 4 gy (b) J VI T 4x dx
—-1V1 — 3x o

i3

27 Show that cos3x = 4 cos®>x — 3cosx. Hence, find the value of J, cos> xdx.

28 Evaluate these.
5

s

1 L
() L mdx (b) Lsm3x cos 2xdx
29 Evaluate these.
9 15 .
(a) j3 L gy (b) J (x — 3)7dx
N1+ 7x 4

m

4
30 Show that sin3x = 3 sinx — 4 sin®x. Hence, evaluate J 4 sindx dx.
o

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Integration by substitution

The method of substitution is used to reduce an integral to a standard form. When
using substitution we change from one variable (x say) to a new variable (u) in the
following manner:

| gt ax
(i) Letu = g(x).
(ii) Find du ng replace dx in the integral by a function of u.

dx
(iii) Change fg(x) to flu).

Find JxVZx + 1 dx, using the substitution u = 2x + 1.

Letu=2x + 1.

Differentiating with respect to x:

5—2
du = 2dx
1 _
Edu—dx

After finding dx in terms of u, we next replace the function xvV2x + 1 by a function
of u.
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Nowu =2x +1
=Vu=V2x+1

Since u = 2x + 1, making x the subject of the formula:

2x=u—1

xzugl

We now have:

de%du

—_u—1_1_ _1

O L)

V2x+1=vu

We have | x 2x+1dx=J(%u—%)\/ﬁ(%)du
_1{(1  _ 1)1
—if(zu ) du
_1 (1 s_ 11
_2”2”2 2”2)‘1”
11w 1wy,
2125 23

2 2

_I[L oLy
_2[5” 3”]”

We now use u = (2x + 1) and get:

Jx\/2x+ 1dx=%[%(2x+ i -4 (2x + 1)%]+c
_ 1 s_ 1 3
= 10(2x + 1)2 6 2x+1)2+c¢

EXAMPLE 70 Find J3xV1 — 2x? dx, using the substitution u = 1 — 2x%

SOLUTION u=1-—2x>

Differentiating with respect to x:

1y, =
7 du =xdx
Notice the integral contains x dx so we can use:
—idu = xdx
Since u = 1 — 2x%, we have V1 — 2x%2 = V.

Now that we have converted all our function of x to a function of u, we replace in the

integral:
xdx = — %du
V1—2x* =Vvu
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We get:

JSle — o dx = Jsva(— i)du
= —%Jlﬁdu
= %% +c
2
= —%u%-l-c

Substituting u = 1 — 2x? we have:

J3x\/1 —2x%dx = — %(1 — 2%+ ¢

EXAMPLE 71  Find Jx sin (x?) dx by using u = x2.

SOLUTION u = x2

Differentiating with respect to x:

EZZX
du = 2xdx
1 _
Edu—xdx

We have 1 = x?
Therefore, sinx? = sinu

:stin(xz)dx = J%sinudu

-1

= — ;cosu +c

Substituting u = x? gives:

Jx sin (x?)dx = — %cos X2+ ¢

(4
EXAMPLE 72  Show that Jsin3 Ocos 6dO = %) + ¢ by using the substitution u = sin 6.

SOLUTION Jsin3 Acos HdO
Letu =sin6

Differentiating with respect to 6.

% =
16 cos 6
= du = cos 6d0

Since u = sin 0
= u? =sin’60
Use du = cos 6d6
3

u =sin0
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EXAMPLE 73

SOLUTION

EXAMPLE 74

SOLUTION

We have Jsin3 OcosHdo = Ju3 du

4
_u
—4+c

Substituting u = sin 0

= jsin30cos 0do = i(sin4 0) + ¢

t=tan6

Differentiating with respect to 6:

% = sec?6

dt = sec’0d6

Since t = tan 6

= t* = tan*0

Substituting df = sec’ §df and t* = tan* 6
We have Jtan4 0sec’6do = J trdt

_r
5+c

Replace t = tan 6.
Therefore, J tan*@sec?0dl = %tan5 0+c

Substituting with limits

When the integral is a definite integral, we change our limits from limits of x to limits
of u using the given substitution.

Evaluate J % dx by using the substitution u = 2x + 1.
0(2x + 1)

u=2x+1

Differentiate with respect to x:

5—2
du = 2dx
1 _
Edu—dx

Next change our limits, by using u = 2x + 1.
When x = 0, u=20)+1=1

When x = 1, u=21)+1=3
Changing the functions of x:

Qx+ 13 =143

Sinccu=2x+1=u—1=2x
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EXAMPLE 75

SOLUTION

We have:

u—1
2

= dx=1du
Whenx=0,u=1
Whenx=1,u=3
2x+1)P =

u—1_1 _1

2 2472

Substituting into our given integral:

=>x=

1

X =

1

X _
L(2x+1)3d’x—

[
<

_—
(8]
<
Lo
D[~
N —
-
[a W
=

w

11 (1, _ 1) -3
2“2” 2)” du
3
:l l 72_1 -3
2“2” 24 )d”
3

-1 -2 _ -3

4L(u u ) du
_1[_ 4 u_—2]3

) R 2k

17 1 17
:——_+_

4| u 2u2]1

17 1 1 1 1
4.( 3 2(32)) ( 1 2(1)2)]
D S VIR U R 1
_4_( 3+18) ( Hz)]
_1[_1_,. 1 _1
=473t ig ! 2]
=l(i)=i

4118 18

1
X -1

Hence,L 2 +1)3dx—18

N

Evaluate J sin’x cosx dx by using the substitution u = sinx.

o
Since u = sinx
= du = cosx dx
Next we change the limits.
Whenx =0,u =sin0 =10
Whenx =T,
2
u = sinx = u?® = sin

uzsin(

B

)=1

3x

Replace du = cosx dx into our integral:

x=0,u=
ng,uZI
w =sin’x
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We have:

2 1
J sin®x cosxdx = J w3du
o o
_[1 4]
B [4” ]0
_ 4 _ 14
=2(D 2 0)

EXAMPLE 76  Using the substitution u = x + 1, evaluate J —X—dx.

b Vx + 1

SOLUTION u=x-+1

Differentiating with respect to x:

du = dx

Next we change the limits.

Whenx=0,u=0+1=1

Whenx=3,u=3+1=4

Sinccu=x+1=x=u—1

Vx+1=vu
3 4
X u—1
dx = d
x+1 Jl vu "

ooooooooooooooooooooooooooooo

—_

Il
_
kS

—~
<

|
—
N
=
[a W
<

|
_
S
<
=
|
<
|
-
ol
<

3 4

u: — 2u%]

—

1
-] -[3-7

-2

I I
| o~
— W W
|5
|
S

w|oe

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 15D

1

2

Find sz(x3 + 1) dx, using the substitution u = x> + 1.

Find J(6 5 _f :_2 1 o) dx, using the substitution u = 6x* + 12x + 5.
X X

Using the substitution, u = cosx find Jcos‘*xsinxdx.

Find Jcos 4xsin®4xdx, using u = sin4x.

6x

Using the substitution u = 3x + 1, find Ji dx
& . V3x +1
Evaluate J #3 dx, using the substitution u = 7x + 2.
b (7x + 2)
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EXAMPLE 77

SOLUTION

EXAMPLE 78

SOLUTION

s
4

7 Evaluate J tan® xsec?xdx, using the substitution u = tanx.

0 T
4

8 By using the substitution u = sinx, show thatJ 2 sin*xcosxdx = 2—\/3
0

1
. L. 8

9  Using the substitution u = x + 1, show thatj x+2 dx = 10 V2—3.
g b VI + x 3 3

o

3

10 Using the substitution u = sinx, show th tJ sinxcosxdx = ——12
ing ubstitution u = sinx, show that | sin®x 4GV £ VD)

4

11 Find these.

(a) chosx2 dx, using u = x2

(b) sz sin (x°) dx, using u = x°

(c) J(i;i§4dx,usingu=4+x

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

The equation of a curve

Given the gradient function of a curve %, we can find the equation of the curve
by integration. The constant of integration will depend on the points on the curve.
Given a point on the curve, we can find the constant of integration by substituting
the point into the equation found by integration.

d
A curve is such that ay = 4x3 — 4x + 2. Given that the curve passes through the

point (1, 3), find the equation of the curve.

d
Since d_i = 4x> — 4x + 2, integrating both sides:
y=J4x3—4x+2dx
— 4t 4
= 5 +2x+ C

Therefore, y = x* — 2x> + 2x + C

We can find C by substituting x = 1, y = 3.
Hence, 3 = (1)* — 2(1)2 +2(1) + C
=3=14+CC=2

Therefore, the equation of the curve is y = x* — 2x? + 2x + 2.

d
Given that <> = 4x — 6 and that y = 3 when x = 1, express y in terms of x.

dx

d
Since 2 = 4x — 6, integrating both sides of the equation:

dx

2
y=2 —ex+Cc=22-6x+C
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Substitutingx = 1, y = 3:
3=2(1)*—-6(1)+C
3=—4+C

c=7

Hence, y = 2x? — 6x + 7.

EXAMPLE 79 A curve, for which
of the curve.

Ee

= ﬁ, passes through the point (1, 4). Find the equation
X

d
SOLUTION Since 2 = —_3

& Vi re integrating both sides:

Recall

f (ax + b)" dx

_1[lax+ b "1
T a n+1
n# —1

+C

3
= | ——dx
4 Jv3x+6
.'.y=J3(3x+ 6)7 dx

(3x + 6):
1

2
y=23x+6):+C
Whenx =1,y =4

L 4=20)2+C
4=6+C,C=—-2
Hence, y = 2(3x + 6)%— 2.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

y=% + C

EXERCISE 15E

d
1 A curveis such that d—i = 6x* — 4. Given that it passes through (1, 2), find its
equation.
d
2 A curveis such that ay = px — 5, where p is a constant. Given that the normal at
the point (—3, 2) on the curve is _Tl

(a) Find the value of p.
(b) Find the equation of the curve.

d
3 A curveis such tha d—i = \/4x6TI Given that the curve passes through (2, 6)
and (6, h), find the value of h.
d
4 A curve is such that ay = 3x% + % Given that the curve passes through (1, 4),

find the equation of the curve.
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SUMMARY

d
5  The curve for which ay = V1 + 8x passes through the point (3, 8). Find the
equation of the curve.
d
6 A curveis such that ay = (4x — 6)°. Given that the curve passes through (1, 2),
find its equation.
7 The gradient of a curve at any point (x, y) on the curve is given by 1 — % Given
that the curve passes through the point (4, 6), find its equation. x
8 A curve C passes through the point (4, 5) and has gradient 4x> — 2x + 1 at any
point (x, ) on C. Find the equation of C.
9 The function f(x) is such that f'(x) = 3x* + 6x> — 2x + k, where k is a constant.
Given that f(0) = 4 and f(1) = —2, find the function f(x).
10 Find the equation of the curve which passes through the point (2, —2) and for
d
which 2 = ©¥@x + 3).
Integration
Integration is the reverse of Some standard results

_[ cf(x) dx = cJ fix) dx

[7 o0 dx =7 1o

J: f(x) dx ='[; fla—x)dx,a>0

differentiation

i 4m

_[x”dx= X

+c¢n=-1
n

+

d

@
a

n +b n+1
J ) £ g0 dx= [ fx) dx + g(x) dx [ (ax + )" dx = %(aan% +onE-
o W \ 4
j fix) dx = F(b) - F(a) [sinxdx=—cosx+c

v v

_[cosxdx= sinx + ¢

\ 4

_[seczxdx= tanx + ¢

@«
||‘

jcoseczxdx —cotx+ ¢
b a
=- inn+1
L fix)dx = _[b fix) dx _[sin”xcosxdx=5'r?+ 1x Yo%
n+1
Jcos”xsinxdx = _cc,>75+ 1X +cnz-1
|
2v tan” "' x
_[tan”xsec xdx = e +cn=-1
4

Jsinzxdx=%J 1 - cos2x dx

pe

J1 + cos2x dx

N[—

J cos? xdx =

@

Jtanzxdx=Jsec2x—1 dx
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Checklist

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Can you do these?
B Define integration as the reverse of differentiation.
B Understand and use J flx) dx.
B Show that the indefinite integral represents a family of functions.
B Know and use the integration theorems:
a J cf(x) dx
bJUu)igﬁhu=Jﬂ@deJgﬁdx
B Find integrals using the integration theorems.
M Find integrals of polynomials.
M Find integrals of trigonometric functions.
M Find integrals by substitution.
B Find definite integrals.

b b
B Know and use j flx) dx = J At dt.

[ | Knowandusejf(x)dxz Lf(a — x)dx,a > 0.
o

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Review Exercise 15
9
1  Given that J flx) dx = 42, find these.
9 1
@ | 6ftodx

9

(b) j {fr) — 4} dx
1 3

2 Given that J g(x)dx = 12, evaluate these.
3 o

@ | setdx
3

) Lg(") +2dx
0
(©) L g(x) + xdx

By ap
3 Evaluatej —L=_d
L 10

4 FindJ (x + 1)(2x — 3)dx.
0

Find these.
(a) Jv4x — 1dx

4
® [tz
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10

11
12

13

14
15

16

17

18

19
20

21

22
23

24

25

e

Find the exact value of L cos?2xdx.

1

Find these.
(a) Jsin 6xcos4xdx (b) Jsin 8xsin4xdx
d
~ N D1 1
Given that y s show that & 0T Hence, find J 17 20 dx.
Show that d((;loj;tx) = —cosec?x. Hence, find Jcot2 2xdx.

s
2

Show thatf (sinx + cosx)?dx = g + 1.
o

, dy 1+ 4 — 4x*
_ X 1+ x X
Given that y = 1T+ 2 show that Qo Hence, find J 1T dx

Find the derivative of x sinx with respect to x. Hence, or otherwise, evaluate

4
chosxdx
o

d
(a) Given thaty = m find dfc

1
(b) Hence, find J dx to 3 dp.

Wy

1
. 2x 6
Given that flx) = =30 (f’ ) find f'(x). Hence, evaluatef =3 dx
Ify=—2%*  find = 24 Hence, find J %dx
@2 +3p W

(2x? + 3)2

1
_ _ b5x dy 3x?

Ify = e T find i Hence, evaluate J mdx

The gradient of a curve is 4x> — 6x + 2 and the curve passes through (1, —5).

(a) Determine the equation of the curve.

(b) Find the equation of the tangent to the curve at the point x = 2.

Evaluatel —=2_dx, using the substitution u = 1 — x2.
V1 — x? 8 )
Using the substitution x = 2sin 6, evaluate J n = dx.
0 — X
d
A curve is such that = = % Given that the curve passes through the
dx (4x —5)

point (2, 6), find the coordinates of the point where the curve crosses the x-axis.

(03 _
By using the substitution u = 1 + cosx, show that Jde = J” e 2 du.

. (1 + cosx)*
Hence, find J szldx
(1 + cosx)

1
Evaluatej zx;léldx, using the substitution u=23x—6x+5.
b (3x*> — 6x + 5)

Using the substitution u = cos 6, show that J

sin 6 1
6d9 G

1

2
Using the substitution # = 1 — x%, show that J — X _dx= l.
5 0 (1 — x?)? 6
V3
By using the substitution x = tanu or otherwise, evaluate J ;3
0 (1 + x?)
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CHAPTER 16
Applications of Integration

©00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

At the end of this chapter you should be able to:

B Estimate the area under a curve using rectangles

I Understand that the limiting sum gives the exact area under the curve

B Use integration to find the area under the curve

B Use integration to find the area between two curves

B Find the volume of a solid formed when a region is rotated about the x-axis

B Find the volume of a solid formed when a region is rotated about the y-axis

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0

KEYWORDS/TERMS

estimate o area « rectangles ¢ limiting sum e
integration « volume of solid « rotation « rotation
about the x-axis e rotation about the y-axis
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EXAMPLE 1

SOLUTION

Approximating the area under a curve,

using rectangles

Estimate the area under the curve y = x? bounded by the lines x = 1 and x = 6 and

the x-axis, using rectangles of unit width.

y = x? is a quadratic curve with a minimum point at (0, 0).

We can approximate this area by forming rectangles of unit width and finding the

area of each rectangle and their sum.

i ()
|
|

-7

(1,1

Area of the rectangles = (1)(1) + (1)(4) + (1)(9) + (1)(16) + (1)(25) + (1)(36)
=1+4+9+ 16+ 25+ 36 = 91 square units
Area under the curve y = x? from x = 1 to x = 6 is approximately 91 square units.

We can get a better approximation if we increase the number of rectangles as follows:

using % unit intervals.

T

|
|
|
|
1 2 1 3 1 4 1 1
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Area under the curve = (1)(%) + (1.5)2(1) + 22( ) + (2. 5)2(%)

ity ooty

1.9 25,9 49 81 121
2+8+2+8+2+8+8+8+7 5 t18
=gl
=813

As we increase the number of rectangles, the area above the curve will decrease
until we get an exact value for the area under the curve. As the number of rectangles
increases, the estimate gets better.

EXAMPLE 2 Estimate the area under the curve y = sinx from y
x= 7 Ttox=7T by using four rectangles of equal
width. 14 I
e
— Sw\(a 6w\ O
SOLUTION Area of the rectangles = (Smﬁ)(ﬁ) + (Smﬁ)(ﬁ) o
[snZ)m) + ()7 Ny
= R(Smsl_g + sm61—767 + 81n71—767 + sin+ ) . ; ; ; ; X
= 16 (373613) ZoTeT/TT
=0.73359

The area under the curve is approximately 0.73359 square units.

511



EXAMPLE 3

SOLUTION

Use five rectangles of equal width to estimate y
the shaded area to four decimal places.
T_
376 y = tanx
5 30
= T (0 6T 7m
Area of the rectangles = 30 (tanzg + tan3p
8 9m T
+ tan% + tan% + tan§

= 0.6122
The approximate area of the shaded region is 0.6122
square units.

Estimating the area under a curve using n rectangles of equal width

We can estimate the area under the curve y = f(x) from x = a to x = b using
n rectangles of equal width.

The widths of the rectangles are equal.

—a

T

Therefore, the width of one rectangle = b
Let h be the heights of the rectangles.

Sum of the areas of the rectangles

(b -

n

_(b—a) (b—a) a) (b—a)
= 7 h1+ 7 h2+ h3+---+7n ha

_(b—a
T n
b n
_b—a
T oon Elhi
=
As the number of rectangles increases the area under the curve can be found exactly.

(hy +h,+hy+---+h)

n
Therefore, the area under the curve = lim b ; a E h.
n—ee =1

= 1im {E-8(f(x) + flx,) + ...+ fx,)]

n— oo

When approximating the area under a curve using rectangles, we can form rectangles
with the top left-hand corner of the rectangle on the curve or the top right-hand
corner of the rectangle on the curve. We can also use the midpoint of the interval to
form the rectangle. The following diagrams will illustrate each case.

Case 1

X
b

0 X=a X

The area under the curve is greater than the area found by using the rectangles. The
top right-hand corner of the rectangle is on the curve.
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Case 2

0

In this case the area under the curve is less than the estimate using the area of the
rectangles. The height of the rectangle on the top left-hand corner is on the curve.

Case 3 y

|
:
f
0 X=

Using the midpoint of the intervals will give the best estimate of the area under the
curve.

EXAMPLE 4 Find the exact area of the region bounded by y = x? and the x-axis and the lines

x=0and x = 3.
SOLUTION Dividing the area into n rectangles, the width of each rectangle is x = 3 7 0 %
x Y X Y
3 3)? 12 12)?
" (3 0 )
6 6)\2
" (5
9 (2)2 3n (3_'7)2
n n n n
— im 33X+ 42 on?
Exact area nlgnwﬁ " + e + " +... 7

n
Jim 325

= nli_m % X Onln + 16)(211 + 1) (Since the sum of n square numbers
" o+ 12+ 1)
B 6
— 9 lim nn+1)2n + 1)
21> 3

n
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EXAMPLE 5

SOLUTION

2
imzn +3n+1
n— oo n?

9
2
_9 3.1
=3 im2+5+
9
2

[—

Using integration to find the area under a curve

The area of the region bounded by the curve y = f(x), the lines x = a, x = b and the
x-axis is given by

ff(x) dx

a y y = fx)
Area of ABCD = area of rectangle ABND
+ area of triangle CND
Area of rectangle ABND = 8x X y = ydx C.
| 8
Area of triangle CND = % X ox X dy D, Ny
8x
1
= 5 Sx 8)/ y

Let area of ABCD = 6A. o A B 3

xX=a x=b

8A=%5x6y+8xy

= % = % oy +y (Dividing by 6x)
8}}? 0o 0x dx
Hence, da _ y.

dx

Now the area can be written like this:

b

From%=y:
b
A =jydx

b
Therefore, A = lim y ox = J ydx.
ox—0 a

The limiting value of the sum is equal to the integral between limits.

Find the area of the region bounded by the curve y = x? the lines x = 1, x = 2 and
the x-axis.

Area under the curve = J ydx

= J x2dx (Since y = x?)
1
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EXAMPLE 6

SOLUTION

EXAMPLE 7

Find the area of the region bounded by the curve y = —— L thelinesx = 1 and
B . 2x +1)°
x = 3 and the x-axis.
b
Area under the curve j ydx
3
:L (2x + 1)3
3
J (2x+1
1
- M
2(-2) &
= -glex+1)7%
=_1 1 _
4 ((2(3) +1)? )+ 1)
=1 (L l)
49 9
=10
441
Therefore, the area of the region is i 401 square units.
The diagram shows part of the curve y = sin2x. y
Find the area of the shaded region.
y = sin 2x

SOLUTION

T

Area = J sin2xdx

square units

Shaded area = 5 square units

I I R CE e P

EXAMPLE 8

SOLUTION

Find the area of the region bounded by the curve y = cosx — 2 sinx and the lines

o= T

X=% tox 3
3

Area of the region = L cosx — 2 sinxdx
3

ks
= [sinx + 2 cosx]?
5

= (sin7—T +2 cos7—7) - (sin7—7 + 2 cos%)

3 3

=1 = 3 +2lF)

6
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EXAMPLE 9

SOLUTION

Area between two curves

Let f(x) and g(x) be two continuous functions over the interval (g, b). If f(x) is
greater than g(x). For any x in (g, b) then the area between f(x) and g(x) from x = a
tox = b is give by

b b
[ foax = [gwax
When finding the area between to curves carry out these steps.
(i)  Find the point of intersection of the two curves.

(ii) Find the area under each curve.

(iii) Subtract the two areas. (Larger minus smaller.)

Calculate the area bounded by the curves y = 2x and y = x* when x > 0.

First solve the equations simultaneously. Ay y=x2
y=12x y=2x
y=x
x?=2x
xX*—=2x=0
x(x—1)=0
X
=x=0,x=2 0

Since the line is above the curve the shaded area:

2

2 32
2 dy — [42]2 X
LZxdx Lx dx = [x°]] [3 ]0
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EXAMPLE 10

SOLUTION

Area below the x-axis

When using integration to find area, the integral y
of the region below the x-axis is found as nega- flx)
tive. The actual area is then given as the positive

of the value found by integration. We can find the
b
j ) dx’. To find the X

area of the shaded region in the graph above you

area below the x-axis as

have to divide the region into two parts, from
x=atox=bandx = btox = ¢, and integrate
over each region separately. Therefore, the area

Lbf(x)dx + J:f(x) dx.

under the curve =

Find the area between the curve y = x> — 2x* — x + 2 and the x-axis, for
—2<x<3.

First we sketch the graph.

We find the point(s) of intersection with the x-axis, when y = 0.
-2 —x+2=0
Whenx=1,13—2(12—-142=1-2—-1+2=0

Therefore, x — 1 is a factor.

xX2— x— 2 Ay
x— 1) —22—x+2
R
—x? —x y=p3-22-x+
—x* +x
—2x + 2
—2x +2 f\ .
0 S o %

X2 —x+2=(x—-1D2—x—2)
=x—Dx—2)(x+1)

Sk —-—Dx—2)(x+1)=0

=x=1,2,—1wheny=0

Whenx =0,y =2

We can sketch the graph.

From the graph we can divide the area into four parts.
- 1 2 3
[ e dx‘ | fede+ || foode] + [ s

3 2
Jx3—2x2—x+2dx=%—2%—x7+2x+c

Area =

—1x3 5 +2dx —H-XA 2x3 x2+ ]—1
J72 —2x° — X 2 - Z_T_T 2x_2
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_ ‘((—1)4 L=’

2 —%(—1)2+2(—1))
_ ((—2)4 _ (=20 ~Lap g 2(_2))‘

“[f+3-3-2) e am)

3
<)
12
Jl(x3—2x—x+2)dx [14—27363—%2—#2417
_ (_41)4 _ 2(_31)3 _ %(_1)2 4 2(_1))
-l}-3-a)-fhed-4-
-8
3
? 2% x 2
J(x3—2x—x+2)dx‘ %—T—7+2x]
o o)
=|la-F-2+4)-(F-3-3+2)
3
[0 -2 x4 nae=[5 20210
=((3T)4—2(33)3 2(3)2+2(3))
—((27)4 2@ —(2)2+z(2))
=(Bl-18-3+6)-(4-20-2+4)
=3
1
Total area = ?g + g + 152 +%
=133
12

= 11 1 5 square units
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EXAMPLE 11 Find the area of the shaded region bounded by the curve y = sinx, y = cosx and the

line x = 0.
y
1 y =sinx
E y = Cos x
g N
0 o
x
SOLUTION The curves intersect when sinx = cosx.
=tanx =1
_m
=x=7
Therefore, the curves intersect at .

4
Shaded area = (area under the curve y = cosx) — (area under the curve

y = sinx) from 0 to 727

4
Area under the curve y = cosx is given byj cosxdx
s
e 0

m

4
J cosxdx = [sinx]*
b 0
= sin% — sin0
_ V2
2

s
4

Area under the curve y = sinx is given byJ sinxdx
fu 0

4
m
J sinxdx = [—cosx]é
0

= (—cos%) + (cos0)

Y

2
_ V2 [, _V2
Shaded area = -5 (1 > )

= (V2 — 1) square unit

Area between the curve y
and the y-axis

The area A bounded by the curve x = g(y), the
y-axis and the lines y = cand y = d is given by x=g0)




EXAMPLE 12  Find the area of the shaded region.

y
y=x
8 Sy
Ly X
0
d
SOLUTION A= j xdy
c
Since y = x3, making x the subject of the formula gives:
8
A= in dy
1
48
|2
|4
3.h
3
= §(8 1)
45

EXAMPLE 13  Find the area of the shaded region shown in the diagram.

X
of 2
d
SOLUTION A= J xdy
¢ 3
Therefore, A = J [(y — 4)* + 2]dy
1

=30 -0 + 2]

= (%(3 — 4P+ 2(3)) - (%(1 — 4 +2(1)

—_1 _
= 3+6+9 2

:ﬁ
3

square units
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EXAMPLE 14

SOLUTION

ooooooooooooooooooooo

Find the area of the shaded region shown in the diagram.

4
y =2x?

d
A=dey

(4
Since y = 2x%,

I
Sl
——
WIN
=
W
b
=

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 16A

1 The diagram shows part of the curve y = x* — 4x + 7 and part of the line
y = 3x — 5. Find the following.

(a) The coordinates of P and Q

(b) The area of the region R

y=x>—4x

521
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2 The diagram shows part of the curve y = sinx and y = cosx. Calculate the
area of the shaded region.

4
| Y= cosx
y =sinx
X
0 i Al
2
3 Find the area of the region enclosed by y = 4 — x? and the x-axis from x = —1

tox = 2.

4 Sketch the curve y = (x + 2)(3 — x). Find the area of the region enclosed by the
curve and the x-axis.

5  The diagram shows part of the line y = 7x and part of the curve y = 9x — x%
Calculate the ratio of the areas of the regions of A and B.

of \

6  The diagram shows part of the curve y = 4x — x% Calculate the area of the
shaded region.

y=4x—x?

X

\

7  Theequation of a curveis y = x + iz Find the area enclosed by the curve, the
X

x-axis and the lines x = 1 and x = 3.

8  Calculate the area of the region bounded by the curve y = x? + 2x — 8 and the
liney = x + 4.
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9  (a) Find the x-coordinates of the turning points on the curve y = 2 + sin3x
over the interval 0 = x = 7.

(b) Calculate the area enclosed by the curve, the x-axis and the lines x = 0 and
T

=7
10 Calculate the area of the shaded region.

y
27 y = 2c0s 2x
_ X
0 i -
4\ 2 [4
11 The diagram shows part of the curve y = % + 16x, part of the line x = i and
X
the line OA joining the origin O to the minimum point of the curve A.
(a) Show that the x-coordinate of A is %

(b) Find the area of the shaded region.
y

ENE

12 Find the area of the region enclosed by the curve y = 6 cos?2x, the x-axis and

the lines x = 0 and x = %T
13 Sketch the curve y = x> — 6x* + 11x — 6. Find the area of the region enclosed
by the curve and the x-axis.

14  Sketch the curve y = 2x* + 3x? — 23x — 12. Find the area of the region
enclosed by the curve and the x-axis.

15 Find the area of the region enclosed by the curve y = x(x + 1)(x + 2) and the
X-axis.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0
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Volume of solids of revolution

Rotation about the x-axis

When the area PQRS is rotated 360° about the

x-axis, a volume called the solid of revolution is
formed. If we divide the area into a large number R
of strips each of width 6x, when the area is rotated

about the x-axis each strip produces a solid of >

revolution with thickness 6x.

The solid of revolution formed is approximately | ‘ X
equal to a circular disc. 0 P Q

Volume of 1 disc = area of cross-section X thickness = (%) X x

Total volume = lim Eﬂyz dx Ay

Sx—0 XxX=a

The limiting sum is equivalent to the integral
fromx= atox =b.

lim EﬂyZSx = ﬂfyzdx /E

8x—>0x_a

Therefore, the volume, V, of the solid formed
when the curve y = f(x) is rotated one revolution

about the x-axis between x = aand x = b is

EXAMPLE 15  Find the volume of the solid formed when the region bounded by the curve y = vx
and the lines x = 1, x = 4 and the x-axis is rotated 277 radians about the x-axis.

b

SOLUTION V= wf y*dx
Since y = VX,
- = [ (epar
4

= WLXdX
-al3]
-l 4]
==(s-3)

= 7%77 cubic units

524



EXAMPLE 16

SOLUTION

EXAMPLE 17

SOLUTION
Note
y= \/'rz — X2

Sy =r—x
X +y’=risa
circle centre (0, 0)
radius r. When
we rotate the
semicircley =

Vr2 — x2, our solid
of revolution is a
sphere of radius .

MODULE 3 e CHAPTER 16

Find the volume of the solid formed when the region bounded by the curve
y =2 + sinx, the lines x = 0, x = 277 and the x-axis is rotated through 27 radians
about the x-axis.

Since rotation is 27 radians about the x-axis,
b

V= WJ y*dx
a

2T
= J (2 + sinx)?dx
0
Expanding the brackets we have:

27
V= WJ (4 + 4 sinx + sin’x)dx
o

Replacing sin’x = % - %cos 2x

27
V=’7TJ (4+4sinx+l—lc052x)dx
b 272

27
= (4l+4sinx—lc052x)dx
2 2
0

2
= W[%x — 4 cosx — 1 sin2x] i

4 0

=w@@ﬂ—4muw—imuewy~ﬂ%m—4mw—%mu@
=m((97m—4) — (—4))
= 9772 cubic units

Find the volume of the solid formed when the region bounded by the curve
y = Vr?> — x* and the line x = —r, x = r and the x-axis is rotated through
27 radians about the x-axis.

Since we are rotating 27 radians about the x-axis,
b

V=77Jy2dx,wherea= —-rnb=r

y= VA
Y =r—x .
Therefore, V= L r? — x*dx
== 5]
- eler-2)- afion -2
“rlp-4l-slr+3
oo
g3



526

EXAMPLE 18

SOLUTION

EXAMPLE 19

SOLUTION

EXAMPLE 20

SOLUTION

Determine the volume obtained when the straight line segment y = 5 — 4x lying
between x = 0 and x = 1 is rotated through 2 radians about the x-axis.

b
V=77Jy2dx,wherea=0,b=1

y=5—4x
=2 = (5 — 4x)?
=25 — 40x + 16x2

1

V=1| 25— 40x + 16x*dx
0

= m[25x - 202 + 18]
37D

|
3

[
= 77(25 20(1)2 + 16(1)3) - 7(25(0) — 20(0)2 + ?(O)3
(

5+ ) 77 cubic units

Determine the volume obtained when the part of the curve y = cos2x lying between

x= %T and x = %T is rotated through 27 radians about the x-axis.

b
V=7ij2dx where a %Tb=%7

y = cos2x

= y* = cos’2x

T

3
V= ’7TL cos?2xdx
6

cos4x, we have:

Replacing cos?2x = % + %

3
- 1,1
V= Wﬁgz + 2cos4xdx

> [x + 451n4x]€
—T((my Lgndm) _ (7 1, 47

2((3+4sm3) 6+4sm6))
=7_T(7_T_ﬁ)_7_7(7_7+£)

213 8 2\6 8
:z(z_ﬁ)

216 4

The region bounded by the curve y = the axes and the line x = 1 is rotated

2
3x+ 701
through 360° about the x-axis. Find the volume of the solid of revolution formed.

b

VZWJyzdx,whereaZO,bZI

2

YT 3x+1
22 |
Y (3x+1)
-4
(3x + 1)?
=403x+1)72
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1
Therefore, V = 7TJ 4(3x + 1) 2dx

! Bx + 1)1
3(-1) b

an((-He+ 01 = (-3eo + 1]

=47

EXAMPLE 21  The curve y = sec% is rotated 27 radians about the x-axis between the limits x = 0
V3

and x = ? Show that the volume of the solid formed is == 3

SOLUTION Since we are rotating about the x-axis:

b
V=77Jy2dx

s
3

= WLW( SCC(

3
#J sec?Z dx
o 2

)j &

No|R

Since Jsec2 (ax)dx = %tan (ax) + ¢

= W[Ztang]g

=2 (tang tanO)

= 277? cubic units

Rotation about the y-axis

Volume of 1 disc = 77'(x)2 dy = mx*dy Ay
d dlo (
Total volume = lim Eﬂ-xz oy = J x? dy sy X
oy —0 ' po D
J

The volume, V, of the sohd formed when the

curve y = f(x) is rotated once about the y-axis 5
d
between y = cand y = d is 7TJ x*dy.

c

3

If a curve x = f(y) is rotated 27 radians about the
y-axis between the limits y = cand y = d then

the volume generated is given by
d

V=77Jx2dy

EXAMPLE 22  Find the volume of the solid of revolution formed by rotating the area enclosed by
the curve y = 2x? — 3, the y-axis and the lines y = 0, y = 2 through 360° about the
y-axis.
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SOLUTION

EXAMPLE 23

SOLUTION

EXAMPLE 24

SOLUTION

528

d

V= 7TJ x*dy

Since y = 2x? — 3,

y+3= 2x2

+3

x? = )’_2
’y+3

Therefore, V = 7TJ )/T dy
0

-3l
7 122 +30)] - [207 + 30)]

=2 +6)

= 447 cubic units

Find the volume of the solid of revolution formed by rotating the area enclosed by
the curve y = % the y-axis and the lines y = 2, y = 3 through 360° about the y-axis.

Find the volume of the solid of revolution formed by rotating the area enclosed by
the curve y = 3x? + 2, the y-axis and the lines y = 2, y = 5 through 360° about the
y-axis.

Since y = 3x* + 2

3x)=y—2
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5
V= WJ x*dy
2
5
= 57
=g;@—m®
2 5
~1l5 -]
- 5(35-m)-f¢-)
-5+
=73
3

EXAMPLE 25 Find the volume of the solid of revolution formed by rotating the area enclosed by
the curve y = 2x + 1, the y-axis and the lines y = 1, y = 3 through 360° about the
y-axis.

SOLUTION y=2x+1

=y—1=2x

-1
:}x:))T

=>x?= &= 1°

3
=ﬂﬁw—y+n@

|y ’
=z[?‘y2+y]1

g {EA I AR
=T(9-9+3-1)

-2y

= %77 cubic units

Alternative solution:
3

V=77Jx2dy
1
3
_ml 1, _ 1y

529
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EXAMPLE 26

SOLUTION

a
4
a

3]
C

ubic units

Il
WIN N
3

The volume generated by rotating a region S bounded by the curves y = f(x) and
y = g(x) through 360° about the x-axis fromx = atox = bis

b b

V= WL (flx))>dx — WL (g(x))2dx

Find the volume generated when the region bounded by the line y = 3x and the

curve y = x* + 2.

y=x2+2

y=x*+2

y=3x

Find the points of intersection:
x*+2=3x

xX*=3x+2=0
S>x—-—1x—-2)=0

=2x=1Lx=2
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Volume formed by rotating y = 3x:
2

- WL (3x)?dx

=977Jx2dx

1

_ x_3]2

_977[31
2_3_13)

3 3

=97T><%

= 214 cubic units

:977(

Volume formed by rotating y = x> + 2:

2
V=l (@ + 22

g
=77Jx4+4x2+4dx

1
B S r
—77[5+§x +4x1

2)° 1)°
= 77(% +308° + 4(2)) - 77(% + (1) + 4(1)
S A A [
—77(5+3+8 573 4 1577'cub1cun1ts
Required volume = 217 — %T = %Tcubic units

EXAMPLE 27  The region bounded by the curve y = % and y = 3 — x is rotated 27 radians about
the x-axis. Calculate the volume of the solid formed.

SOLUTION We need to find the points of intersection.
_2
YTX
y=3—x
2 _3_
2=03—xx
2=3x —x?

X —=3x+2=0
S>x—-—1)x—-2)=0
=>x=1,x=2

Volume under the line:
2

V= WL (3 — x)?dx
2
= WL (9 — 6x + x?)dx
= 77[9x —3x> + %3]?
”(9@) — 3@+ %3) - (9(1) —3ap+ L

(18-12+43-9+43-]

7r cubic units

Il
3

[SSIRN|

531
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EXAMPLE 28

SOLUTION

Alternatively:

2
V=7M3—@%x
1

_[-3—x)?F
B “[f )
_ —-1.,8
= 7|5+ 5]
= %77 cubic units
Volume under the curve y = %
2
2\2
V= WJ =) dx
()
24
= =d
WL 2 x
2
= 7| 4x%dx
1
= 7[—4x71]?
= _4)y (4
’T(( 2) ( 1))
=7a7(—2+4)
= 247 cubic units
Required volume = 7?77 — 2
_7m _ 6w
3 3
T

cubic units

3

Calculate the volume generated when the region bounded by the curves y* = 27x and

y = x? is rotated through 360° about the y-axis.

First find the points of intersection.
¥ =27x

y=x

= (x?)? = 27x

=>xt—27x=0

=x(x>—27)=0
=x=0,x=27=x=3

Whenx =0,y =0
Whenx=3,2=81=y=9

Since we are rotating about the y-axis
V= WL 3x2 dy

For y22= 27x (Since we need to find x?)

.
27
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. [ y5 ]9
= 27215k
- T 9
2725
= %77 cubic units
For y = x?
9 52 ]9
V= WL ydy=m|5 X
= %77 cubic units
Required volume = 82—177 - %77
243
=07 cubic units

EXAMPLE 29  The diagram shows part of the curve y = % The straight line y = x + 1 cuts the
curve at (1, 2). Calculate the volume generated when the shaded region is rotated
through 360° about the x-axis.

o
N

SOLUTION We can split the region in two as follows:

A

533
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EXAMPLE 30

SOLUTION

The volume of the solid formed when region A is rotated about the x-axis:

1
VZWJ (x + 1)%dx
0

1
=77Jx2+2x+1dx
o

3 1
ZW[%+x2+x}
o

77(%+1+1)

7 cubic units

W[N]

Alternatively:
1

V= WL (x + 1)2dx

[(x+ 1))

EREE!

,—,
)
|
—
=

WIN W

7 cubic units

The volume of the solid formed when region B is rotated about the x-axis:

S el ey S

7 cubic units

I
o

Total volume = A’?T + Z7T

16 3

175 ; :
=47 cubic units

Find the volume of the solid generated when the region bounded by the curve
y = 2sinx, thelinesy = 1, x = %T and x = 727 is rotated through 27 radians about the
x-axis.

When y = 2 sinx is rotated about the x-axis.

V= WL (2 sinx)*dx
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Remember
cos2x = 1— sin?2x
= 2sin2x=1— cos2x
= 1— cos2x
2
=7TJ;4sin2xd.x
=47Tf 1 — cos2x 4,
i 2
= 4777 [x — %sian]Et
6
- m_ 1l m _(m_1l. m
_2”((4 25“12) (6 23“13))
(T _m_1 ﬁ)
2”(4 6 272
=2 (% — % + ?) cubic units

When y = 1 is rotated about the x-axis:

m
4

V= 1?dx
s
= m(x]3
6
_ T
B ”(4 6)
_ (7
77(12)
_ T .
=1 cubic units
Required volume = 277(% — % + ?) — 77(%)
T 1 V3 1)
- 277(12 >4 24
= 277(% — % + ?) cubic units
EXAMPLE 31 The region bounded by the curves y = cosx, y = x? and the lines x = — %Tx — %Tis

rotated 277 radians about the x-axis. Find the volume of the solid of revolution formed.

SOLUTION For the curve y = x*

b
V= wfyzdx
a
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m

- wﬁ%(xZ)de

-l5f,
i
g

For y = cosx:

T

6
Vzwjjcoszxdx Remember

6

coszx=%+% X COS 2X

s
6

I
|=]
aly

1,1
§+ zcost)dx

a3

(1 + cos2x)dx

Il
oIy
—_—

_T
6

=
+
N[—

SIS ERSIE RS
SNE
+
N[ —

I

i i Nl s i |

=N} o\‘l:\]') a3y

+

AN

S T

— =[5

_l’_

alt

=
o
Na)
E.
E
o
(W
S
e
c
3
o
I
3
o
+

_ (T V3 _
_77(6+4 38880)

= 2.96 units®

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

EXERCISE 16B

1

V3x + 1
when the shaded region is rotated through 360° about the x-axis.

(Usef % = In |x|.)

1 The diagram shows part of the curve = . Find the volume generated

0.5 )I/_V3X+1
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2 (a) Show that (1 — V2sinx)? = 2 — 2V2sinx — cos2x.

(b) The region bounded by the curve y = 1 — V2sinx, the linesx = 0,y = 0

and x = 7ZT is rotated through 360° about the x-axis. Find the volume
generated.

3 Find the volume of the solid formed when the area bounded by the curve y =
3x — x2, the x-axis and the lines x = 1 and x = 2 is rotated through 360° about
the x-axis.

4 The region bounded by the curve y = sinx, the x-axis and the line x = 7 is
rotated through 360° about the x-axis. Calculate the volume of the solid of
revolution thus formed.

5 Findin te3rms of 7 the volume of the solid of revolution formed when the region
0=x= 777 bounded by the curve y = 1 + sinx, the x-axis and the y-axis is
rotated through 360° about the x-axis.

6  The diagram shows part of the graphs of y = sinx and y = cosx. Find the vol-
ume generated when the shaded region is rotated through 360° about the x-axis.

4

y = cosx

y =sinx

INER
NI

7 'The points A(1, 3) and B( 3, %) lie on the curve y = %, as shown in the diagram.
(a) Find the equation of the line AB.

(b) Calculate the volume obtained when the shaded region is rotated through
360° about the x-axis.

Y3
x2 & A(1, 3)

1
8(3'5)
X

0 1 2 3

8  The points A(1, 5) and B( 5, %) lie on the curve y = % as shown in the diagram.
(a) Find the equation of the line AB.

(b) Calculate the volume obtained when the shaded region is rotated through
360° about the x-axis.
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9  Calculate the volume generated when the shaded region is rotated through four

right angles about the x-axis.

10 Find the volume generated when the region bounded by the curve y = tanx, the

x-axis and the line x = % is rotated through 27 radians about the x-axis.

11 The diagram shows part of the curve y = 2 sin (2x + 7—7). Find the volume gen-
erated when the shaded region is rotated through 2 radians about the x-axis.

Ay
2 y=25in(2x+%)
2‘
'I,
X
0 rm w3
84 4 8

12 Find the volume generated when the region bounded by the curve y = 2 sinx +
4 cosx, the lines x = 0 and x = a, where a is the x-coordinate of the maximum

point on the curve is rotated through 360° about the x-axis.
13 The part of the curve y = x* from x = 1 to x = 2 is rotated about the y-axis
through 27 radians. Find the volume of the solid formed.

14 Find the volume of the solid generated by rotating completely about the y-axis
the area enclosed by the curve xy = 2, thelinesx =0,y =2and y = 5.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o
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SUMMARY

Applications of integration

- ~

Area under a curve Rotation about the x-axis
Area between the curve and Volume of the solid formed when the
the x-axis fromx =atox=a shaded region is rotated 27 radians

b - b
isj y dx about the x-axis IS7TJ. y? dx

a a

y y

y = flx) y = fix)

o e
o -

a

\ g v

Area between the curve and the Volume of the solid formed when the
shaded region is rotated 27 radians
about the x-axis is

[ (o) dx—m [ ()2 dx
a a
y

d
y-axis fromy =ctoy = disj xdx
C

y = fix)

o —— — —

Area between two curves

' v

7= fo0 Rotation about the y-axis

Volume of the solid formed when the
shaded region is rotated 27 radians

d
about the y-axis i57rj x% dy
C

|

|

|

|
| ¥
; b

0 a

(i) Find the points of intersection
of the two curves.
(i) Shaded area =

_[: fix) dx— j: g(x) dx

v

Area below the x-axis
y

y = flx)

b
Shaded area = |L f(x) dx
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Checklist

©000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00

Can you do these?

B Estimate the area under a curve using rectangles.

I Understand that the limiting sum gives the exact area under the curve.

B Use integration to find the area under the curve.

B Use integration to find the area between two curves.

M Find the volume of a solid formed when a region is rotated about the x-axis.

B Find the volume of a solid formed when a region is rotated about the y-axis.

©0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 o

Review Exercise 16
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Show that the area of the region bounded by the curves y = sinx and y = cosx

fromx =0tox = 727 is (V2 — 1) square units.

Find the area of the region bounded by the curves y = 6x — x? and y = x* — 2x.

Sketch the curve y = x> — 6x? + 8x. Find the area of the region bounded by the
curve y = x> — 6x* + 8x and the x-axis.

Find the point of intersection of the curves y = x> — 4 and y = —2x2. Hence,
find the area bounded by the two curves.

The points A(1, 0) and B(3, 2) lie on the curve y = x?> — 3x + 2 as shown in the
diagram.

(a) Find the equation of the line AB.

(b) Find the volume, when the shaded region is rotated through 360° about the
X-axis.

(a) Find the volume obtained when the region bounded by the curve
y= ﬁ, the x-axis and the lines x = 1 and x = 2 is rotated through

360° about the x-axis.

(b) Find the area of the region bounded by the curve y = 5x — x* and the line y = 6.
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Sketch the curve y = x(x — 2)(x — 3), and find the ratio of the areas of the two
regions bounded by the curve and the x-axis.

(a) Sketch the graph of y = x> + 4x? + 3x, fromx = —4tox = 1.
(b) Find the gradient of the graph at the points where the graph cuts the x-axis.

(c) Calculate the area enclosed by the x-axis and the curve between x = —3
and x = —1.

Calculate the volume generated when the region bounded by the curve
y= x%’ the x-axis, and the lines x = 1 and x = 4 is rotated through 360°
about the x-axis.

Find the volume of the solid generated by rotating completely about the y-axis

the area enclosed by the curve x — y?> — 4 = 0, the linesx = 0,y = 0 and y = 3.

The area bounded by the curve y = V4x and the line y = 3 is rotated completely
about the y-axis. Find the volume generated.

The area bounded by the curve y = 9 — x2, the x-axis and the lines x = 2, and
x = 3 is rotated about the x-axis through 360°, find the volume generated.

The diagram shows part of the curve y? = 9x, and the line OP where O is (0, 0)
and P is (1, 3). Find the volume, in terms of 7, when the shaded region is
rotated through 27 radians about the x-axis.

2 —
y P(1,3) o=

0

The points A(0, 0) and B(%, g) lie on the curve y = sinx as shown in the
diagram.

(a) Find the equation of the line AB.

(b) Show that the volume formed when the shaded region is rotated through

° .. _ T
360° about the x-axis is given by V T = 3)
y
B y = sinx
(4
44
A X
0
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15

16

17

18

Calculate the area of the region between the curve y = 9 — x?and y = x? + 1
fromx = 0tox = 3.

Calculate the volume of the solid formed when the area bounded by the curves
y = x?and y = VX rotated about

(a) the x-axis

(b) the y-axis.

(a) Sketch the curves y = x?and y = 18 — x2.

(b) Find the points of intersections of the curves.

(c) Calculate the area enclosed by the two curves.

(a) Find the points of intersections of the curves y = sin2x and y = cosx for

< <_”

(b) Find the area of the shaded region bounded by the curves from x = a to
x = b, where a and b are the coordinates of the points of intersections
found in a.
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CHAPTER 17
Differential Equations

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

At the end of this chapter you should be able to:

B Identify a first order differential equation

B Separate the variables of a first order differential equation

B Find the general solution of a first order differential equation

B Find the solution of a differential equation given boundary conditions
B Sketch the solution curve for a differential equation

B Form and solve a differential equation for a practical problem

B Solve second order differential equations

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

KEYWORDS/TERMS

differential equations » first order « general
solution « boundary conditions  solution curve
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SOLUTION

Families of curves

The diagram shows the graphs of:

(@) y=»
(b) y=x*+1
(c) y=x*+2

Notice thaty = x%,y = x> + land y = x> + 2
are three curves with the same general shape but
different positions in the x—y plane. These curves are called a family of curves.

An equation of the form y = x? + ¢, where c is a constant, represents a family of
curves. Given values of x and y we can find a value for c. The value of ¢ corresponds
to the boundary conditions in the problem.

When x = 0 and y = 0, we get ¢ = 0 and the curve y = x? corresponds to a particular

solution of the equation. The condition (0, 0) is called a boundary condition of the
equation. As the boundary condition changes the equation of the curve changes, and
we can find the members of the family of curves.

d d
Since y = x2, & — 2x.The equation & — Jxis called a differential equation.
A differential equation is an equation containing a derivative.

Classifying differential equations

The order of a differential equation is the order of its highest derivative. For example:
Ey = x is a first order differential equation.

d¥y  dy . . . .

12 +4 dx + 3y = x + 2 is a second order differential equation and so on.

Linear versus non-linear differential equations

Differential equations can also be classified as linear or non-linear differential equa-

tions. A differential equation is linear, if it exclusively involves terms with a power of 1.
2

d?y dy - . . . d%y .
For example, 12 + dx + 3y = x is a linear differential equation and 12 + 4siny =

5x + 2 is a non-linear differential equation.

Practical applications of differential equations

Here is an example of a practical application of differential equations.

In the year 2000 Ariel started buying CDs at a shop in Gulf City Mall. over the last
ten years Ariel noticed a gradual increase in the price of the CDs and decided to plot
a graph of the total cost for each year.



MODULE 3 e CHAPTER 17

Year Price 150
2000 TT$100 1457

140
2001 TT$105

1354
2002 TT$110 130
2003 TT$115 1251

1204
2004 TT$120

1154
2005 TT$125 o-
2006 TT$130 105 -
2007 TT$135 100 4
2008 TT$140 of 1 2 3 4 5 6 7 8 9 10
2009 TT$145
2010 TT$150

Ariel found the gradient of the line using %
d

the price P with time ¢ (in years) Ariel obtained d—I; = 5. This is called a differential

equation.

= 5, replacing the rate of change of

Using integration, Ariel obtained P = 5¢ + ¢ where P is the price of the CD at time ¢
in years and c is an arbitrary constant.

Substituting t = 0, P = TT$100, Ariel got 100 = ¢ and her equation connecting price
and time is:

P =5t+ 100

Ariel could use her model to predict the price of a CD in the year 2011 and beyond.

First order differential equations

d
d—z = f(x) is an example of a first order differential equation. To solve this differential

equation we integrate both sides of the equation. The solution that contains the
constant of integration is called the general solution of the equation. When addi-
tional information is given so that a particular curve can be identified, the solution is
a particular solution.

EXAMPLE 1

SOLUTION

d
Solve the differential equation & ax+ 3.

dx
dy _
a—2x+3
de=J2x+3dx

=>y=x*+3x+c

Therefore, the general solution is y = x* + 3x + c.

545



EXAMPLE 2

SOLUTION

EXAMPLE 3

SOLUTION

EXAMPLE 4

SOLUTION

546

. : o2 dy
Find the general solution of the equation T lde VX

2 dy

x+lazﬁ

ll

% VX (x + 1) (Multiplying both sides by (x + 1))

2dy = |x(x + 1)dx

—_—
R.

X+ xdx

[\
= \<
I I
gl —m
>N<|u1 [ [
+
[SSI] )
3
+
[

=
Il
Ui|—
Ben
+

d
Find the particular solution of the differential equation x> ay =4 — x, whenx = 1
and y = 2.

dr

Find the solution of the differential equation 3 =~ 40

_ T
0—7.

+ sin # = 0, given that r = 5 when

dr
d0+sm0 0
dr _ _
:>3—d0 sin 0

J3dr = J—sin 6do

= 3r=cosf+ ¢
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EXAMPLE 5

SOLUTION

Hence, 3r = cos 6 + 15

:>r=%cost9+5

The solution of the equation is r = % cosg + 5.

Solutions of variable-separable
differential equations

d
An equation of the form Ey = f(x) g(y), where f(x) is a function of x and g(y) is a
function of y, can be rearranged to:

D S
20 dy = flx)dx

Integrating both sides gives:
1

sdy= [ ax

J EOR

An equation of this form, where we can separate the functions of x and y, is called a
variable-separable equation.

d
Solve the differential equation ay = ﬁic_:_ 21
dy _4x+1
dx yt2

Separating the variables we get:
(y+2)dy = (4x + 1)dx
Integrating both sides gives:

(y +2)dy = | (4x + 1)dx
jy; =[x+

2
We now have a relationship containing x and y.

>5+2y=2x+x+¢

Alternatively:

J(y+2)dy— (4x + 1) dx
y+2? 1
=2 "3
=(y+22=7@x+17+2

(4x + 1)+ ¢

Sy+2={Lax+r+o

:>y=\/i(4x+1)2+2c—2



EXAMPLE 6

SOLUTION

Solve the differential equation y i

@ _ tanx +2
dx cos’x

= jtanx sec?x + 2 sec’x dx

= —
DA
&

tan®x + 2 tanx + ¢

= o
=

» I
=] N[ —

_ T, _
—Z,y—li

1o 2m a
2tan 4+2tan4-|-c
+2+c

N— N~
Il
| 20—

U
!

tan’x + 2 tanx — 2

2 = tan?x + 4 tanx — 4

= Vtan®x + 4 tanx — 4

dy _tanx + 2

, given that y = 1, when x = 7.,
costx ' ® Y 4

(Separating variables)

EXAMPLE 7

SOLUTION

Remember

To solve an equa-
tion of this form,
we bring all xs to
one side, all ys
on the other and
then integrate.

By+2)dy

Given that TCosx a =

(By+2)dy _
COSX  dy 1

Separating variables we have:
3y + 2dy = cosxdx

J(3y +2)ldy = Jcosxdx

1 By +2)?
3 2
(3y + 2)?
6
Whenx =0,y =0

2
mzz)zc

=sinx + ¢

=sginx + ¢

C

C

(By+2)?_ | 2
T—smx+§

Make y the subject of the formula:

W O\

Therefore,

(By +2)* =6sinx + 4
3y +2=V6sinx + 4

3y=—2+V6sinx + 4
y= —2+Vé6sinx +4
3

1, find y in terms of x, when x = 0, y = 0.
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EXAMPLE 8

SOLUTION

EXAMPLE 9

SOLUTION

&

Given that P

(52
dy
dx

+ y?sec?x = 0. Find the equation of the curve which passes through

+ y*sec?x =0

d
ay = —y?secx (Separating variables)

During a spell of ice rain, the ice on a windscreen has thickness xmm at time ¢ hours
after the start of freezing. At 6:00 p.m., after two hours of freezing, the ice on the
windscreen is 3 mm thick. The rate of increase of x is proportional to %

(a) Set up a differential equation for x.

(b) Using the model, find the time at which the thickness of ice on the windscreen is
5mm thick.

(a) Our differential equation is a rate of change. When forming the equation, look
for the rate. In this question, the words ‘the rate of increase of X’ are replaced

by % and ‘is proportional to’ by the symbol <. Therefore, % o % is our

differential equation.
dx _k
e X
= xdx = kdt

:dex= fkdt

where k is the constant of proportionality

2
:>x7=kt+c

=x*=nt+a (n=2kanda=2c)
Whent=0,x = 0:
=0=(0Xmn)+a

=a=0
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EXAMPLE 10

SOLUTION

EXAMPLE 11

Whent=2,x=3:

=9=2n+0
=n=2
Therefore, x> = %t
(b) 2 =3t
When x = 5:
=2
25 = 2t
t=25%3
=30
=39 hours
—52
=53 hours
. . . . N dy
A point moves on the y-axis so that its coordinates at time ¢ is given by -

4+ hcos2tforh € R.

It is observed that y = 2 when t = 0,and y = 0 when t = 727 Find the value of h and
the value of y when t = %T

Q =4+ hcos2t
dt

Separating variables and integrating both sides gives:
de = J(4 + hcos2t)dt

:y=4t+%sin2t+c

Whent =10,y =2:

=2=c

Therefore, y = 4t + %h sin2t + 2

Wheny=0,t=7ZT:
:>0=7T+(%><1
=h=-2(7+2)

=y =4t — (7 + 2)sin2t + 2

J+2

<
Il
|q>
3
|
3
+
»
2.
5
<3
+
[\

A cylindrical container has a height of 100 cm. The container was initially full of
water but there is a leak in the base of the container. Ryan noticed the leak in the
container when it was dripping at a rate of %cm per minute and the container was

half full. The rate at which the container is leaking is proportional to Vi where  is
the depth of the water remaining.
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SOLUTION

(a) Show that this leads to the differential equation &>
time in minutes.

dh _

- 10\/_\/_ where t is the

(b) Obtain the general solution of the equation.

(c) Find t when h = 50 cm.

(a)

(b)

(c)

“The rate at which the container is leaking’ can be replaced by — % We replace
‘is proportional to’ by «. The differential equation then becomes:

SR COSRV/A

== kVh, where k is the constant of proportionality

When h = 50cm, dh _ —0.5cm min~ L

dt
= 0.5 = k\/50
1
[
~ 57250
=1
2V25 X 2
=_1_
10V2
dh 1
= =—-——=Vh
= dr 10vV2 vh
# dh = — ﬁ dt (Separating variables)

:Jh‘idh = J—Wdt

S2/h=——1_t+¢
10V2
When t = 0, h = 100:
=2XVI00 = ——L_x0+¢
10V2
= 2V100 = ¢
=c¢c=20
Therefore, 2Vh = 20 ——t
10V2
=Vh=10——1_¢
20V2
2
:>h—(10——20\/§t)
When h = 50:
50 = (10 ——L— ¢}
(10557
V50 = 10 ——L_¢
\/—
1 _4—10-v50
20V2

t =20V2 (10 — V50)

= 82.84 minutes
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EXAMPLE 12

SOLUTION

A rat has mass 30 g at birth. The rat reaches maturity in 4 months. The rate of growth

of the rat is modelled by the differential equation % = 90(¢t — 4)?, where x is the

mass of the rat £ months after birth. Find the mass of the rat when the rat is 2 months old.

dx _ — 4\
ar 90(t — 4)

Separating variables gives:
de = J90(t — 4)%dt

x = %(t — 4P+
x=30(t—4)> +¢
When t = 0, x = 30:
=30 =30(—4)*+¢

30 =30(—64) + ¢

= ¢ = 30(65) = 1950

sox = 30(t — 4)% + 1950
When t = 2:

x = 30(—2)% + 1950 = 1950 — 240
=1710g

Second order differential equations

Consider y = Ax*> + Bx + C.

If we differentiate this equation twice we get

dy _
E—ZAX'FB

42
Y oA
A
2
The equation in 12 is a second order differential equation.
We can move in reverse by integrating the second order differential equation twice to
obtain the function of y. Let us see how this works:
d%y
o
Integrating both sides with respect to x gives:

2
fﬂ dx=J2Adx

d
= &y = 2Ax + B, where B is the constant of integration.
Integrating again with respect to x, we now have:
d
| &= @ax+Byax
=>y=Ax*+Bx + C.

By integrating twice we have two constants of integration introduced into our
solution for y.
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EXAMPLE 13

SOLUTION

EXAMPLE 14

SOLUTION

2
To solve a general second order differential equation of the form E); = f(x), we
integrate twice and the general solution involves two arbitrary constants.

To determine a specific solution curve for this differential equation one point is not
enough, we need a point and the first derivative at that particular point.

2

Find the general solution of the differential equation a)zj =x3—6x + 12.

Integrating both sides with respect to x gives:

2
Jd—)z/ dx Zj(x3 —6x + 12) dx
dx

d
=XLa 30410044

dx 4

Integrating again with respect to x gives:

dy . 1.4 2
Jadx—j(zx 3x +12X+A dx
:>y=%x5—x3+6x2+Ax+B

This is the general solution of the differential equation.

Notice that we have two arbitrary constants in this solution.

2
Find the solution of the differential equation d—}; = 4 sin’*t, whent = 0,y = 1 and
Y, f

dx - .

Integrating both sides with respect to #:

2
Jﬂ dt =J 4 sin?t dt

dr

2%:J'4(1 —gosZt)dt

:%= 2[ (1 — cos2t) dt

:%= 2[t = Ssin2e] + 4
a%=2t—sin2t+A

Integrating again with respect to t gives:

JQ dt =J (2t — sin2t + A) dt
ar
1

:>y=t2+§c032t+At+B

We now find the constants A and B as follows.
Substituting t = 0, y = 1 gives:

~1
1=5+B
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EXAMPLE 15

SOLUTION

=B =

NI»—-

d
—y=2t—sm2t+A

dt

d
Whent=0,5=2,=2=4

dt
The solution is y = > + %cosZt + 2t + %

A particle moves in a straight line through a fixed point O. Its acceleration is

given by % = 3t — 4 where ¢ is the time in seconds after passing O, and x is the
displacement from O. The particle reaches a point A when t = 2 and % =3,

(a) Find Ccllx when t = 1.

(b) Find x as a function of .

(a) CX=3t—4

Integratlng with respect to ¢ gives:

d’x
Jdt2 di =

dx _ 1 34— 4y
=4 6(t 42 + ¢

j (3t — 4)dt

Whent=2,%=3

:>3=6l(6—4)2+c

=3=2+c

$c=3—%=%

Therefore,% %(31‘—4)2
WhentZI,%zé—i—%:%:%mS 1

(b) since ¥ =1
with respect to ¢.

J‘é’t‘ dt—J (l(st— 4)? +% dt
2+

:>x=—(3t +c

3t
Whent=0,x=0

_ —64
=55 +c

64 _ 32

=CT547 27

32

3
4)° + t+27

=Sx= —(3t

(3t —4)2 + %, we can find x in terms of t by integrating both sides
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EXERCISE 17

In questions 1 to 8, find the general solutions.

1

2

10

11

12

13

14

15

16

17

18

% =4x* —2x + 1
d
ay = sin %x
d
Ey = cos’x
d
a}’ = x(x% + 2)
&__»
dx 3x +1
d

2 E)’ =2
sec’x d—z = cos’x
d
ay = 2 + 2xy?
Solve the differential equation % = cost + sint, subject to the condition x = 0
when t = 0.

d
Given that ay = (x + 1)3, solve the differential equation when y = 0 and x = 2.

d
Find the solution of the differential equation d_)t} = sin2t, given that y = 1 when
=T
= g .
Find the general solution of the differential equation ay =2xy? — 2.
d 3
Find the general solution of the differential equation a}’ = %
(Make y the subject of the formula.) 4
d 2 _

Solve the differential equation ay = % given that whenx =3,y =1,

write y as a function of x.

The angular velocity w of a wheel of moment inertia is given by I dw | o= 0,
where a is a constant. Determine w in terms of ¢ given that w = w; when t = 0.

An equation of motion may be represented by the equation % = —kv? where
v is the velocity of a body travelling in a restraining medium. Show that

v
V= *—given v = v, when t = 0.

1 + ktv,
The rate of increase in the height of a tamarind tree while growing, after being
planted is proportional to (9 — x)5, where x is the height of the tree in metres
at time ¢ years. It is given that when t = 0, x = 1 and a 1. Form a differ-
ential equation relating x and ¢, solve this differential equation, and obtain an
expression for x in terms of .

Compressed air is escaping from a balloon. The pressure of the air in the bal-

loon at time ¢ is P, and the constant atmospheric pressure of the air outside the
555
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19

20

21

22

23

24
25

ooooooooooooooooooooooooooooo

balloon is P,. The rate of decrease of P is proportional to the square root of the
difference in pressure (P — P,).

(a) Write down a differential equation for this information.
(b) Find, in any form, the general solution of this differential equation.

(¢) Given that P = 5P, when t = 0, and that P = 2P, when t = 2, find k in
terms of P,

(d) Find also P in terms of P and t.

In a certain chemical process a substance is being formed, and ¢ minutes after
the start of the process there are y grams of the substance present. The rate of
dy _

increase of y is proportional to (40 — y)>. Whent = 0,y = 0, and — a

(a) Write down a differential equation relating y and ¢.
(b) Solve this differential equation expressing y in terms of ¢.
(c) Calculate the time taken for the mass to increase from 0 grams to 35 grams.

Waste material is dumped along the Beetham in Port of Spain, Trinidad. The
dump heap is conical in shape and continually increases as more waste material
is added to the top. In a mathematical model, the rate at which the height x of
the dump-heap increases is inversely proportional to x?.

(a) Express this statement as a differential equation relating x and ¢.

(b) A new dump-heap was started at time ¢ = 0, and after 2 years its height was
18 metres. Find the time by which the dump-heap had grown to 30 metres.

Find the general solution of each of the following differential equations.
&y

(@) 5=0x+ 2)?
2
(b) —= = sin2x cos2x
2

Find the general solution of the differential equation d—)z/ = —4> + 5t + 3.
Hence, find the solution when t = 0, y = 1 and d_y =1

42
Sketch the solution curve to the differential equation d); x + 2, given that

dy _
y =0whenx =0and = i 1 when x = 0.
Find the general solution of the differential equation == ar ﬁ
A particle moving in a straight line passes a fixed point O on the line. The
a2

acceleration of the particle & )2} , t seconds after passing O is given by
d2
d)Z/ 13 — 6t and x is the displacement from O. When the particle is at O its
velocity is 30 ms ™! that is when x = 0 and dx _ 5,

dt
Calculate the following.

(a) dx when t=3
(b) the value of t when (ji}tf 0
(¢) the value of x when % =0

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo



SUMMARY

First order differential equations:

Y 110 ()

dx
Separate the variables:
! dx = f(x) dx

9(y)
Integrate both sides:

1 .
J%dy = j f(x) dx

v

Do not forget to add the
constant of integration.

v

If xand y are given,
use these values to
find the constant.

Differential equations

v

Worded equations

\ g

Identify the variables
clearly.

\ 4

Remember a differential
equation represents a
rate of change.

A

One variable will be
changing with respect to
the other: this gives the
rate of change.

v

For example: x changes
proportional to t gives:

dx
— =kt
dt

MODULE 3 e CHAPTER 17

Integrate twice to
solve. At each stage
introduce a constant
of integration.

v

Follow the steps for
solving first order
differential equations.

Checklist

©00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Can you do these?

B Identify a first order differential equation.

B Separate the variables of a first order differential equation.

B Find the general solution of a first order differential equation.

B Find the solution of a differential equation given boundary conditions.
B Sketch the solution curve for a differential equation.

B Form and solve a differential equation for a practical problem.

Bl Solve second order differential equations.
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Module 3 Tests

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Module 3 Test 1
1 (a) Differentiate with respect to x.
() (x+ 1)V4x® + 1 (4]
(i) cos®(3x — 2) (4]
(b) (i) Given that sz(x) dx = 8, evaluate fxz — flx)dx. (4]

(©)

()

(b)

(c)

(a)

(b)

()

(a)

(i) Find the area enclosed between the curve y = x*> + 2 and the line
y+x=14. [6]

A lidless box with square ends is to be made from a thin sheet of metal. What
is the least area of the metal for which the volume of the box is 0.064 m3? [7]

3
(i) Find lim 04— 125 (5]
i>3126 = 11x = 5
(ii) Evaluate lim SI9% [5]
x—0
The curve C passes through the point ( 1, %) and its gradient at any point
o dy 4
(x, y) is given bya =3x — s
(i) Find the equation of C. [3]
(ii) Find the coordinates of the stationary point of C and determine the
nature of the stationary point. (4]
a2
(i) Find the general solution of the equation E)Z/ = 4x3 + 3x2% (4]
d
(ii) Hence, find the solution when x = 0, y = 1 and d_ilc =0. (4]

A model for the height, y metres, of a mango tree at time ¢ years after being

planted assumes that, while the mango tree is growing, the rate of increase of the
dy

height is proportional to (9 — y)g. It is given that when t = 0, y = 1 and i 0.2.
(i) Form a differential equation connecting y and t. (3]
(ii) Solve the differential equation, expressing y in terms of ¢. (8]

(iii) Calculate the time taken for the tree to reach half its maximum

height. (4]
The function f(x) is such that f’(x) = 4x®> + 6x? + 2x + k, where is a
constant. Given that f(0) = 5 and f(1) = 10, find the function f(x). [5]
Givenzthat y = Acos3x + Bsin3x, where A are B constants, show
thata)zl +9y = 0. [5]

The point A(1, 4) is a point of inflexion on the curve y = x> + bx? + x + ¢,
where b and c are constants.

(i) Find the values of b and c. [5]

(ii) Find the equation of the tangent to the curve at A. (3]
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1

2

(b) EvaluateJ G2 f_ 1—; 2+ i dx, using the substitution u = 3x> +
o (3x X

18x + 1. (8]

(c) Find the exact value of

T

(i) J cos46cos26d6 (5]
o
(ii) J cos?3xdx (4]
o
Module 3 Test 2

1 (a) The diagram shows the shaded region
bounded by the line y = 2x + 6 and
the curve y = —x? + 6x + 3. Find the
area of the shaded region. [6]

(b) Find the exact volume of the solid
formed when the region bounded by
the curve y = cos2x, the x-axis and
the lines x = 0 and x = 7 is rotated
through 27 radians about the
x-axis. [7]

oo d x
(c) (i) Find TR Hence, evaluate Y

lez — 3x2 [6] 4
b (x* + 4)? ) '

(ii) Given that j 4f(x) dx =12, find the
0 2

value of k where L (kx* — 2f(x))dx = 1. (6]

2 (a) A spherical balloon is being inflated in such a way that its volume is
increasing at a constant rate of 3007 cm® s~ 1. At time ¢ seconds, the radius
of the balloon is rcm.

(i) Find the rate at which the radius is increasing when r = 25cm. [3]

(ii) Find the rate of increase of the surface area of the balloon when its

radius is 25 cm. (3]
(b) A curve has equation y = x + %
. &y, dy 7
(i) Show that x@ +3 FIs (5]
(ii) Find the equation of the normal to the curve at the point where
x=1 [4]
d
(c) (i) Given thaty = sinx? find ay Hence or otherwise, evaluate
J xcosx?dx. (5]
o
(ii) Findd the general solution of the differential equation
PR [5]

dx
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(a)

(b)

()

(a)

(b)
(c)

Differentiate with respect to x.

(i) (x*+ 2)tanx (4]
(i) cosV5x® — 2x (4]
A function fis defined as follows:
x x <=2

fix)=ax+b —2=x=2

Tx—1 x>2
Determine the values of a and b such that fis continuous over the interval
— o0 < x < oo, (7]

Evaluate the following limits

. . x+5—3

O Jim 2 g
sy 1. tan 2x

(i) lim === (4]

Find and classify all maximum points, minimum points and points of

inflexion of%/ =x3—6x2+9x + 1. (8]
Given that J (x —2)*dx = 0 and p > 0, find the value of p. [5]
The equatioil of a curve Cis given by y = 2; _+ 41

(i) Find the asymptotes of C. [4]
(ii) Show that there are no turning points on C. [4]
(iii) Sketch the graph of C. (4]



Unit 1 Multiple Choice Tests

Multiple Choice Test 1

1 (\/_3+—1\/_2)zis
A 5-2V6 B 5+2V6
C —5+2V6 D —5-2V6
2 The range of values of x such that 3x*> — 13x + 14 <0 is
A {x:x<2}U{x:x<%} B {x:2<x<%}
C {x:x>2}U{x:x<%} D {x:x<—2}U{x:x>_T7}

3 Let p be the statement ‘Samir learns calculus’ and g the statement ‘Samir will get
an A in calculus. The statement p — g as a statement in words is

A “Samir will get an A in calculus when he learns calculus’
B ‘Samir learns calculus only when he gets an A’
C ‘Samir will get an A in calculus if and only if he learns calculus’

D ‘Samir does not get an A in calculus if he learns calculus’

A 1230 B 2130 C 1220 D 2120
5 Ifx — 2isafactor of 4x> + ax® + 7x + 2, then a is
A —12 B —48 C 48 D —24

6  2log,(5p) — 3log,(2f) + 2 expressed as a single logarithm in its simplest form is

25¢2 50p 25p?
Sp) B log, 8p3) C 10ge(8p3

7 'The population of a village at the beginning of the year 1800 was 240. The

25pe’
+2 D loge(%

A log,

population increased so that, after a period of n years, the new population was
240 X 1.06". The year in which the population first reached 2500 was

A 40 B 1840 C 1839 D 1841
8 Ifflx) =4x —7,x € Rand fg(x) = x + 1, then g(x) is

A ix+2,xeR B ix—l—%,xe[R
C x+£,xeR D x+%,xe[R{
9  The function g is defined by g(x) = 3; i % and h is defined by h(x) = %X ;_ 3

x = 0. Given that hg~1(4) = 6, the value of a is

A 6 B 5 C 4 D -5
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10 Given that the roots of x> — 6x*> + 11x — 6 = 0 are a, 3 and v, the value of

o? + B+ s
A 36 B —16 C 14 D -—-36

11 If the roots of the equation 2x — x?> + 3x — 4 = 0 are a, B and v, then the
equation with roots l Landl 7 1s

* B
2 1 3 _
A 43 -3x2+x—2=0 B F‘;"'y—‘l—
C 33—x*+x—4=0 D X¥*—x*+x—4=

12 If|2x + 1| — 3 =0, thenx s

A 4,-5 B —5.4 C 1,-2 D 3,2
R

Ay B % C b
14 If|2x + 3| + 2x = 1, then x is

A 2 B 1 c -1 D -2
15 If the roots of the equation x* + px? + gx + r = O are 1, —2 and 3, then p, q

and r are

A p=2,9q=5r=-6 B p=549q=2r=6

C p=149q=2,r=4 D p=-2,q=—-5r=6
16 The general solution of sin § = % is

A nTr—%T,neZ B ZHWig,nEZ

C n7'r+%7,neZ D nw+ (— 1)( )neZ

17 The expression cos 76 + cos46 may be written as

A cosllé -2 s1n(70) s1n( )
C 2 cos( 1%0) sin(%e) D 2 cos(lTe) cos(320)
18 If4cosO+ 3sinh = rcos(f — o) wherer >0and 0 < oc < 2 5 T then the mini-
mum value of the expression is
A V5 B -5 C 5 D —\5
19 The equation 3x* + 6y* + 6x — 12y = 0 is the equation of
A acircle B anellipse C ahyperbola D aparabola
20 The equation4x® + > —8x + 4y + 6 =10
A acircle with centre (4, —2) B an ellipse with centre (1, —2)
C an ellipse with centre (—1, 2) D a circle with centre (—4, 2)
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21

22

23

24

25

26

27

28

2
The cosine of the angle between the vectors | 2 |and 2i + j + 2kis
-1
4 8 4 8
A9 By © 81 D a1
. )y 3 . 1
Given thatOA =| 2 |,OB = |4 |and OC = |2 | with respect to an origin O, the
-1 2 k

—

value of k for which AB is perpendicular to BC is

3 —14 14
L1
The equation of the line passing through the points OA = |4 | and
OB = 2i + 5j — kis
1 2 2 1
A =4+ AN 5 ) AeR B rZ(S +AM4,A e R
2 —1 -1 2
1 1 1
C r=4|+A 1 rxeR D r= + A9, A eR
2 -3 2 1
cos(A—B) 7
Ifcos (A+B) 3 then
A 5cotA =2cotB B 5tanA = 2 cotB
C 5tanA = cotB D 5tanB=2tanA

Given that tan # = t and that 6 is acute, express cot (6 + 45°) in terms of t.

2t 1+t 1—t 1 — ¢
A The B 1= C 1T+ D 177
tan26 is

1+ sec26
A cotf B tan#f C sect D cosecf
Given that cos A = 4, cos4A is

1 1 _31 _1
A g B 3 C -5 D —3

The curve with parametric equation x = 2cost, y = sint + 1 has Cartesian
equation

A 4y—1)P+x*=4 B (y+12+(x—-12%=2
C (p—1)P2+x=2 D (y+2)?=x

Questions 29 and 30 refer to 5(x*> + y*) — 4x — 22y + 20 = 0.

29

30

The centre and radius of the circle is

A 1), r=1 B (%,%),rZI
24, - -2 -11)
C ( 5 r=1 D ( 555 ),r 1
The gradi 6 8);
e gradient of the tangent to the circle at 55
3 _3 4 _4
A 1 B 1 C 3 D 3
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31 lim sin 3x is

x50 2%

AL B 3 c 3 D 1
32 If xh_)rnz [4f(x)] = 7, then xliinz[f(x) + 2x] is

A 11 B 4 c D 2
33 The values of x for which flx) = x(x%—l—zl) is not continuous are

A 0,1 B 0,—-1 C 0,—1,—2 D —2,—-1
34 %sinx3 is

A x*sinx? B cosx® C 3x’cosx’ D —3x?cosx’
35 If flx) = x%*, then f'(0) is

A 0 B 1 C 042 D 0.61

36 The perimeter of a rectangle has a constant value of 40 cm. One side, of length
xcm, is increasing at a rate of 0.5cms™!. Find the rate at which the area is
increasing at the instant when x = 3.

A 5cm?s! B %cmzsf1 C %cmzs*1 D 7cm?s!

Questions 37 and 38 refer to this information.

A cuboid has a total surface area of 150 cm? and is such that its base is a square of
side xcm.

37 The height, h cm, of the cuboid is

_ 150 — 2 _ 75— x%
A p=10-x B h="2—

C h=150x — x° D h=125x — x*

38 The maximum volume is

A 105cm? B 115cm? C 125cm? D 150cm?
39 The coordinates of the turning point of the curve y = 8x + # is
X
1 1 _1
seo  w b cfhe b (b
40 jm OS2 — 1 4;6 — 1
x—0
A i B 4 C o D o
41 |4cos60cos20d0is
A lsin80+lsin40+ c B lsin46H—lc0580+ c
4 2 8 2
C ic0580+%cos40+ c D sin660sin26 + ¢
g
42 j tan? 2xdx is
0
1 _m _m a m_1
A 573 B 2 C 3 D 573
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Items 43 and 44 refer to the diagram. The diagram
shows parts of the curves y = 2x* + 5 and
y=3x>+1.

43

44

45

The area of the shaded region is

14 16
A 3 B 3
10 13
C 3 D 3

The volume generated when the shaded
region is rotate through 360° about the

y-axis is 0

A 251 B 125 C 521 D 125
5 4 5

Given thatj f(x)dx = 12, then J (Fx) + 4} dx + f F(x) dxis
2 2 4

A 12 B 16 C 22 D 20

Multiple Choice Test 2

The solution set for x in the inequality |x* — 3| < 1is

A {xV2<x<2} B {x:—2<x<-—V2orV2<x<2}
C {x—V2<x<V2} D {x:—V2<x<V2or—-2<x<2}
log2%=

A 3 B 1 c -3 D 3

If x — 2 is a factor of x> — 7x% + kx — 12, then k is

A 16 B 2 C 32 D -—32

What is the contrapositive of this statement?

‘Presentation College Chaguanas win whenever is it raining’

A ‘Ifitis raining, then Presentation College Chaguanas win’

B ‘If Presentation College Chaguanas do not win, then it is not raining’
C ‘If Presentation College Chaguanas win, then it is raining’

D ‘Ifitis not raining, then Presentation College Chaguanas do not win’
The proposition ~ (p = q) is logically equivalent to

Which of the statements below is true?

A p=q B ~p=~q C pArg D pv~g
The function fis defined by f(x) = ﬁ For what values of x is ff(x) undefined?
- _3 11 _1-11 111
A 73,00 B {351 ¢ {-373 p 35
+1
The solution set of [* | =3is
[2x + 1]
—2 —4 2 4 —2 4 2 —4
B c (%27 o F
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8 log, (%) is

A 3 B ] c 3t D -3
9  The roots of an equation are 2, —3 and % What is the equation?

A X¥*+x*—27x— 18 B 4x® —7x*—27x + 18

C 4X +x*—27x+18 D 4x® —x*+27x+ 18
10 What is the solution set of pe X 5 <07

A {xx<0} B {x:0<x<2}

C {x:x>2} D {x:x< -2}
11 ﬁ can be simplified to

A % B Vx+2+2

c Vxt2-2 p Yx+2+2

x—2 x—2

12 If(3x)% + (%x)% = 31, what is x?

A 3 B 6 C 10 D 7

13 Therootsof x> + 6x>+ 11x + 6 = 0 are
A 1,2,3 B 1,2,-3 cC -1,-2,-3 D —-1,—-2,3

14 1If a, B and vy are the roots of the equation x> — 2x? + 4x — 7 = 0, then
o’ + B+ ylis

A 5 B 9 C —4 D -9

15 The binary operation * on the set of real numbers is defined as:
a*b=2ab+ a— 3foranya, b € R. The identity element fora € R is

34+ a —1 3
A B Spa70
C 3a-—-3 D a—3

16 sin96 — sin360is equal to

A —2sin66cos360 B 2cos60cos36
C 2sin660cos30 D 2cos660sin360
17 1If 6 = tan"!(2), when 0 is acute the exact value of sin 0 is
2 -2 V5 -5
A = B —= C — D ——
V5 V5 2 2

Questions 18 to 20 refer to f{x) = 1 — 6 sinxcosx + 4 cos?x.

18 f(x) expressed as K — Rsin (2x — «), where R > 0 and 0° < ar < 90° is
A 3 —V13sin(2x + 33.7°) B 3 —VI3sin(2x — 33.7°)
C 3 +V13sin(2x — 33.7°) D -3 - V13sin(2x + 33.7°)

19 The maximum value of f(x) is

A 3+V13 B 3—VI3 C 2 D —-3+V13



20 When f(x) is a maximum and 0° < x < 180°, the value of x is

A 16.9° B 61.9° C 151.9° D —-16.9°

21 The position vectors of points A, Band Care —2i + 2j — k, =3i + (m + 2)j — k,
—2i + 4j — 5k.

The value of m for which AB is perpendicular to BC is

A 0 B -1 C 1 D 2

Questions 22 and 23 refer to this information.

A, B and C are points where A is (1, 2, —1), Bis (3,4, 0), and Cis (1, 5, —2). O is the
origin.

22 AB-ACis
A 5 B -5 C 6 D 7

23 Angle CAB s

A 121.8° B 58.2° C 852° D 112.8°
— 1 2
24 With respect to an origin O, the vector OA = |2 | is on the line / and the vector | 3
4 1
is parallel to I. The Cartesian equation of  is
1 2 — -2
A r=2|+A|13,AeR B % 1=y—=z—4
4 1 2 3
x—2_YV—3 z—-1 _yt2 44
C g =753 D x+2="7—="9
1 4
25 'The line with equationr = | 2 |+ A|2|, A € R is perpendicular to the plane
—1 0
r-n = D. The plane passes through the point (2, 1, 3). The equation of the plane is
A 2x+y=5 B 2x+y+3z=10
C x+2y—2z=38 D 6x+3y+z=12
26  What is the length of the radius of the circle given by the equation x* + 4x — 2y +
Y +2=0?
A V3 B 3° C ¢ D 2

27 'The Cartesian equation of the curve given by x = 2 sectand y = tant + 1 is

Va2 — 4 V2 —
) _
c y=trti-2 D y=2V—3+2
28 The parametric equations of a curve is x = 2 + cos 6, y = 3 + sin 6. The curve is
A acircle with centre (2, 3) B an ellipse with centre (2, 3)
C acircle with centre (3, 2) D an ellipse with centre (3, 2)
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29 The parametric equations of the line passing through the points with position

2 6
vectors| 1 |and|2|is
—4 1
x=2+6A x=2+4A
A y=1+221}1eR B y=1+A }2eR
z=—4+ A z=—4+5A
x=6+2A _
C y=2+A}reR D "g2=yTl=z+4
z=1—4A

30 Which one of the graphs could represent the system of equations below?
X+ =49, x> +y2  —6x— 8y +21=0

4

s
<
a
U
a
N
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31

32

33

34

35

36

37

38

39

40

lim sin4xi
x—0 X

Ai B 4 C 1 D 0

T 4x*+10x + 4,
Whatis lim == 21

S

A -2 B 0 C 1 D 4
2
In the function flx) = M, x cannot be
x“—5x+5
A 3.15and 6.24 B 10.2and2.3
C 3.62and 1.38 D 0.25and 1.37
If, flx) = % for what value(s) of x is f(x) undefined?
A land2 B Oand2 C 0,1and2 D 0,—1land —2
(X2 = 3x) _
xh—>rn()( 2
A -3 B 0 C 2 D <

Given that f{x) = xcos3x, f'(x) is
A cos3x — 3xsin3x B cos3x + 3xsin3x
C 3xsin3x D 3sin3x

The equation of the tangent line to y = ax*> + bx — 3 at (—4, —31)isy = 9x + 5.
The values of a and b are

A a=2b=5 B a=-1b=5
C a=3b=5 D a=2b=-5
The coordinates of the stationary points on the curve y = 2x* — 9x* + 12x are
A (1,5)and (2, 14) B (1,5)and (2,4)
C (—1,5)and (2,4) D (1,5)and (2, —14)
Given that flx) = ﬁ, then f'(x) equals
—12 B 24 —24 D 24
(2x + 1) 2x + 1) 2x + 1) (2x + 1)°*

The real values of x for which the function f(x) = 2x? + 4x — 3 is decreasing

A x< -1 B x>-1 C —-1<x<0 D x>14
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41 'The area enclosed by the curve y = x? and y = 2x — x? is

1 1 1 1
A B 3 dC 1 D 33
42 The equation of the curve forwhichd—i/ZZx—f— 1,whenx =0,y =3is
A y=%(2x+1)2+2% B y=4(Qx+3)2+12
C y=x*+x D y=x>+2x+3

1
43 J x*(5 — vx)dxis
0

A 29 g 29 c 2 p 4l

21 7 3 21
44 Find the volume of the solid generated by revolving the region bounded by the
graphs > = 5x + 1, x = 0 and x = 2 through a radius of 27 about the x-axis

A 607 B o C 127 D 1207

45 'The rate of growth of a population (P) of insects is directly proportional to the
population, P, of the insects at time . A model for this growth is given by

A P_ipi>o B 9P _ip k<o
ar at
dP _ k dP _ k

c L-Li>o p L-Ki<o

Multiple Choice Test 3

1 Iff(x) = 4x — 2, then f%(2) is equal to

A 6 B 22 C 2 D 42
2 Which of the graphs below represents the function y = %?
A Ay B y
X _ X
0 0
C 1 D
X
0 0




10

11

12

13

p & qis logically equivalent to

A ~pegq B pen~g C ~pes~qg D ~p=g

x+3
-1

A {x:x<—3}U{x:x>%} B {x:x< -3}

>0is

The set of values of x for Wthh

C {x:—3<x<%} D {x:—%<x<3}

The binary operation * over the set of real numbers is defined by:
a*b=a+ b— 2abforanya, b € R. The identity element is

A1 B 0 c ! D -4

1—2a 2a — 1
20
D Gr+2)is

r=1

A 670 B 632 C 631 D 1300

IflogVx? — 9 + %log(%) is expressed as a single logarithm in its simplest

form, the result is

A log(x —3) B %log (x +3)

C %log (x +3)(x—3) D log(x + 3)

What is the range of values of x for which 2x* — 5x — 3 = 0?
1_ - 1

A { T = xs3} B {x. 3sti}

C {x.xs—%}U{x:xES} D {x:xz—%}u{x:xsﬂ

The graph of y = (x — 3)? + 2 is a translation of y = x? by vector
A (3 B () el o (5

If &, B and 1y are the roots of the equation x*> — 4x* + 6x — 8 = 0, the equation
whose roots are é, —and %/

B
A P-2+3x-2=0 B 8x°— 62 +4x—1=0
C %x3—%x2+%x—1=0 D x¥*+4x>—6x+8=0
The sum of the squares of the roots of the equation 6x> — 3x> —3x + 2 =01s
_> _1 1 S
A 3 B C 3 D3

|2x — 1| > 5 can be expressed as

A —2<x<3 B x<—-2,x>3
C x<-2,x>-3 D |x| <3 |x|>2
If the range of the function fx) = % — 31is { 1, —1, —1—51, —g}, the domain is
A {1,2,5,8} B {1,—7, ﬁ —11}
111 _
C {l)zagy §} D {1) ) 11’ }
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14 When V2 + V36 + V72 is expressed in the form a + bvc, where a, b and c are
rational numbers, the result is

A 6+5V2 B 6+ 12V2 C 6+7V2 D 6+ 8V2

15 IfP(x) = x> — ax?* + 2x + 5and x — 2 is a factor of P(x), then the value of a is

_17 17 4
A 4 B 4 C 4 D 17
1 —cos26_
16 sin20
_sin26 _ B cotf C tan26 D tané6
1 + cos26
17 Given that A and B are in the first quadrant and cos A = %, cosB = 1—53, the
value of cos (A + B) is
_16 56 33 63
A —§ B & C & D &

18 When 3 cos 0 + 4 sin 6 is converted to rcos (6 — «), the result is

A 5 cos(@ + arctan %) B 5 cos(@ — arctan %)
C 5 cos(@ + arctan %) D 5 cos(@ — arctan %)

19 The maximum and minimum values of 6 + 3 sin 0 are respectively
A 6and3 B 9and3 C —3and3 D 3and -3

20 'The Cartesian equation of the curve represented parametrically by
x=2+3cosf,y=3+2sinfis

A x—22+((—3)?%=36
B 4x?+9y> —16x — 54y + 61 =0
C 92 +4y—16x— 54y +61=0

x—3)? (=27 _
T 9~
21  Which of the following equations represents circles?

D 1
I XX+ —2x—4y—8=0

I x2+y*+2xy—4y—9=0

I 3x*+3y - 12x +15=0

A Tonly B IandIlonly

C TIandIII only D [ IIandIII
22 'The equation x? + y* — 2x — 4y — 4 = 0 is a circle with

A centre (1, 2), radius = 3 B centre (—1,2), radius = 9

C centre (1, 2), radius = 9 D centre (—1, —2), radius = 3
4

23 cos*x — sin*x=

A sin2x B —sin2x C cos2x D 2cos?x+1
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24

25

26

27

28

29

30

31

32

33

34

35

36

Expressed as a product of two trigonometric functions, cos66 + cos48 is

A 2sin56cos 0 B 2cos50sin 0
C 2cos100cos26 D 2cos50cos6
1 -2

Given thata = 4) andb=| 1 |, thevalue of p for which a is perpendicular
tobis > p+3

S 17 ] —17
A 17 B 5 ¢ 17 D 5
With respect to an origin O, the points P and Q have position vectors

OP =2i + 6j — k andOQ = 6i + 12j — 5k respectively. The midpoint of PQ is

A 4i+9 -3k B 2i+3j—2k

C 4i+6j— 4k D 8i+ 18j — 6k

The distance from the origin to the plane with equation x + 2y + 2z = 12 is
A 3 B 4 C 12 D 6

The circle x> + y* — 4x — 2y + 1 = 0 has the point (4, 1) at the end of a diam-
eter. The coordinates of the other end of the diameter are

A (6,2) B (3,1) Cc (0,1) D (1,0)
The general solution of cos260 = % is

A 0=180n £30°ne”Z B 6=360°n=*60%neZ

C 0=360°n*+30°ne” D 6=180°n*60°ne”Z

cos75°cos 15° — sin75°sin 15° is equal to

V3 1 _1
A 5 B > C 5 D 0
lim Sin6x _
x—0
AL B 6 C 1 D 0
lim X —X—6__
x%32x2—5x_3
A 0 B 1 c 2 D
x—3 x—3
A 0 B 1 C 4 D
7 _
Jx v 2 dxis equal to
xt_ 2 3_2 1 2
A i x3+c B «x x4+c C 3 x4+c D 4+3x3+c

The range of values of x for which the function f{x) = x> — 3x? + 2 is
decreasing is

A 0<x<2 B x>0,x>2 C —2<x<0 D x<-2
Given that f(x) = cos’x, f'(x) is

A 3cos’x B 3sinx C 3cos’xsinx D —3cos’xsinx
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37 JZ sin80cos40d60

112 cos126 — cos40 +c

cos120 + = cos40 +c

A sin126 + sin46 + ¢ B

1 . 1 . 1
C ﬁs1n120+—sm40+c D 15

38 The function f(x) = X + 14 is discontinuous when x takes the values

A 2,-2 B 4,4 C —-1,4 D 1,-4

39 The volume of the solid generated when the region enclosed by the curve y =
x? + 1, the x-axis and the line x = 2 is rotated 360° about the x-axis is

A 12 B 8 c 142 p 206

157 157 157 15

40 lim 20sin10x _
x— 0 C0os6xsin 6x

120 100 20

41 Given that the phaser description of an alternating current is @(x) =
sec (x + ) What is ¢"(x) at the stage where x = <5?

12
A 16 B 1283 C 83 D 1024
42 Given that J:cosx dx = L 2cos y dy, what is y?
A %T—x B m—x C x—m D 2x
43 A curve Cis defined by y = % for x € (1, o). The area between C and the x-axis is
A 0 B 1 g C 2 D o
44  Given that J 402x + 1)3dx = =+ the value of cis
A 16 B 3 c 1 D 2

2
45 What is the equation of a curve which passes through (2, 0) and whose tangent

2
at a point (x, y) has a gradient of ;C??

A pP=x B y»=x*-8 C »»=3-8 D »=x>-38
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Index

A
acosf + bsinf 241-4
acosf + bsinf = ¢ 244-8
absolute value functions see modulus functions
absorption laws 19
addition
theorems 238-41
of vectors 304-5
algebra
of polynomials 63
of propositions 18-20, 23
of vectors 304-5
@+ B+ 175-6
amplitude 452-7
angle
double-angle formulae 236-41, 249-53
half-angle formulae 238, 249-53
between two lines 322-3
between two vectors 310-12
antecedent 11,12
area
below the x-axis 517-19
under a curve 510-15
between the curve and the y-axis 519-23
between two curves 516
associative laws 18
associativity 28-9
asymptote 154
definition 462
horizontal 462-3
vertical 351, 462
axioms, ordering 39

B

base, change of 113-15
biconditional statements 15-17
bijective functions 137

binary operations 26-33, 40
boundary condition 544

C
Cartesian equation
of a circle 282-5
of a curve 279-82,292
ellipse 291-3
of aline 320-2
of a plane 330-1
centre
a,b of a circle with radius r 268-9
ellipse 286-8
(h,k) of an ellipse 289-91
parabola 295
chain rule 379-81
change
of base formula 113-15
rate of 377-9, 425-9
chord, ellipse 287
circles 299
with centre (a,b) and radius r
268-9
conic sections 285
equation of 267-75
general equation 269-75
intersection of two circles 276-277
intersection with a line 275-6
parametric equations 282-5
closure 26-7
codomain 129-30
onto function 135-6
vertical line test 130-1

coeflicient
cubic equations 173-5
quadratic 171-2
colours 304
commutative laws 18, 19, 20
commutative property 310
commutativity 27-8
comparing polynomials 65-9
complement laws 19, 20
composite functions 146-52
chain rule 379-81
compound interest 118-20
compound propositions 6-10
compound statements 5-10
concavity 416, 430
conclusion 11,12
conditional statements 11-13
biconditional 15-17
conic sections 285
conjugate method 350-1
conjugate surds 94
conjunction 6-7
connectives 6-10
constant of integration 474, 504
contingency 17
continuity 358, 363
continuous compound interest 120
contradiction 17-18
proof by 35-6
contrapositive 12-13
converse 13
coordinate geometry 267, 299
cosec x graph 450-1
cosines
cos (A = B) expansion 230-4
cos 20 237
cosx =k 216
acosf + bsinf 241-4
acosf + bsinf = ¢ 244-8
cos?x integration 488-91
integration of products 491
inverse 213
cot x graph 451-2
counter example, proof by 36-7
critical values functions 188-9, 191-4
cubic equations 173-5, 182
@+ B+ 7y 175-6
finding, using roots 176-82
notation 175
cubic polynomials 171-84
curves
area between curve and y-axis 519-23
area between two curves 516
area under
estimating 510-14
finding 514-16
Cartesian equation 279-82, 292
equation of a 504-6
families of 544
gradient of a 367-8
independent variable 466-8
intersection of two curves 277-8
parametric representation 278-82
sketching 430-3
volume of region bounded by two 530-6

D

de Morgans laws 9, 19

declaration 3

decreasing functions 152-3, 403-6

definite integral 492-8
degree
even 436-8, 466
odd 435-6, 466
polynomial 63
denominators, rationalising 94-7
derivatives 367
existence of 368
finding, using first principles 369-73
first derivative test 409-13
higher derivatives 393-5
interpretations of 369
notation 368, 396
rate of change 377-9, 425-9
second 393-5, 407-9
second derivative test 413-16
trigonometric functions 387
Descartes’ rule of signs 77
determinate form of a limit 344
difference quotient 368
differences
products as 253-4
solving equations 258-60
products from 254-7
differences of functions
differentiation 373-5
x, first principle 375-7
differential equations 557
classifying 544
first order 545-7
modelling problems 549-52
practical applications 544-5
second order 552-4
variable-separable 547-9
differentiation 367-9, 396
ag(x) 372-3
applications 469
chain rule 379-81
curve sketching 430-3
functions
graphing 440-8
increasing and decreasing 152-3, 403-6
rational 461-6
sums and differences of 373-5
sums and differences of x functions 375-7
independent variables 466-8
inflexion points 407, 409, 416-19
maximum and minimum problems 419-23
notation 396
parametric 424-5
polynomial graphs 434-40
product rule 382-3
quotient rule 383-5
standard results 396
stationary points and second
derivatives 407-9
tangents and normals 400-3
turning points 407, 409-16
vs integration 506
see also derivatives; trigonometric
functions; trigonometry
direct proof 33-5
direct substitution 347-8
direction
of the line 316-17
vector of the line 317
vectors 322-3
directrix
ellipse 291
parabola 294-6
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discontinuity 359-61
disjunction 7-8
displacement 454-5
vectors 306-7
distributive laws 18, 19, 20, 38
distributive property 310
distributivity 29-30
divisibility tests 57-9
domain 129-30
composite functions 146
inverse function 139-40, 142-3
onto function 135-6
vertical line test 131-2
domination laws 18
double-angle formulae 236-7
proving identities 238-41
solving equations 249-53
double negation laws 19

E
e (in exponential functions) 100-2
eccentricity of an ellipse 291
ellipses 285,299
diagram 286
equation of a normal to 293-4
equation of a tangent to 293, 294
equation of an 286-9
equations with centre (h,k) 289-91
focus—directrix property 291
parametric equations 291-3
equality, of vectors 305-6
equations
of a circle 267-75
of a curve 504-6
of an ellipse 286-9
of an ellipse with centre (h,k) 289-91
ofaline 316-23
normal to a parabola 297
normal to an ellipse 293-4
of a parabola 295-6
of a plane 326-31
of a straight line 267
tangent to a parabola 296-7
tangent to an ellipse 293, 294
tangents and normals 401-3
vector equation of a line 319, 322
see also solving equations; specific equations
equivalent propositions 14-15
estimating, area under a curve 510-14
evaluating
limits 347-51
polynomials 64
even degree 436-8, 466
even functions 144
exhaustion, proof by 33
expansion
cos (A = B) 230-4
series 47-8
sin (A £ B) 229-30
tan (A + B) 234-5
exponential equations 102-4
exponential expressions, conversion 104-5
exponential functions
definition 98
graphs 98-100
number e 100-2
exponents
equations involving 110-13
from logarithms 105-7
in simultaneous equations 115-17

F
factor theorem 74-7
factorising
polynomials 77-82
x"—y" 82-4
factorising method, limits 349

families of curves 544
first derivative test 409-13
first order differential equations 545-7
focus
ellipse 286-9
parabola 294-6
focus—directrix property 291
functions 129-30, 166
bijective 137
composite 146-52, 379-81
continuity 358
critical values 188-9, 191-4
definition 129
derivates see derivatives
differentiation see differentiation
exponential 98-102
flx) = x" 434-5
gradient 343, 504
graphing 440-8
increasing and decreasing 152-3, 403-6
inverse 139-44, 150-2
limit of 343-51
linear 434, 482-3
logarithmic 104-7
modulus see modulus functions
odd and even 144
one-to-one 132-4, 137
onto function 134-7
periodic 144-5, 452
piecewise defined 162-4
polynomial 477-81
rational see rational functions
simple rational 160-2
trigonometric see trigonometric functions
vertical line test 130-2
see also graphs
fundamental trigonometric identities 220
flx) = x" functions 434-5

G
general solution 545-6
general term, series 45-6
gradient function 343, 504
gradient of a curve 367-8
graphing functions 440-8
graphs 166
cosec x 450-1
cotx 451-2
curve sketching 430-3
functions
exponential 98-100
increasing and decreasing 152, 153
inverse 139, 141
inverse trigonometric 213-14
logarithmic 106, 107
modulus 145-6
odd and even 144
one-to-one 133, 134
onto 135,136
piecewise 163, 164
rational 461-6
simple rational 160-2
trigonometric 452-5
trigonometric transformation
456-61
horizontal stretch 155-6
horizontal translation 154-5
polynomial 434-40
quadratic inequalities 187, 188
reflection in the x-axis 158
reflection in the y-axis 158-9
secx 451
simple trigonometric 214-18
trigonometric 213-14, 214-18
vertical line test 130-2
vertical stretch 157-8
vertical translation 153-4

H
half-angle formulae 238
solving equations 249-53
higher derivatives 393-5
horizontal asymptote 462-3
horizontal stretch 155-6
horizontal translation 154-5
hyperbolas 285
eccentricity 291
hypothesis 11, 12

1
idempotent laws 18, 19, 20
identity 30-1
element 31
laws 18,20
see also proving identities; trigonometric
identities
image 129, 146
increasing functions 152, 403-6
indefinite integral 474
independent variable 466-8
indeterminate form of a limit 344
indices 91, 124
laws of 89-91
inequalities 205
applications problems 203-5
definition 186
quadratic 186-8
and rational functions 191-4
sign table 188-201
solving graphically 447-8
theorems of 186
triangle 201-3
infinite discontinuity 359, 360
infinity
limits at 352-4
tending to 351-8
inflexion points 407, 409, 416-19
injective function 132-4
integers 25, 26
integrals
definite 492-8
form ax" 474-5
indefinite 474
table of 485
integrand f(x) 474
integration 506
applications 539
area below the x-axis 517-19
area between the curve and the
y-axis 519-23
area between two curves 516
constant of 474, 504
equation of a curve 504-6
estimating area under a curve 510-14
finding area under a curve 514-16
linear functions 482-3
polynomial functions 477-81
standard results 506
by substitution 498-504
theorems 475-7
trigonometric functions 483-91
volume of solids of revolution 524-36
intersection
aline and a circle 275-6
two circles 276-277
two curves 277-8
inverse 13,31-2
inverse cosine function 213
inverse functions 139-44
relationship between 150-2
inverse sine function 213
inverse tangent function 214
irrational numbers 26
surds 91



J

jump discontinuity 359, 360

L
Lagrange Multipliers 367
latus rectum 287
laws of indices 89-91
left-hand limits 345
limit laws 345-7
limits 343, 363
at continuity 358
determinate and indeterminate forms
344
discontinuity 359-61
evaluating 347-51
existence of 345
of a function 343-51
at infinity 352-4
left- and right-hand 345
special limits 354-8
substitution with 501-3
linear differential equations 544
linear functions
graph 434
integration 482-3
lines 334
angle between two lines 322-3
Cartesian equation of 320-2
equation of 316-23
equation of a straight line 267
intersection with a circle 275-6
parametric equation of 319-20, 322
skew lines 323-5
two points on 317-19
vector equation of a line 319, 322
logarithmic equations
involving exponents 110-13
solving 108-10
logarithmic expressions 104-5
logarithmic functions 104-7
graph of 106, 107
properties 106
logarithms 124
applications problems 117-20
change of base formula 113-15
conversion to exponents 105-7
definition 104
Naperian 106-7
properties 107-17
in simultaneous equations 115-17

M
magnitude
unit vector 307
vector 306
major axis, ellipse 286-90
mapping 129-30
mathematical induction 53-7, 60
divisibility tests 57-9
maximum point 407, 409
maximum problems 419-23
maximum value 407
minimum point 407, 409
minimum problems 419-23
minimum value 407
minor axis, ellipse 286-8
modelling problems, differential equations
549-52
modulation 304
modulus functions 145-6, 162, 195, 205
general results about 196-201
multiplication, by a scalar 305

N

Naperian logarithms 106-7
natural numbers 25, 26

negation 4-5,9
double negation laws 19
negative integers 25
negative roots 77
non-linear differential equations 544
non-removable discontinuity 360
normal
differentiation 400-3
equation to a parabola 297
equation to an ellipse 293-4
to the plane 328-9
vector 326
notation 4
cubic equations 175
derivatives 368, 396
sigma 47
number e 100-2

(0)
odd degree 435-6, 466
odd functions 144
one-to-one function 132-4
onto function 134-7
operations 26
binary 26-33, 40
order
first order differential equations 545-7
polynomial 63
second order differential equations
552-4
ordering axioms 39

P
P—q

interpretation of 12

truth table 11
parabolas 285, 299

definition 294

diagram 294

eccentricity 291

equation of a 295-6

equation of a normal to 297

equation of a tangent to 296-7

parametric equations 296
parallel lines 267
parallel vectors 313-15
parametric differentiation 424-5
parametric equations

of acircle 282-5

ellipses 291-3

of aline 319-20, 322

of a parabola 296

trigonometric 280-2
parametric representation, curve 278-82
particular solution 545-6
period 145, 452-7
periodic functions 144-5, 452
perpendicular lines 267
perpendicular vectors 312-13
piecewise defined functions 162-4
planes 334

Cartesian equation of a 330-1

equation of a 326-31
plotting, point in 3D 304
point discontinuity 359, 360
points

of inflexion 407, 409, 416-19

onaline 316-17

on the plane 328-9

plotting in 3D 304

stationary 407-9

two points on a line 317-19
polynomial functions, integration 477-81
polynomials 85

algebra of 63

comparing 65-9

cubic 171-84
curve sketching 430-3
degree/order of 63
evaluating 64
of even degree 436-8, 466
factor theorem 74-7
factorising 77-82
factorising x" — y" 82-4
graphs 434-40
of odd degree 435-6, 466
rational expressions 64-5
remainder theorem 69-73
zeros of 438-40
position vectors 304, 313-14
positive integers 25
positive roots 77
product rule 382-3
products
of sines and cosines 491
as sums and differences 253-4
solving equations 258-60
from sums and differences 254-7
proofs 38-9, 40
by contradiction 35-6
by counter example 36-7
direct proof 33-5
by exhaustion 33
propositions 3, 4
algebra of 18-20, 23
compound 6-10
equivalent 14-15
proving identities 220-4
using addition theorems/double-angle
formulae 238-41
Pythagorean identities 219-20

Q

quadratic equations 182
inequalities 186-8
inverse function 143
roots and coefficient of 171-2
quotient rule 383-5

R
radicals 91, 350
radicand 91
range 129,131-2
inverse function 139-44
rate of change 377-9, 425-9
rational expressions 64-5
rational functions
curve sketching 430-3
graphs 461-6
and inequalities 191-4
simple 160-2
rational numbers 25, 26
conjugate surds 94
rationalising, denominators 94-7
real numbers 26, 40
reciprocal identities 218-9
rectangles, area under a curve 510-14
reflection in the x-axis 158
reflection in the y-axis 158-9
relations 129-30
remainder theorem 69-73
removable discontinuity 360
RGB colour 304
right-hand limits 345
roots
cubic equations 173-5, 176-82
negative and positive 77
quadratic 171-2
square root of x> 201
rotation
about the x-axis 524-7
about the y-axis 527-30
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rules
chain rule 379-81
Descartes’ rule of signs 77
product rule 382-3
quotient rule 383-5
sets 19
surds 92

S
scalar
multiples 313
multiplication by a 305
product 309-10, 312
quantities 304
sec x graph 451
second derivatives 393-5, 407-9
test 413-16
second order differential equations 552-4
self-inverse 31, 32
sequences 45, 60
series 60
definition 45
expansion of a 47-8
general term of a 45-6
sigma notation 47
standard results 48-9
summation results 49-51
sets, rules for 19
sigma notation 47
sign table 188-201, 205
increasing and decreasing functions 405
rational functions 191-4
square root of x> 201
simple statements 4, 5
simplifying, surds 92-3
simultaneous equations
logarithms and exponents in 115-17
solving graphically 444-7
sine waves/curves 449
sines
acosf + bsinf 241-4
acosf + bsinh = ¢ 244-8
integration of products 491
inverse sine function 213
sin (A * B) expansion 229-30
sin 260 236-7
sinx =k 214-15
sin’x integration 488-91
sinusoidal graphs 452
skew lines 323-5
solids of revolution, volume 524-36
solving equations
acosf + bsinh = ¢ 244-8
double angle/half angle formulae 249-53
exponential 102-4
by factorising polynomials 77-82
inequalities 447-8
involving exponents 110-13
logarithmic 108-10
simple trigonometric 214-19
simultaneous 115-17, 444-7
sums and differences as products 258-60
variable-separable differential 547-9
special limits 354-8
special unit vectors 308-9
square root of x? 201
standard results series 48-9
stationary points 407-9
straight line, equation of a 267
substitution
direct 347-8

integration by 498-504

with limits 501-3
subtraction, of vectors 305
summation results 49-51
sums

products as 253-4

solving equations 258-60

products from 254-7
sums of functions

differentiation 373-5

x, first principle 375-7
surds 91, 124

conjugate 94

rationalising the denominator 94-7

rules of 92

simplifying 92-3
surjective function 134-7

T
t- formulae 238
table of integrals 485
table of values 440-3
tangent
differentiation 400-3
equation to a parabola 296-7
equation to an ellipse 293, 294
inverse function 214
tan (A + B), expansion 234-5
tan 260 237
tanx = k 217
tautology 17-18
3D, vectors in 304, 334
transformations
graphs 153-60
trigonometric functions 456-61
triangles, inequalities 201-3
trigonometric equations
cosx =k 216
parametric 280-2
sinx = k 214-15
solving 224-8
tanx = k 217
trigonometric functions
curve sketching 430-3
differentiation 385-93
integration 483-91
properties and graphs 452-5
table of integrals 485
transformations of 456-61
trigonometric identities 263, 487
double-angle formulae see double-angle
formulae
expansion
cos (A = B) 230-4
sin (A + B) 229-30
tan (A + B) 234-5
fundamental 220
half-angle formulae 238, 249-53
proving see proving identities
Pythagorean 219-20
reciprocal 218-9
trigonometry 449-56
truth tables 4-5
biconditional statements 16
conjunctions 6
contradiction 18
contrapositive 13
disjunctions 7, 8
equivalent propositions 14, 15
p—q 11
tautology 17

truth value 3, 4,5
equivalent propositions 14
p—>q 12
turning points 407, 409-16
two circles, intersection 276-277
two curves
area between 516
intersection 277-8
volume of region bounded by 530-6
two lines, angle between 322-3
two vectors, angle between 310-12

U
unary operations 26
unit vectors 307-10
perpendicular to the plane 327-8

A%
variable-separable differential
equations 547-9
vector dot 310
vector quantities 304
vectors 334
algebra of 304-5
angle between two 310-12
displacement 306-7
equality of 305-6
equation of a line 319, 322
magnitude 306
parallel 313-15
perpendicular 312-13
in 3D 304, 334
unit 307-10, 327-8
vertical asymptote 351, 462
vertical line test 130-2
vertical stretch 157-8
vertical translation 153-4
vertices
ellipse 286, 288-90
parabola 295-6
volume
region bounded by two curves 530-6
of solids of revolution 524-36

w

whole numbers 25, 26

X
x%, square root of 201
X-axis
area below the 517-19
reflection in 158
rotation about 524-7
x" = y", factorising 82-4

Y

y = acos (bx) + ¢ 459-60

y = asin (bx) + ¢ 459-60

y = atan (bx) + ¢ 460-1

y-axis
area between the curve and 519-23
reflection in 158-9
rotation about 527-30

zZ

zeros of a polynomial 438-40
zeros of the function 188, 190, 191
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